Sequent Calculus & PVS

Outline

- Review
- Order of precedence & logical operators in PVS
- Sequent Calculus

PVS commands: (FLATTEN), (SPLIT) & (BDDSIMP)

- Checking validity of arguments
- Checking consistency of premises
- Unprovable sequents & counter examples

Review: Key Results used by PVS

Commutative & Associative rules for \land, \lor

Implication: $\models (\phi \rightarrow \psi) \leftrightarrow \neg \phi \lor \psi$

Iff:
$$\models (\phi \leftrightarrow \psi) \leftrightarrow (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$

Double negation: $\models \phi \leftrightarrow \neg(\neg \phi)$

Identity rules: $\models \phi \land \top \leftrightarrow \phi, \models \phi \lor \bot \leftrightarrow \phi$ Dominance rules: $\models \phi \lor \top \leftrightarrow \top, \models \phi \land \bot \leftrightarrow \bot$

Rule of adjunction: $\wedge i$

$$\Gamma \vdash \psi \land \chi \text{ iff } \Gamma \vdash \psi \text{ and } \Gamma \vdash \chi$$

Rule of alternative proof: $\forall e$

$$\Gamma, \phi \lor \psi \vdash \chi \text{ iff } \Gamma, \phi \vdash \chi \text{ and } \Gamma, \psi \vdash \chi$$

and Theorems:

Deduction Theorem: $\Gamma, \phi \vdash \psi$ iff $\Gamma \vdash \phi \rightarrow \psi$

Completeness & Consistency: $\Gamma \vdash \psi$ iff $\Gamma \models \psi$

<	>	
$\frac{\phi}{\phi \vee \psi} \vee i_1 \frac{\psi}{\phi \vee \psi} \vee i_2$	$\frac{\phi}{\phi \wedge \psi} \wedge i$	introduction
$\begin{array}{c cccc} \phi \lor \psi & \ddots & \ddots & \\ \hline & \chi & \ddots & \ddots & \\ & \chi & & \chi & \\ & \chi & & \chi$	$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \frac{\phi \wedge \psi}{\psi} \wedge e_2$	elimination

‡	↓	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	introduction
$ \begin{array}{ccc} & \phi \leftrightarrow \psi \\ & \phi \rightarrow \psi \\ & \phi \rightarrow \psi \end{array} $ $ \begin{array}{ccc} & \phi \leftrightarrow \psi \\ & \psi \rightarrow \phi \end{array} $	$\begin{array}{cccc} \phi & \phi \rightarrow \psi \\ \psi & & \rightarrow e \end{array}$	elimination

Additional Proof Rules

$$\frac{\phi \to \psi}{\neg \phi \lor \psi} \to 2 \lor$$

$$\frac{\neg\phi\vee\psi}{\phi\to\psi}\vee2\to$$

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi}$$

> |

RAA

Order of Precedence in PVS

shorthand for the fully parenthesized expressions. of \land , \lor , \leftrightarrow to drop parentheses it is understood that this is Recall: We use precedence of logical connectives and associativity

Rubin uses order of precedence:

PVS uses order of precedence:

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow$$

Logical Operators in PVS

Propositional constants and variables have type "bool" in PVS

bool={TRUE, FALSE}

¬ - NOT, not

 \wedge - AND, and, &

 \vee - OR, or

 \rightarrow - IMPLIES, implies, =>

→ - IFF, iff, <=>

Sequent Calculus

 $\phi_1, \phi_2, \dots, \phi_n \vdash \psi_1 \lor \psi_2 \lor \dots \lor \psi_m$

is another way of stating

$$\phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_n \vdash \psi_1 \vee \psi_2 \vee \ldots \vee \psi_m$$

In sequent calculus it is written as:

 ψ_1 ψ_2 ψ_1 ψ_2 ψ_3 ψ_4 ψ_5 ψ_5

between the conclusions. There are implicit \land 's between the premises and implicit \lor 's

 ψ_j is true. Assuming all the ϕ_i 's are true, we are trying to prove at least one

for the sequent because it is a tautology iff $\phi_1, \ldots, \phi_n \vdash \psi_1 \lor \ldots \psi_m$ **Def:** We call $\phi_1 \wedge ... \phi_n \rightarrow \psi_1 \vee ... \psi_m$ the characteristic formula

Proofs in Sequent Calculus

following forms is obtained: Proofs are done by transforming the sequent until one of the

$$\frac{\phi}{\phi}$$
 i.e. $\Gamma, \phi \vdash \phi \lor \dots$

which is a case of Rule Premise and $\forall i_1$

which is a case of Dominance of \top Which is a case of $\perp e$. \perp i.e. $\Gamma, \perp \vdash \dots$ - i.e. $\Gamma \vdash \top \lor \dots$

Sequent Calculus Special Cases

No premises: iff $\vdash \psi_1 \lor \ldots \lor \psi_m$

No conclusions:

iff $\phi_1 \wedge \ldots \wedge \phi_n \vdash \bot$

of the sequent. FALSE (\bot) to/from the conclusions without changing the meaning You can always add/remove TRUE (\top)to/from the premises or

Why? Hint: Indentity laws

PVS commands: (FLATTEN)

conclusions (by $\forall i_1, \forall i_2$): (FLATTEN) eliminates \land in the premises (by $\land e$) and \lor in the

(FLATTEN) also eliminates \rightarrow in the conclusions:

$$\frac{\phi}{\psi_1 \to \psi_2} \text{ becomes } \frac{\psi_1}{\psi_2}$$

Why?

