
Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

1

Part 1: First-Order Logic

• formalizes fundamental mathematical concepts

• expressive (Turing-complete)

• not too expressive (not axiomatizable: natural numbers, uncountable sets)

• rich structure of decidable fragments

• rich model and proof theory

First-order logic is also called (first-order) predicate logic.

2

1.1 Syntax

• non-logical symbols (domain-specific)

terms, atomic formulas

• logical symbols (domain-independent)

Boolean combinations, quantifiers

3

Signature

Usage: fixing the alphabet of non-logical symbols

Σ = (Ω, Π),

where

• Ω a set of function symbols f with arity n ≥ 0, written f /n,

• Π a set of predicate symbols p with arity m ≥ 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also called

a propositional variable. We use letters P, Q, R, S , to denote propositional

variables.

Refined concept for practical applications: many-sorted signatures (corresponds

to simple type systems in programming languages);

4

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of)

variables.

5

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any

variable is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced brackets which

we may also view as marked, ordered trees. The markings are function symbols

or variables. The nodes correspond to the subterms of the term. A node v that

is marked with a function symbol f of arity n has exactly n subtrees

representing the n immediate subterms of v .

6

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A, B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality . Admitting equality does not really increase the

expressiveness of first-order logic. But deductive systems where equality is

treated specifically can be much more efficient.

7

Literals

L ::= A (positive literal)

| ¬A (negative literal)

8

Clauses

C , D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

9

First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F , G , H ::= ⊥ (falsum)

| > (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F =⇒ G) (implication)

| (F ≡ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)

10

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p =⇒ >p ≡

(binding precedences)

– ∨ and ∧ are associative and commutative

– =⇒ is right-associative

• Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

• infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences; examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()

11

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Exampes of formulas over this signature are:

∀x , y(x ≤ y ≡ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x , y(x ∗ s(y) ≈ x ∗ y + x)

∀x , y(s(x) ≈ s(y) =⇒ x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

12

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be defined

in first-order logic with equality just with the help of +. The first formula

defines ≤, while the second defines zero. The last formula, respectively, defines

s.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces

the “redundant” symbols.

Consequently there is a trade-off between the complexity of the quantification

structure and the complexity of the signature.

13

Bound and Free Variables

In QxF , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx . An occurrence

of a variable x is called bound, if it is inside the scope of a quantifier Qx . Any

other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

14

Example

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) =⇒ q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.

15

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in

all inference systems for first-order logic. In the presence of quantification it is

surprisingly complex.

By F [s/x] we denote the result of substituting all free occurrences of x in F by

the term s.

Formally we define F [s/x] by structural induction over the syntactic structure of

F by the equations depicted on the next page.

16

Substitution of a Term for a Free Variable

x [s/x] = s

x ′[s/x] = x ′ ; if x ′ 6= x

f (s1, . . . , sn)[s/x] = f (s1[s/x], . . . , sn[s/x])

⊥[s/x] = ⊥

>[s/x] = >

p(s1, . . . , sn)[s/x] = p(s1[s/x], . . . , sn[s/x])

(u ≈ v)[s/x] = (u[s/x] ≈ v [s/x])

¬F [s/x] = ¬(F [s/x])

(FρG)[s/x] = (F [s/x]ρG [s/x]) ; for each binary connective ρ

(QyF)[s/x] = Qz((F [z/y])[s/x]) ; with z a “fresh” variable

17

Why Substitution is Complicated

We need to make sure that the (free) variables in s are not captured upon

placing s into the scope of a quantifier, hence the renaming of the bound

variable y into a “fresh”, that is, previously unused, variable z .

Why this definition of substitution is well-defined will be discussed below.

18

General Substitutions

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise distinct,

and then denote the mapping

[s1/x1, . . . , sn/xn](y) =







si , if y = xi

y , otherwise

We also write xσ for σ(x).
19

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

>σ = >

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρ Gσ) ; for each binary connective ρ

(Qx F)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

E: Convince yourself that for the special case σ = [t/x] the new definition

coincides with our previous definition (modulo the choice of fresh names for the

bound variables).
20

1.2. Semantics

To give semantics to a logical system means to define a notion of truth for the

formulas. The concept of truth that we will now define for first-order logic goes

back to Tarski.

In classical logic (dating back to Aristoteles) there are “only” two truth values

“true” and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

21

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and its

universe.

By Σ-Alg we denote the class of all Σ-algebras.

22

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be

defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a

map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

23

Ex: “Standard” Interpretation N for Peano Arithmetic

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n, m) 7→ n + m

∗N : (n, m) 7→ n ∗ m

≤N = {(n, m) | n less than or equal to m}

<N = {(n, m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

24

Values over N for Sample Terms and Formulas

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

25

Part 2: Higher Order Logic and Sequent Calculus

• In order to formally reason about mathematical objects, or programs we

need a formal language PVS uses higher order logic.

• Constructions in higher order logic used in PVS:

– ¬ not

– ∧ and

– ∨ or

– → if . . . then

– ↔ if and only if

– ∀x : XP(x)

– ∃x : xP(x)

– = is equal to

– p(t1, . . . , tn), t1, . . . , tn are in relationship with each other: (t1, . . . , tn)

are called atoms;
26

Examples

• The atoms p(t1, . . . , tn) can have the form:

– a < b

– 1 < 1 + 1

– even(4), odd(5);

• Examples of formulae are:

– ∀x , y : Nat ↔ x + 1 < y + 1

– ∀x , y : Nat ↔ x < y → x < y + 1

– ∀prime(p) : Nat ↔ ¬∃x : Nat1 < x and x < p ∧ divides(x , p)

– ∀x , y : Real square(x + y) = square(x) + square(y) + 2 ∗ x ∗ y

27

Predicate versus higher order logic: what is an order

• Predicates that speak of domain objects are of first-order.

