
Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

1

First-order logic (FOL)

• Propositional logic deals only with facts/statements about the world which

may or may not be true.

• In FOL variables refer to objects in the world and can be quantified over.

• Examples of statements that can be made in FOL but not in propositional

logic: general statements or rules.

2

FOL syntax

• Term:

– constant symbols: names.

– variables: x, y, z.

– Function symbols applied to one or more terms.

F (x), F (F (x)), FatherOf (John)

• Sentence: a predicate symbol applied to zero or more terms.

on(a, b), sister(Jane, Joan), Jane, itIsRaining(), t1 = t2

• For a variable v and a sentence Φ:

∀xΦ, ∃xΦ

are sentences.

• Closure under ∧,∨,↔,→,¬.
3

FOL interpretation

• Interpretation I .

– U a set of objects, domain of discourse, universe.

– Maps constant symbols to elements of U.

– Maps predicate symbols to relations in U (binary relation is a set of

pairs).

– Maps function symbols to functions on U.

4

Basic FOL semantics

Denotation of terms (naming).

• I(Fred) if Fred is a constant, then given.

• I(x) undefined.

• I(F(term)) I(F)I(term)

|=i P(t1, . . . , tn) iff < I (t1), . . . , I (tn) >∈ I (P) Example: brother(John, Joe)?

• I (John) an element of U

• I (Joe) an element of U

• I (brother) = {< . . . , . . . >, . . .}

• |=i brother(John, Joe)

5

Semantics of quantifiers

Extend an interpretation I to bind variable x to an element a ∈ U : Ix/a.

• |=f ∀X .Φ iff |=x/a Φ for all a ∈ U.

• |=f ∃X .Φ iff |=x/a Φ for some a ∈ U.

Convention: Quantifier applies to the formula to the right until right after

enclosing parenthesis.

(∀x .p(x) ∨ q(x)) ∧ ∃x .r(x)→ q(x)

6

Semantics of PVS

In this lecture we present the formal semantics of the specification language of

PVS.

Specification language

• is a media for expressing what is computed rather than how it is computed.

• shares features with programming languages.

• is a logic in which the behaviour of a computational system can be

formalised.

7

PVS: Applications

• Used for specifying and verifying properties of digital hardware and software

systems.

• The PVS language contains constructs that can be statically checked using

a theorem prover.

• The logic of PVS is based on simply typed higher-order logic:

– sybtypes are analogous to subsets.

8

Orders of a logical system

• Predicates that speak about objects of the domain are first-order.

• Predicates that speak about objects of at most i order are i + 1 order.

• Functions that take and return objects of the domain are first-order.

• Functions that take and return objects of at most i order are i + 1 order.

9

Examples of constructs involving higher order

• Induction:

∀PP(0) ∧ ∀n : NatP(n)→ P(n + 1)→ ∀n : NatP(n)

• Differentiation:

(xy)′ = x ′y + y ′x

• Statements involving functions: every function that is first-order

differentiable in the complex plane is infinitely often differentiable.

• Abstract mathematical structures: lattices, groups.

10

λ notation

• In usual mathematical notation consequences of functions and formulae are

confused.

– the expression xy 2 can represent infinitely many functions of type

Real → Real .

– differentiation is a function of type

(Real =⇒ Real)→ (Real → Real): mathematicians speak of

differentiation over a variable:

∗ differentiation of xy 2 after x results in y 2.

∗ differentiation of xy 2 after y results in 2xy .

∗ differentiation of xy 2 after z results in 0.

– We need notation for functions: λx : Xt(x) is the function that for

every n ∈ X has the value [t(n)].

– If [t(x)] has the type Y on the assumption that x has the type X then

λx : Xt(x) has the type X → Y .
11

Types

• Impose discipline on the specification.

• Lead to easy and early detection of large class of semantical and syntactical

errors.

• Useful in mechanised reasoning.

12

Type definition of the simply typed fragment of PVS

Set U defined cumulatively starting from the base sets 2 and R and including:

• Cartesian products: used to model products in PVS.

• function spaces: used to model function types.

• subsets of previously included sets: used to model predicate subtypes.

U0 = {2, R}

Ui+1 = Ui ∪ {X × Y | X , Y ∈ Ui} ∪ {X
Y | X , Y ∈ Ui}

⋃
x∈Ui

ρ(X)

Uω =
⋃

i∈ω
Ui

U = Uω

13

Constructors in PVS

• In order to formally reason about mathematical objects, or programs we

need a formal language PVS uses higher order logic.

• Constructions in higher order logic used in PVS:

– ¬ not

– ∧ and

– ∨ or

– → if . . . then

– ↔ if and only if

– ∀x : XP(x)

– ∃x : xP(x)

– = is equal to

– p(t1, . . . , tn), t1, . . . , tn are in relationship with each other: (t1, . . . , tn)

are called atoms;
14

Examples

• The atoms p(t1, . . . , tn) can have the form:

– a < b

– 1 < 1 + 1

– even(4), odd(5);

• Examples of formulae are:

– ∀x , y : Nat↔ x + 1 < y + 1

– ∀x , y : Nat↔ x < y → x < y + 1

– ∀prime(p) : Nat↔ ¬∃x : Nat1 < x and x < p ∧ divides(x , p)

– ∀x , y : Real square(x + y) = square(x) + square(y) + 2 ∗ x ∗ y

15

Types in PVS

PVS is a strongly typed specification language:

The simply typed fragment of PVS includes:

• types constructed from the base types by

– function and product type constructions.

