Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland
School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

First-order logic (FOL)

e Propositional logic deals only with facts/statements about the world which
may or may not be true.

e In FOL variables refer to objects in the world and can be quantified over.

e Examples of statements that can be made in FOL but not in propositional
logic: general statements or rules.

FOL syntax

Term:
— constant symbols: names.
— variables: x, vy, z.

— Function symbols applied to one or more terms.
F(x), F(F(x)), FatherOf (John)
Sentence: a predicate symbol applied to zero or more terms.
on(a, b), sister(Jane, Joan), Jane, itlsRaining(), t; = t»
For a variable v and a sentence ®:

Vx®, Axd

are sentences.

Closure under A, V, <, —, —.

FOL interpretation

e Interpretation /.
— U a set of objects, domain of discourse, universe.
— Maps constant symbols to elements of U.
— Maps predicate symbols to relations in U (binary relation is a set of
pairs).

— Maps function symbols to functions on U.

Basic FOL semantics

Denotation of terms (naming).
e |(Fred) if Fred is a constant, then given.
e |(x) undefined.
e |(F(term)) I(F)I(term)
=i P(ty, ..., t,) iff < I(t1),..., I(t,) >€ I(P) Example: brother(John, Joe)?
e /(John) an element of U
e /(Joe) an element of U
o [(brother) = {< ..., ... >, ...}
e =, brother(John, Joe)

Semantics of quantifiers

Extend an interpretation / to bind variable x to an element a € U : [/,.
o = VX.®iff =, ,, ® forallae U
o ¢ AX.0 iff =/, ® for some a € U.

Convention: Quantifier applies to the formula to the right until right after
enclosing parenthesis.

(Vx.p(x) V g(x)) A Ix.r(x) — q(x)

Semantics of PVS

In this lecture we present the formal semantics of the specification language of
PVS.
Specification language

e is a media for expressing what is computed rather than how it is computed.
e shares features with programming languages.

e is a logic in which the behaviour of a computational system can be
formalised.

PVS: Applications

e Used for specifying and verifying properties of digital hardware and software

systems.

e The PVS language contains constructs that can be statically checked using

a theorem prover.

e The logic of PVS is based on simply typed higher-order logic:

— sybtypes are analogous to subsets.

Orders of a logical system

Predicates that speak about objects of the domain are first-order.
Predicates that speak about objects of at most / order are i + 1 order.
Functions that take and return objects of the domain are first-order.

Functions that take and return objects of at most / order are / + 1 order.

Examples of constructs involving higher order

Induction:
VPP(0) AVn : NatP(n) — P(n+ 1) — Vn : NatP(n)
Differentiation:
(xy) =x"y + y'x

Statements involving functions: every function that is first-order

differentiable in the complex plane is infinitely often differentiable.

Abstract mathematical structures: lattices, groups.

10

A notation

e In usual mathematical notation consequences of functions and formulae are
confused.

— the expression xy? can represent infinitely many functions of type
Real — Real.

— differentiation is a function of type
(Real = Real) — (Real — Real): mathematicians speak of
differentiation over a variable:
x differentiation of xy? after x results in y?.
x differentiation of xy? after y results in 2xy.
s differentiation of xy? after z results in 0.

— We need notation for functions: Ax : Xt(x) is the function that for
every n € X has the value [t(n)].

— If [t(x)] has the type Y on the assumption that x has the type X then
Ax : Xt(x) has the type X — Y.

11

Types

e Impose discipline on the specification.

e Lead to easy and early detection of large class of semantical and syntactical
errors.

e Useful in mechanised reasoning.

12

Type definition of the simply typed fragment of PVS

Set U defined cumulatively starting from the base sets 2 and R and including:
e Cartesian products: used to model products in PVS.
e function spaces: used to model function types.

e subsets of previously included sets: used to model predicate subtypes.

b = {2 R}

U1 = U,'U{XXY|X,YEU,'}U{XY|X,YEU,'}
UXEUi p(X)

Uw — UiEw Ui

U = U,

13

Constructors in PVS

e In order to formally reason about mathematical objects, or programs we

need a formal language PVS uses higher order logic.

e Constructions in higher order logic used in PVS:

— not

A and

V or

— if ... then
< if and only if
Vx : XP(x)

Ix : xP(x)

= is equal to

p(t1,««., tn), t1,..., t, are in relationship with each other: (t1,...,t,)
are called atoms;

14

Examples

e The atoms p(ty, ..., t,) can have the form:
—a<b
-1<1+1
— even(4), odd(5);
e Examples of formulae are:
- Vx,y:Nat == x+1<y+1
- Vx,y :Nat - x<y—-x<y+1
— Vprime(p) : Nat < —3dx : Natl < x and x < p A divides(x, p)
— Vx, y : Real square(x + y) = square(x) + square(y) + 2 % x * y

15

Types in PVS

PVS is a strongly typed specification language:
The simply typed fragment of PVS includes:

e types constructed from the base types by

— function and product type constructions.

e expressions constructed with constants and variables by

— application, abstraction, and tupling.

