Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland
School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

Part 1: First-Order Logic

e formalizes fundamental mathematical concepts

e expressive (Turing-complete)

e not too expressive (not axiomatizable: natural numbers, uncountable sets)
e rich structure of decidable fragments

e rich model and proof theory

First-order logic is also called (first-order) predicate logic.

1.1 Syntax

e non-logical symbols (domain-specific)
terms, atomic formulas

e logical symbols (domain-independent)
Boolean combinations, quantifiers

Signature

Usage: fixing the alphabet of non-logical symbols
Y = (Q,N),

where

e () a set of function symbols f with arity n > 0, written f/n,
e [1 a set of predicate symbols p with arity m > 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also called
a propositional variable. We use letters P, Q, R, S, to denote propositional

variables.

Refined concept for practical applications: many-sorted signatures (corresponds

to simple type systems in programming languages);

Variables

Predicate logic admits the formulation of abstract, schematic assertions.
(Object) variables are the technical tool for schematization.

We assume that
X

is a given countably infinite set of symbols which we use for (the denotation of)

variables.

Terms

Terms over ¥ (resp., X-terms) are formed according to these syntactic rules:

s,t,u,v = Xx , x € X (variable)

| f(si,....sn) , f/n € Q (functional term)

By Tx(X) we denote the set of ¥ -terms (over X). A term not containing any
variable is called a ground term. By Ts we denote the set of X-ground terms.

In other words, terms are formal expressions with well-balanced brackets which
we may also view as marked, ordered trees. The markings are function symbols
or variables. The nodes correspond to the subterms of the term. A node v that
is marked with a function symbol f of arity n has exactly n subtrees

representing the n immediate subterms of v.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this syntax:

AB == p(s,....sm) ,p/meTl
[| (s=t) (equation) }

Whenever we admit equations as atomic formulas we are in the realm of
first-order logic with equality. Admitting equality does not really increase the
expressiveness of first-order logic. But deductive systems where equality is
treated specifically can be much more efficient.

Literals

= A (positive literal)
| —A (negative literal)

Clauses

.V L,

k> 1

(empty clause)

(non-empty clause)

First-Order Formulas

Fx(X) is the set of first-order formulas over ¥ defined as follows:

F,.G.H = L (falsum)
T (verum)
A (atomic formula)
- F (negation)
(FAG) (conjunction)
(FVG) (disjunction)
(F = G) (implication)
(F = G) (equivalence)
VxF (universal quantification)
IxF (existential quantification)

Notational Conventions

e \We omit brackets according to the following rules:

- 1 >p V >p AN >p = >p —
(binding precedences)

— V and A are associative and commutative

— = s right-associative
o (Ix1,...,x, F abbreviates @x1...Qx, F.

e infix-, prefix-, postfix-, or mixfix-notation with the usual operator
precedences; examples:

s+txu for +(s, *(t, v))
sxu<t+v for < (x(s,u), +(t, v))
—s for —(s)

0 for 0()

11

Example: Peano Arithmetic

Ypa = (Qpa, Mpa)

{0/0, +/2, %/2, s/1}

Nea = {< /2, < /2}

+, 0%, <, Zinfix; * >, + >, < >, <

S
X
]

Exampes of formulas over this signature are:

Vx,y(x <y =3z(x + z = y))
IxVy(x +y = y)
Vx,y(x * s(y) = x * y + x)

Vx, y(s(x) % s(y) = x & y)
Vxdy (x < yA—-Tz(x < zAz<Yy))

12

Remarks About the Example

We observe that the symbols <, <, 0, s are redundant as they can be defined
in first-order logic with equality just with the help of 4. The first formula
defines <, while the second defines zero. The last formula, respectively, defines
S.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces
the “redundant” symbols.

Consequently there is a trade-off between the complexity of the quantification
structure and the complexity of the signature.

13

Bound and Free Variables

In QxF, Q € {3, V}, we call F the scope of the quantifier Qx. An occurrence
of a variable x is called bound, if it is inside the scope of a quantifier @x. Any

other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

14

Example

scope

' N\
scope

e N
Vy (Vx p(x) = aq(xy))

The occurrence of y is bound, as is the first occurrence of x. The second
occurrence of x is a free occurrence.