PVS commands: (FLATTEN)

(FLATTEN) eliminates negations:

$$\begin{array}{c|c} \phi_1 & \phi_1 \\ \neg \psi & \text{becomes} \\ \psi_1 & \psi_1 \\ \end{array}$$

$$\begin{array}{c|c} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \end{array}$$

Why? $\phi_1 \vdash \neg \psi \lor \psi_1 \lor \psi_2$ iff $\phi_1 \vdash \psi \to (\psi_1 \lor \psi_2)$ iff $\phi_1, \psi \vdash \psi_1 \lor \psi_2$

PVS commands: (FLATTEN)

 $\phi_1 \vdash \neg \neg \phi \lor (\psi_1 \lor \psi_2) \text{ iff } \phi_1 \vdash \phi \lor (\psi_1 \lor \psi_2)$ Similarly $\phi_1, \neg \phi \vdash \psi_1 \lor \psi_2$ iff $\phi_1 \vdash \neg \phi \rightarrow \psi_1 \lor \psi_2$ iff

ψ_2	ψ_1	$\neg \phi$	ϕ_1	
becomes				
ψ_2	ψ_1	ϕ	ϕ_1	

PVS commands: (SPLIT)

conclusions into two subproofs (i.e. $\Gamma \vdash \phi \land \psi$ iff $\Gamma \vdash \phi$ and $\Gamma \vdash \psi$) (SPLIT) uses "AND introduction" ($\wedge i$) to "split" a \wedge in the

(SPLIT) uses "OR elimination" ($\vee e$) to "split" a \vee in the premises

into two subproofs (i.e. $\Gamma, \phi \lor \psi \vdash r$ iff $\Gamma, \phi \vdash r$ and $\Gamma, \psi \vdash r$)

 $\begin{array}{c|c} & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$

(SPLIT) also splits \leftrightarrow in the conclusions since:

$$(\phi \leftrightarrow \psi) \equiv (\phi \to \psi) \land (\psi \to \phi)$$

and splits \rightarrow in the premises (why?).

PVS commands: (BDDSIMP)

The BDDSIMP command, in effect,

1. creates the truth table for the characteristic formula of the sequent. If it is a tautology the proof is done because

$$\models \phi \rightarrow \psi \text{ iff } \vdash \phi \rightarrow \psi \text{ iff } \phi \vdash \psi$$

(take $\phi:\phi_1\wedge\ldots\phi_n$ and $\psi:\psi_1\vee\ldots\psi_m$). Otherwise BDDSIMP

- 2. obtains the CNF representation,
- 3. simplifies it with the help of the distributive law, and
- applies the Rule of Adjunction to split the sequent into one flattens all negations sub-proof for each uninterupted sequence of disjuncts and

structure representing a formula that can be algorithmically reduced to a NOTE: BDDs - (ordered) Binary Decision Diagrams, are type of data

canonical representation.	

(BDDSIMP) Example

Applying (BDDSIMP) to sequent $\vdash p \rightarrow q \land r$:

- 1. Create Truth Table for $p \to q \wedge r$.
- 2. Get DNF for $\neg(p \rightarrow q \land r)$ then negate and "De Morgan it to death" to get (full) CNF or write down CNF directly:

$$(\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$$

3. Simplify to: $(\neg p \lor q) \land (\neg p \lor r)$

4. Split to get
$$\frac{}{\neg p \lor q}$$
 and $\frac{}{\neg p \lor r}$ then

flatten to
$$\frac{p}{q}$$
 and $\frac{p}{r}$

Checking Validity of Arguments in PVS

By Theorems on Soundness and Completeness $\phi_1, \phi_2, \dots \phi_n \models \psi$ iff

 $\models \phi_1 \land \dots \land \phi_n \to \psi$

i.e. $\phi_1 \wedge \ldots \wedge \phi_n \rightarrow \psi$ is a tautology.