16

Context, meta variables

Expressions are checked to be well typed under a context which is a partial
function which assigns a kind, i.e. one of (TYPE, CONSTANT, or VARIABLE)
to each symbol and a type to the constant and variable symbols.

Notation: ', A, © used for meta variables to range over contexts; A, B, T:
variables range over PVS type expressions; r, s range over symbols, identifiers;
meta variables x, y range over PVS variables; a, b, f, g range over PVS terms.

Base types are called pretypes.
e function pretype A — B
e product pretype [A, B]
Preterm: term that has been checked in a context:

TRUE, ~TRUE, X(x : bool) : —x

17

Example of context

Context: sequence of declarations
s: TYPE,c: T where T is a type x : varT
Example:

bool : TYPE TRUE : bool FALSE : bool x : VAR|[bool, bool] — bool]]

18

Types rules

Given by recursively defined partial function 7 that assigns
e a type 7(IN)(a) to a preterm a that is well typed wrt a context I

e the keyword TYPE as a result of 7(I')(a) when A is a well formed type
under the context I.

e the keyword CONTEXT as the result of 7(I')(A) when A is a well formed
context under the context ['. For the simply typed fragment [is empty.

19

Type rules in PVS

e The type assignment is deterministic.

e Soundness proof needs to show that the meaning of a term is a meaning of
its canonical type.

e The meaning of a term is given by a recursive definition on the term itself.

20

Type rules

T(){}) = CONTEXT

7()(I,s: TYPE) = CONTEXT, if ' is undefined,
(), (T) = TYPE,
and 7()(I') = CONTEXT

) (s) — TYPE iff kind(T(s)) = TYPE
r(N([A— B]) = TYPE, if 7(N)(A) =

7()(Ix: VAR T) = CONTEXT, if T'(x) is undefined.
7(M)(T) = TYPE
()(T) = CONTEXT
7(
(

() (B) = TYPE

Example

Let w label the context:

bool : TYPE, TRUE : bool, FALSE : bool

7()({}) = CONTEXT
7()(w) = CONTEXT
7(w)([[bool, bool] — bool]) = TYPE

(

\l
&

TRUE, FALSE) = [bool, bool]

Meaning function; definition

Returns the meaning of a well-formed type A and a well formed expression a in
the context I'.

M(T | ~)(s) = (s)
if kind(y(s)) € { TYPE, CONSTANT, VARIABLE}
M(T | ¥)([A— B]) = M(y | I)BYITMEA

M| ¥)([T1, T2]) = My | T)(T1) X M(T | v)(T2)

23

Meaning function: Example

Example: let w be an assignment for the context {2 of the form

{bool «+— 2}{TRUE +— 1}{FALSE — 0}

then
M(Q2 | w)([bool, bool]) =2 X 2

M(Q | w)([TRUE, FALSE]) =< 1,0 >

24

Satisfaction

A context assignment -y is said to satisfy a context I', denoted as v = I iff
1. v(bool) =2

~(TRUE) =1

~Y(FALSE) = 0

s W N

~(s) € U whenever kind(I'(s)) = TYPE, and

5. v(s) € M(I" | v)(type(l'(s))) whenever
kind(T'(s)) € { CONSTANT, VARIABLES}

25

Example: Satisfaction

The assignment w{one < 1}{zero « 0} satisfies the context:

QQ, one : TYPE, zero : one.
Typing judgements are not invalidated when the context is extended.

26

Types in PVS

e A type in PVS is a set of values.

e Questions:
— Which values contain a given type?
— How can one construct these values?

— What purpose do the types serve?

27

Types in PVS

Basic built in types:

bool: two element set of true values TRUTH and FALSE;
nat: countable set of natural numbers 0, 1, 2 ...;

int: countable set of integers -2, -1, 0, 1, 2 ..;

rat: countable set of rational numbers 1, 0.5 % ;

1

real: uncountable set of real numbers 1, 0.33, T

S

28

Constructing types from types

Tuples:

e Meaning: Cartesian product 77 X ... X T,.
e Constructor: ()
e Destructors 1/,..., n

e Examples:

— [int] = int
— (7, TRUE)= [int, bool]
— (7, TRUE)! =7

— (7, TRUE)? = TRUE