• Predicates that speak of objects of at most ith order are themselves i + 1th

order.

• Functions that take and return domain objects are of first-order.

• Functions that take and return objects of at most i-th order are themselves

i + 1-th order.

Example: The induction principle is second order.

∀P : Nat → BoolP0 ∧ ∀n : Nat(P(n) → P(n + 1)) → Nat : P(n)

28

Higher-order logic

• When reasoning about physical objects the following principles are

considered valid:

– law of excluded middle: A ∨ ¬A

– law of double negation: ¬¬A =⇒ A

Example: Either there are errors in the code, or there are no errors in the

code.

29

Intuitionistic or constructive logic

• Mathematical objects.

• The law of excluded middle is not observed.

• To prove ∃x : Xp(x) in Intuitionistic logic means to find a witness t for

which p(t) holds.

30

Sequent calculus for first-order logic

The most important types of deduction systems are:

• natural deduction

– models the natural style of reasoning;

– principle of forward reasoning: deriving conclusions, deriving conclusions

from the conclusions, etc.

• sequent calculus;

– conclusions and premises are treated in the same way.

– the proof consists o judgments rather than conclusions;

• PVS is based on a sequent calculus for higher order classical logic.

• COQ is based on higher order intuitionistic logic with inductive types.

31

Sequent Calculus for Classical Logic

Definition: A multiset is a set that can distinguish how often en element occurs

in it. Alternatively: a list that cannot see the order of its elements.

Examples

1. A ∨ B A ∧ B A ∧ B

2. A ∨ B A ∧ B C =⇒ D

3. A ∧ B A ∨ B A ∧ B

The first and the last multiset are equal.

32

Sequents

A sequent is an object of the form:

Γ
 ∆

where:

• Both Γ and ∆ are multisets of formulae.

Meaning: Whenever all of the Γ are true then at least one ∆ is true.

33

Propositional rules

• Axiom:

Γ, A
 ∆, A

• The cut rule:
Γ, A
 B Γ
 ∆, A

Γ
 ∆

34

Structural rules

• Weakening (left):
Γ
 ∆

Γ, A
 ∆

• Weakening (right):
Γ
 ∆

Γ
 ∆, A

35

Structural rules (Cntd)

• Contraction (left):
Γ, A, A
 ∆

Γ, A
 ∆

• Contraction (right):
Γ
 ∆, A, A

Γ
 ∆, A

36

Rules for the constants

• (> left):
Γ
 ∆

Γ, >
 ∆

• (⊥-left):

Γ, ⊥
 ∆

• (> right):

Γ
 ∆, >

• (⊥-right):
Γ
 ∆

Γ
 ∆, ⊥

37

Rules for negation

• Negation (left):
Γ
 ∆, A

Γ, ¬A
 ∆

• Negation (right):
Γ, A
 ∆

Γ
 ∆, ¬A

38

Rules for Conjunction and Disjunction

• (∧ left):
Γ, A, B
 ∆

Γ, A ∧ B
 ∆

• (∨-left):
Γ, A
 ∆ Γ, B
 ∆

Γ, A ∨ B
 ∆

• (∧ right):
Γ
 ∆, A Γ
 ∆, B

Γ
 ∆, A ∧ B

• (∨-right):
Γ
 ∆, A, B

Γ
 ∆, A ∨ B

Premises and conclusions are treated in the same way.

39

Rules for → and ↔

• (→-left):
Γ
 ∆, A Γ, B
 ∆

Γ, A → B
 ∆

• (→-right):
Γ, A
 ∆, B

Γ
 ∆, A → B

• (↔-left):
Γ, A
 B, A B → A,
 ∆

Γ, A ↔ B
 ∆

• (↔-right):
Γ
 ∆, A → B Γ
 ∆, B → A

Γ
 ∆, A ↔ B

40

Rules for the quantifiers

• (∀-left):
Γ, P[x := t]
 ∆

Γ, ∀x : XP(x)
 ∆

• (∃-left):
Γ, P[x := y]
 ∆

Γ, ∃x : XP(x)
 ∆

• (∀-right):
Γ
 ∆, P[x := y]

Γ
 ∆, ∀x : XP(x)

• (∃-right):
Γ
 ∆, P[x := t]

Γ
 ∆, ∃x : XP(x)

The t is an arbitrary term of type X and X is not free in Γ, ∆

41

Rules for equality

• Reflection:

Γ
 ∆, t = t

• Replication:
t1 = t2, Γ[t2]
 ∆[t2]

Γ[t1]
 ∆[t1]

42

Rules for IF

• PVS has an IF operator:

• The operator is defined as (A ∧ B) ∨ ¬A ∧ C

• IF-left
Γ, A, B
 ∆ Γ, ¬A, C
 ∆

Γ, IF (A, B, C)
 ∆

• IF-right
Γ, A
 ∆, B Γ, ¬A
 ∆, C

Γ
 ∆IF (A, B, C)

43