15

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in

all inference systems for first-order logic. In the presence of quantification it is
surprisingly complex.

By F[s/x| we denote the result of substituting all free occurrences of x in F by
the term s.

Formally we define F[s/x] by structural induction over the syntactic structure of
F by the equations depicted on the next page.

16

Substitution of a Term for a Free Variable

x[s/x] =s
xX'[s/x] = x"; if X" # x
f(sg, ..., sn)[s/x] = f(si[s/x], ..., snl[s/x])
1[s/x] =L
T[s/x] =T
p(st,«--, sn)[s/x] = p(si[s/x], ..., snls/x])

(v v)[s/x] = (uls/x] = v[s/x])
—Fls/x] = ~(F[s/x])
(FpG)[s/x] = (F[s/x]pG[s/x]) ; for each binary connective p
(QyF)[s/x] = Qz((F[z/y])[s/x]) ; with z a “fresh” variable

Why Substitution is Complicated

We need to make sure that the (free) variables in s are not captured upon
placing s into the scope of a quantifier, hence the renaming of the bound
variable y into a “fresh”, that is, previously unused, variable z.

Why this definition of substitution is well-defined will be discussed below.

18

General Substitutions

In general, substitutions are mappings
o: X — Tg(X)
such that the domain of o, that is, the set
dom(o) = {x € X | o(x) # x},

is finite. The set of variables introduced by o, that is, the set of variables

occurring in one of the terms o(x), with x € dom(o), is denoted by codom(o).

Substitutions are often written as [s1/x1, ..., Sp/Xs], with x; pairwise distinct,

and then denote the mapping

si, ify=x
[51/X11---15n/Xn](y) — :
y, otherwise

We also write xo for o(x).

19

Application of a Substitution

“Homomorphic” extension of o to terms and formulas:

f(s1,ee-, sn)o = f(s10, ..., SnO)
lo=_1
To=T
p(st, .-, sn)o = p(sio, ..., SnO)
(u~ v)o = (uo = vo)
—Fo = —(Fo)

(FpG)o = (Fo p Go) ; for each binary connective p
(Qx F)o = Qz(F o[x — z]); with z a fresh variable

E: Convince yourself that for the special case o = [t/x] the new definition
coincides with our previous definition (modulo the choice of fresh names for the

bound variables).
20

1.2. Semantics

To give semantics to a logical system means to define a notion of truth for the

formulas. The concept of truth that we will now define for first-order logic goes
back to Tarski.

In classical logic (dating back to Aristoteles) there are “only” two truth values
“true” and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

21

Structures

A Y -algebra (also called X-interpretation or ¥-structure) is a triple

A= (U, (fa:U" — U)f/nea, (pa € U™)p/men)
where U # 0 is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and its
universe.

By 2-Alg we denote the class of all X-algebras.

22

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be
defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given X-algebra A), is a
map 3 : X — A.

Variable assignments are the semantic counterparts of substitutions.

23

Ex: “Standard” Interpretation N for Peano Arithmetic

Uy = {01,2,...}

Oy = 0

sy . nhr—n+1

+ny = (nnm)—n+m

xy - (n,m)— n%xm
<nv = {(n, m)| nless than or equal to m}
<y = {(n,m)| nlessthan m}

Note that N is just one out of many possible 2 pa-interpretations.

24

Values over N for Sample Terms and Formulas

Under the assignment 3 : x — 1, y +— 3 we obtain

<

B)(s(x) + s(0)) =
B)(x +y = s(y)) =

(B)(
(B)(
B)Vx,y(x +y=y+x)) =
(B)(
(B)(

=

N
N

B)(Vzz <) =
B)(Yx3y x < y) =

_ O R = W

25

Part 2: Higher Order Logic and Sequent Calculus

e In order to formally reason about mathematical objects, or programs we

need a formal language PVS uses higher order logic.

e Constructions in higher order logic used in PVS:

— not

A and

V or

— if ... then
< if and only if
Vx : XP(x)

Ix : xP(x)

= is equal to

p(t1,««., tn), t,..., t, are in relationship with each other: (t1,...,t,)
are called atoms;

26

Examples

e The atoms p(ty, ..., t,) can have the form:
—a<b
-1<1+1
— even(4), odd(5);
e Examples of formulae are:
- Vx,y:Nat == x+1<y+1
- Vx,y :Nat - x<y—-x<y+1
— Vprime(p) : Nat < —3dx : Natl < x and x < p A divides(x, p)
— Vx, y : Real square(x + y) = square(x) + square(y) + 2 % x * y

27

Predicate versus higher order logic: what is an order

e Predicates that speak of domain objects are of first-order.

e Predicates that speak of objects of at most ith order are themselves i 4+ 1th
order.

e Functions that take and return domain objects are of first-order.

e Functions that take and return objects of at most i-th order are themselves
I + 1-th order.

