
Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

1

Lecture 1: Overview

• To explore topics within automated reasoning as applied to software

engineering.

– interactive proof tools (PVS);

– model checking;

– temporal verification of distributed communicating systems;

– simulation versus verification;

– model checking applications within automated software engineering;

– the complementary roles of theorem proving and model checking.

• The module is divided into two themes:

– theorem proving

– model checking.

2

Module Overview

Lecturers: Andrew Ireland (G.57) & Lilia Georgieva (G.50)

air@macs.hw.ac.uk lilia@macs.hw.ac.uk

Themes: Theorem proving weeks 2, 3, 6, and 7; Model checking weeks 4, 5, 8,

and 9 (revision week 10)

Lectures: Tue-10.15 in 3.06; Thu-12.15 in 3.07; Fri-09.15 in G.44

Labs: Thu-12.15 in 2.50 (Linux Lab)

Coursework: Two assignments, one for each part of the module (20%):

Assignment 1: Out: Week 3, Due: Week 7;

Assignment 2: Out: Week 5, Due: Week 9.

Examination: After Easter - questions from both parts (80%)

Materials: Teaching materials are on the web:

http://www.macs.hw.ac.uk/~air/ar/

http://www.macs.hw.ac.uk/~lilia/ar/
3

History

• Prehistory: transformational programs and theorem proving.

• Early 80’s: foundations.

• Late 80’s: first tools.

• Early 90’s: state space explosion.

• Late 90’s: the boom.

• Now: how can model checking be applied to software?

In this module we will discuss challenges and approaches of applying model

checking and theorem proving to software.

4

Verification

• Verification framework: specification, design, implementation, verification.

• Verification: we aim to check whether all possible behaviors of a system are

compatible with the specification.

• Testing can find errors, verification can prove their absence.

5

Prehistory

• Early computer programs were designed to compute something

(accounting, scientific computing).

• Transformation form initial to final state.

• Specification: precondition and postcondition.

• Formal verification: paper and pencil, first theorem provers (CAV)

6

Theorem proving

• Goal: to automate logical reasoning.

• Verification using theorem proving

– The implementation is represented by a logical formula I (Hoare’s logic).

– The specification is represented by a logical formula S.

– Question: Does I imply S hold?

– Syntactic level proof.

• General approach: applicable to many programs and properties.

• However: most proofs are not fully automatic.

7

Transformational versus reactive programs

• Transformational program computes something.

• Reactive program:

– controls something.

– continually interacts with its environment.

– FSM, state space, behavior described in terms of sequences of states.

– language for temporal properties: temporal logic.

8

Linear-time Temporal Logic (LTL)

• Specify properties of infinite sequences of states (or transitions).

• Temporal operators include: G (always), F (eventually) and X (next).

Example: G(p → Fq)

• ”Does M satisfy ϕ ?” = model checking

– For ϕ in LTL, do all infinite computations of M satisfy ϕ?

– For ϕ in BTL, does the computation tree of M satisfy ϕ?

• Algorithmic issues: efficient decision procedures exist?

– Proof can be carried out at semantic level, via state-space exploration.

– for BTL, SAT is EXPTIME-complete, but model checking is linear!

9

Model checking framework

• Components:

– implementation (program) = an FSM.

– specification (property) = a temporal logic formula.

– comparison criteria = defined by semantics of the temporal logic.

– algorithm = evaluates the formula against the FSM.

• Model-Checking Research in the 80’s:

– various temporal logics: linear-time, branching-time.

– relationship between temporal logics and classes of automata (LTL and

word automata; BTL and tree automata?)

– classes of temporal properties (safety, liveness)

– model checking is automatic but (essentially) restricted to finite-state

systems.

– many reactive systems can be modeled by FSMs!
10

Tools

• Examples: CAESAR, COSPAN, CWB, MURPHI, SPIN.

• Differ by specification language, implementation language, comparison

criterion, and/or verification algorithms,but all based on systematic

state-space exploration.

• Using a temporal logic is not mandatory.

• Many ”model-checking” tools do not support a full temporal logic.

• From now on, no distinction here between model checking and systematic

state-space exploration.

• Logic is a powerful theoretical tool (characterizes classes of properties).

• Logic can be very useful in practice too (concise and expressive).

• First success stories in analyzing circuit designs, communication protocols,

distributed algorithms!
11

Model checking in practice

Model checking can be very useful!

• Main strength: model checking can detect subtle design errors.

• In practice, formal verification is actually testing because of approximations:

– when modeling the system,

– when modeling the environment,

– when specifying properties,

– when performing the verification.

• Therefore ”bug hunting” is really the name of the game!

• Main goal: find errors that would be hard to find otherwise.

12

Limitations of model checking

• FSM (=state space) can itself be the product of smaller FSMs.

• Model checking is usually linear in the size of the state space, but the size

of the state space is usually exponential (or worse) in the system

description (program).

• State-space exploration is fundamentally hard (NP, PSPACE or worse).

• Engineering challenge: how to make model checking scalable?

13

Divide-and-conquer approaches

• Abstraction: hide/approximate details.