• expressions constructed with constants and variables by

– application, abstraction, and tupling.

16

Context, meta variables

Expressions are checked to be well typed under a context which is a partial

function which assigns a kind , i.e. one of (TYPE, CONSTANT, or VARIABLE)

to each symbol and a type to the constant and variable symbols.

Notation: Γ, ∆, Θ used for meta variables to range over contexts; A, B, T :

variables range over PVS type expressions; r , s range over symbols, identifiers;

meta variables x , y range over PVS variables; a, b, f , g range over PVS terms.

Base types are called pretypes.

• function pretype A→ B

• product pretype [A, B]

Preterm: term that has been checked in a context:

TRUE ,¬TRUE , λ(x : bool) : ¬x

17

Example of context

Context: sequence of declarations

s : TYPE , c : T where T is a type x : varT

Example:

bool : TYPE TRUE : bool FALSE : bool x : VAR[[bool , bool]→ bool]]

18

Types rules

Given by recursively defined partial function τ that assigns

• a type τ (Γ)(a) to a preterm a that is well typed wrt a context Γ

• the keyword TYPE as a result of τ (Γ)(a) when A is a well formed type

under the context Γ.

• the keyword CONTEXT as the result of τ (Γ)(∆) when ∆ is a well formed

context under the context Γ. For the simply typed fragment Γ is empty.

19

Type rules in PVS

• The type assignment is deterministic.

• Soundness proof needs to show that the meaning of a term is a meaning of

its canonical type.

• The meaning of a term is given by a recursive definition on the term itself.

20

Type rules

τ ()({}) = CONTEXT

τ ()(Γ, s : TYPE) = CONTEXT , if Γ is undefined,

τ (Γ), (T) = TYPE ,

and τ ()(Γ) = CONTEXT

τ ()(Γ, x : VAR T) = CONTEXT , if Γ(x) is undefined .

τ (Γ)(T) = TYPE

τ ()(Γ) = CONTEXT

τ (Γ)(s) = TYPE iff kind(Γ(s)) = TYPE

τ (Γ)([A→ B]) = TYPE , if τ (Γ)(A) = τ (Γ)(B) = TYPE

21

Example

Let ω label the context:

bool : TYPE , TRUE : bool , FALSE : bool

τ ()({}) = CONTEXT

τ ()(ω) = CONTEXT

τ (ω)([[bool , bool]→ bool]) = TYPE

τ (ω)(TRUE , FALSE) = [bool , bool]

22

Meaning function; definition

Returns the meaning of a well-formed type A and a well formed expression a in

the context Γ.

M(Γ | γ)(s) = γ(s)

if kind(γ(s)) ∈ {TYPE , CONSTANT , VARIABLE}

M(Γ | γ)([A→ B]) = M(γ | Γ)BM(Γ|γ)(A)

M(Γ | γ)([T1, T2]) = M(γ | Γ)(T1)×M(Γ | γ)(T2)

23

Meaning function: Example

Example: let ω be an assignment for the context Ω of the form

{bool ← 2}{TRUE ← 1}{FALSE ← 0}

then

M(Ω | ω)([bool , bool]) = 2× 2

M(Ω | ω)([TRUE , FALSE]) =< 1, 0 >

24

Satisfaction

A context assignment γ is said to satisfy a context Γ, denoted as γ |= Γ iff

1. γ(bool) = 2

2. γ(TRUE) = 1

3. γ(FALSE) = 0

4. γ(s) ∈ U whenever kind(Γ(s)) = TYPE , and

5. γ(s) ∈ M(Γ | γ)(type(Γ(s))) whenever

kind(Γ(s)) ∈ {CONSTANT , VARIABLES}

25

Example: Satisfaction

The assignment ω{one ← 1}{zero ← 0} satisfies the context:

Ω, one : TYPE , zero : one.

Typing judgements are not invalidated when the context is extended.

26

Types in PVS

• A type in PVS is a set of values.

• Questions:

– Which values contain a given type?

– How can one construct these values?

– What purpose do the types serve?

27

Types in PVS

Basic built in types:

• bool: two element set of true values TRUTH and FALSE;

• nat: countable set of natural numbers 0, 1, 2 ...;

• int: countable set of integers -2, -1, 0, 1, 2 ...;

• rat: countable set of rational numbers 1, 0.5 1
3
,... ;

• real: uncountable set of real numbers 1, 0.33, 1√
3
, π;

28

Constructing types from types

Tuples:

• Type [T1, . . . , Tn], n ≥ 1

• Meaning: Cartesian product T1 × . . .× Tn.

• Constructor: ()

• Destructors 1′, . . . , n′

• Examples:

– [int] = int

– (7, TRUE)= [int, bool]

– (7, TRUE)1 = 7

– (7, TRUE)2 = TRUE

29