Example: The induction principle is second order.
VP : Nat — BoolPO A Vn : Nat(P(n) — P(n+ 1)) — Nat : P(n)

28

Higher-order logic

e When reasoning about physical objects the following principles are
considered valid:

— law of excluded middle: AV —A
— law of double negation: =——A — A

Example: Either there are errors in the code, or there are no errors in the
code.

29

Intuitionistic or constructive logic

e Mathematical objects.
e The law of excluded middle is not observed.

e To prove Ix : Xp(x) in Intuitionistic logic means to find a witness t for

which p(t) holds.

30

Sequent calculus for first-order logic

The most important types of deduction systems are:

e natural deduction
— models the natural style of reasoning;
— principle of forward reasoning: deriving conclusions, deriving conclusions
from the conclusions, etc.
e sequent calculus;
— conclusions and premises are treated in the same way.

— the proof consists o judgments rather than conclusions;
e PVS is based on a sequent calculus for higher order classical logic.

e COQ is based on higher order intuitionistic logic with inductive types.

31

Sequent Calculus for Classical Logic

Definition: A multiset is a set that can distinguish how often en element occurs
in it. Alternatively: a list that cannot see the order of its elements.

Examples

1. A VBANBAAB
2. A VBAANBC = D
3. ANBAVBAANB

The first and the last multiset are equal.

32

Sequents

A sequent is an object of the form:
[A

where:
e Both [and A are multisets of formulae.

Meaning: Whenever all of the [are true then at least one A is true.

33

Propositional rules

e Axiom:

e [he cut rule:

[VAIFAA

[VAIFB [FAA

[- A

34

Structural rules

e Weakening (left):

e Weakening (right):

[- A
LAIFA

[- A
[FAA

35

Structural rules (Cntd)

e Contraction (left):

e Contraction (right):

A AIFA
LAIFA

[FAAA
[FAA

36

Rules for the constants

o (T left):

° (J_—|eft):

e (T right):

o (L-right):

[- A
[, TIFA

L LIFA

[FA T

[- A
A, L

37

Rules for negation

e Negation (left):

e Negation (right):

[-FAA
[-AIFA

LAIFA
[A —A

38

Rules for Conjunction and Disjunction

o (A left):
VA BIFA
[LAABIFA
o (V-left):
VAIFA T,BIFA
LAV BIFA
o (A right):
[-FAA TIFA B
A AANB
e (V-right):
[-AA B
[-ALAV B

Premises and conclusions are treated in the same way.

39

Rules for — and «—

° (—>-Ieft):

o (—-right):

° (<—>-Ieft):

o («-right):

[FAA T,BIFA
[LA— BIFA

VAIFA B
[-AA— B

MAIFB, A B—AIFA
[LA— BIFA

[FAA—-B TIFAB—A

[-AA— B

40

Rules for the quantifiers

o (V-left):
[, Plx:=t]IFA
[Vx : XP(x) IF A
o (3-left):
[, Plx:=y]lFA
[, 3Ix : XP(x) IF A
o (V-right):
[A, Plx :=y]
[- A, Vx : XP(x)
e (I-right):

[- A, P[x = t]
M- A, Ix : XP(x)

The t is an arbitrary term of type X and X is not free in [, A

41

Rules for equality

e Reflection:

e Replication:

[FAt=1t

t1 = to, [ta] IF Alts]

F[tl] Is A[tl]

42

Rules for IF

PVS has an IF operator:

The operator is defined as (AA B) VAN C

|F-left

IF-right

VA BIFA T,-A CIFA

M IF(A B, C)IF A

VAIFA B T,-AIFA,C

[- AIF(A, B, C)

43