• Compositionality: check first local properties of individual components,

then combine these to prove correctness of the whole system. Algorithmic

approaches:

• ”Symbolic verification”: represent state space differently (BDD).

• State-space pruning techniques: avoid exploring parts of the state space

(partial-order methods, symmetry methods).

• Techniques to tackle the effects of state explosion (bit-state hashing,

state-space compression, caching).

• Result: Several order of magnitudes gained!

14

Hardware verification

• Hardware verification is an important application of model checking and

related techniques.

• The finite-state assumption is not unrealistic for hardware.

• The cost of errors can be enormous (Pentium bug).

• The complexity of designs is increasing very rapidly (system on a chip).

• However, model checking still does not scale very well.

• Many designs and implementations are too big and complex.

• Hardware description languages (Verilog, VHDL) are very expressive.

• Using model checking properly requires experienced staff.

15

Model checking and software

• Analysis of software models: (e.g., SPIN)

• Analysis of communication protocols, distributed algorithms.

• Models specified in extended FSM notation.

• Restricted to design.

• Analysis of software models that can be compiled: (SDL, VFSM)

• Same as above except that FSM can be compiled to generate the core of

the implementation.

• More popular with software developers since reuse of ”model” is possible.

Analysis still restricted to ”FSM part” of the implementation.

Challenge: how to apply model checking to analyze software in programming

languages (C, C++, Java) and real size of code (100,000’s lines)?

16

Theorem proving for software engineering

• Theorem proving (automated deduction) is:

– logical deduction performed by a machine.

– at the intersection of three areas:

∗ mathematics: motivation and techniques;

∗ logic: framework and reasoning techniques;

∗ computer science: automation techniques;

– extensively studied.

17

Theorem proving: motivation

• Depth

– depth: the problem requires mathematical insight (pure mathematics,

Robinson’s conjecture, Fermat’s theorem)

– complexity: shallow problem, many cases, usually in computer science.

18

Theorem proving: applications

• Formalizing mathematics;

• Discovery of proofs of mathematical conjectures:

– provers for geometry

– computer algebra systems

• Software and hardware productivity and reliability systems

– verification of prototypes

– implementations

– automatic program synthesis from specifications;

• Formalizing semantics of programming languages:

– properties of the semantics;

– verification of interpreters and compilers;

– self validating compilers (ongoing research).
19

Prototype verification systems

• Based on a rich specification language (higher-order logic + dependent

types + inductive types)

• One ”programs” a prototype of the implementation

• Skill required to find a good abstraction

• Then one can ”test” the prototype: E.g., the prototype is ”well-typed”

E.g., prove that it satisfies certain desired requirements

• This is a way to learn about the problem to be solved

• Use a proof assistant for this purpose

20

Using proof assistant

• The human does the hard work

– Formulate lemmas

– Select the induction principle

– Guide case splitting

• The proof assistant does the bookkeeping

– Make sure we do not overlook cases

– Make sure the proof rules suggested are applicable

– Record and pretty-print the proof

21

Using proof assistant

• Typical interaction:

– Proof assistant shows the current assumptions + goals

– User instructs the assistant to focus on a goal

– User decides what is the next step

– Rewrite an assumption using a forward proof rule

– Rewrite the goal using a backward proof rule

– This either proves the goal or produces a new subgoal

– Iterate until no more subgoals

• Often the user has to remember complicated rule names

• Grind in Prototype Verification System (PVS) discharges many small

subproofs

• Many assistants are programmable and partially automated.

• Examples: PVS, HOL, Lego, Touchstone;
22

Automatic synthesis of code

• Specifications: requires Pre(x) ensures Post (x, x’)

• Specification is implementable.

• Prove this fact with a theorem prover.

• ”run” the proof: given x, construct x’.

• The algorithm is extracted from the proof strategy.

– lemmas → auxiliary functions.

– case split → conditional.

– induction → (primitive) recursion.

• This is done frequently in Coq.

• Must have a complete specification.

• Running proofs might not be efficient.
23

Soundnes and completeness

• Soundness: If the theorem is valid then the program meets specification.

• Completeness: If the theorem is provable then it is valid.

24

From theorems to proofs

• Proving theorems is hard.

• Use an interactive theorem prover.

• Human must put the annotations and drive the prover.

• Or, use an automatic theorem prover.

• There is still interaction for refining the annotations.

• Automatic provers use heuristics. Hard to predict the outcome, unintuitive.

• But there are special cases in which automated theorem proving is very

effective.

25

Theorem proving: conclusions

• Theorem proving strengths

– very expressive

• Theorem proving weaknesses

– too ambitious: sacrifice soundness.

– too hard to use/understand: bring it closer to typing.

– a great toolbox for software checking.

– symbolic evaluation.

– satisfiability procedures.

26

We will study:

• Interactive proof tools (proof assistants):

– offer to prove theorems step by step;

– user has to select an appropriate command;

– each step that the prover offers is logically sound;

– granularity varies;

• Theory behind higher order theorem provers:

– deductive calculi

– data types;

– typed lambda calculus versus higher order logic;

• Applications of PVS to small functional programs.

27