Therefore to check if ϕ_1, \ldots, ϕ_n are a valid argument for ψ , use

PVS to prove the theorem:

V1: THEOREM $\phi_1 \& \dots \& \phi_n$ IMPLIES ψ

Checking Consistency of Premises in PVS

The set of premises ϕ_1, \ldots, ϕ_n is inconsistent iff

$$\phi_1, \ldots, \phi_n \vdash \psi \land \neg \psi \text{ for some } \psi \text{ iff } \phi_1, \ldots, \phi_n \vdash \bot$$

But then by the deduction theorem $(\rightarrow i)$:

$$\vdash \phi_1 \to (\phi_2 \to (\phi_3 \to (\dots \to (\phi_n \to \bot) \dots))$$

$$\vdash \phi_1 \land \phi_2 \land \phi_3 \ldots \land \phi_n \rightarrow \bot$$

1

$$\vdash \neg(\phi_1 \land \phi_2 \land \phi_3 \ldots \land \phi_n)$$

can prove the PVS theorem: Therefore propositional premises ϕ_1, \ldots, ϕ_n are inconsistent iff you

THEOREM $\phi_1 \& ... \& \phi_n$ IMPLIES FALSE or equivalently

V2: THEOREM $\neg(\phi_1\&\ldots\&\phi_n)$

Unprovable Sequents & Counter Examples

Consider the following example:

find a counter example if it is not: Use PVS to check if the argument following argument is valid &

$$q \to m \lor v, m, v \to q \models q$$

THEOREM (q IMPLIES m OR v) & m & (v IMPLIES q) IMPLIES q

Trying (BDDSIMP) gives unprovable sequent.

which has characteristic formula $m \to (q \lor v)$. This formula is false

example showing the argument is not valid. when m = T and q = v = F. Check that this provides a counter

Example: Understanding PVS

Use PVS to show:

$$\vdash ((p \to q) \to q) \to ((q \to p) \to p)$$

Explain the proof steps.

Solution: In PVS file we have

p,q:bool

a2i:theorem ((p=>q)=>q)=>((q=>p)=> p)

Invoking the prover:

 $\{1\}$ ((p => q) => q) => ((q => p) => p)

Rule? (FLATTEN)

a2i : flatten sequent, this simplifies to: Applying disjunctive simplification to

Note that if

$$(p
ightarrow q)
ightarrow q), (q
ightarrow p) \vdash p$$

Then by $\rightarrow i$

$$(p \rightarrow q) \rightarrow q) \quad \vdash \quad (q \rightarrow p) \rightarrow p$$

And also by $\rightarrow i$

$$\vdash \quad (p \to q) \to q)$$

$$\to ((q \to p) \to p)$$

Thus it suffices to show

$$(p \rightarrow q) \rightarrow q), (q \rightarrow p) \vdash p$$

a2i :
{-1} ((p => q) => q)
{-2} (q => p)
|-----{1} p

Rule? (SPLIT -1)

Splitting conjunctions,

this yields 2 subgoals:

a2i.1 :

{-1} q

[-2] (q => p)

Rule? (SPLIT)

[1] p

Splitting conjunctions,

this yields 2 subgoals:

a2i.1.1 :

{-1} p [-2] q

which is trivially true.

This completes the proof of a2i.1.1.

a2i.1.2 :

 $\begin{bmatrix} -1 \end{bmatrix}$ q

{1}
[2] م

of a2i.1.

a2i.2 :

Splitting conjunctions, this yields 2 subgoals:

a2i.2.1 :

which is trivially true.

This completes the proof of a2i.2.1.

a2i.2.2 : This completes the proof of a2i.1.

{1}[2][3]

- q (p => q)

Rule? (flatten)

to flatten sequent Applying disjunctive simplification Q.E.D. This completes the proof of a2i.2. This completes the proof of a2i.2.2.

Analysis (3rd ed) Example: Laplante Real-Time Systems Design and

Specification for the nuclear monitoring system. Consider the following excerpt from the Software Requirements

- 1.1 If interrupt A arrives, then task B stops executing.
- 1.2 Task A begins executing upon arrival of interrupt A.
- 1.3 Either Task A is executing and Task B is not, or Task B is executing and Task A is not, or both are not executing

their component propositions, namely: These requirements can be formalized by rewriting each in terms of

p: interrupt A arrives

q: task B is executing

r: task A is executing

Rewriting the requirements in proposition logic yields:

- 1.1 $p \rightarrow \neg q$
- 1.2 $p \rightarrow r$

1.3
$$(r \land \neg q) \lor (r \land \neg r) \lor (\neg q \land \neg r)$$

Note that **1.3** is semantically equivalent to $\neg (q \land r)$.

inconsistent. i.e. We'll use this shorter version to check if the requirements are

$$p \rightarrow \neg q, p \rightarrow r, \neg (q \land r) \vdash \bot$$

counter example showing: all. Conversely, if the requirements are consistent, we need to find a If they are inconsistent, then no program exists that satisfies them

$$p \to \neg q, p \to r, \neg (q \land r) \not\models \bot$$

You can do this by hand, but in PVS we could use:

demo04

: THEORY

BEGIN

p, q, r: bool

Laplante: Theorem

(p=> NOT q) & (p =>r) & NOT(q & r) => FALSE

END demo04

in two unprovable sequents. Invoking the prover and running the (BDDSIMP) command results

Laplante.1:

$$\{-1\}$$
 r

$$\{1\}$$
 q

and

Laplante.2:

{1} p
{2} r

example: q = F and r = T. Checking the truth table we have a counter The first has characteristic eqn. $r \rightarrow q$ which gives counter example

F	p
F	q
T	r
T	$p \rightarrow \neg q$
T	$p \rightarrow r$
T	$\neg (q \wedge r)$
F	\vdash