Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland
School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

Lecture 1: Overview

e To explore topics within automated reasoning as applied to software
engineering.
— interactive proof tools (PVS);
— model checking;
— temporal verification of distributed communicating systems;
— simulation versus verification;
— model checking applications within automated software engineering;

— the complementary roles of theorem proving and model checking.

e [he module is divided into two themes:
— theorem proving

— model checking.

Module Overview

Lecturers: Andrew Ireland (G.57) & Lilia Georgieva (G.50)

airOmacs.hw.ac.uk lilia®macs.hw.ac.uk

Themes: Theorem proving weeks 2, 3, 6, and 7; Model checking weeks 4, 5, 8,
and 9 (revision week 10)

Lectures: Tue-10.15in 3.06; Thu-12.15 in 3.07; Fri-09.15 in G.44
Labs: Thu-12.15 in 2.50 (Linux Lab)

Coursework: Two assignments, one for each part of the module (20%):
Assignment 1: Out: Week 3, Due: Week 7;
Assignment 2: Out: Week 5, Due: Week 9.

Examination: After Easter - questions from both parts (80%)

Materials: Teaching materials are on the web:

http://www.macs.hw.ac.uk/"air/ar/
http://www.macs.hw.ac.uk/"1lilia/ar/

History

e Prehistory: transformational programs and theorem proving.
e Early 80's: foundations.

e Late 80's: first tools.

e Early 90's: state space explosion.

e Late 90's: the boom.

e Now: how can model checking be applied to software?

In this module we will discuss challenges and approaches of applying model
checking and theorem proving to software.

Verification

e Verification framework: specification, design, implementation, verification.

e Verification: we aim to check whether all possible behaviors of a system are
compatible with the specification.

e Testing can find errors, verification can prove their absence.

Prehistory

Early computer programs were designed to compute something
(accounting, scientific computing).

Transformation form initial to final state.
Specification: precondition and postcondition.

Formal verification: paper and pencil, first theorem provers (CAV)

Theorem proving

Goal: to automate logical reasoning.

Verification using theorem proving

— The implementation is represented by a logical formula | (Hoare's logic).
— The specification is represented by a logical formula S.

— Question: Does | imply S hold?

— Syntactic level proof.
General approach: applicable to many programs and properties.

However: most proofs are not fully automatic.

Transformational versus reactive programs

e Transformational program computes something.

e Reactive program:
— controls something.
— continually interacts with its environment.
— FSM, state space, behavior described in terms of sequences of states.

— language for temporal properties: temporal logic.

Linear-time Temporal Logic (LTL)

Specify properties of infinite sequences of states (or transitions).

Temporal operators include: G (always), F (eventually) and X (next).
Example: G(p — Fq)

"Does M satisfy ¢ 7" = model checking

— For ¢ in LTL, do all infinite computations of M satisfy 7

— For ¢ in BTL, does the computation tree of M satisfy ¢?

Algorithmic issues: efficient decision procedures exist?

— Proof can be carried out at semantic level, via state-space exploration.

— for BTL, SAT is EXPTIME-complete, but model checking is linear!

Model checking framework

e Components:

implementation (program) = an FSM.
specification (property) = a temporal logic formula.
comparison criteria = defined by semantics of the temporal logic.

algorithm = evaluates the formula against the FSM.

e Model-Checking Research in the 80’s:

various temporal logics: linear-time, branching-time.

relationship between temporal logics and classes of automata (LTL and
word automata; BTL and tree automata?)

classes of temporal properties (safety, liveness)

model checking is automatic but (essentially) restricted to finite-state
systems.

many reactive systems can be modeled by FSMs!

10

Tools

Examples: CAESAR, COSPAN, CWB, MURPHI, SPIN.

Differ by specification language, implementation language, comparison
criterion, and/or verification algorithms,but all based on systematic
state-space exploration.

Using a temporal logic is not mandatory.
Many " model-checking” tools do not support a full temporal logic.

From now on, no distinction here between model checking and systematic
state-space exploration.

Logic is a powerful theoretical tool (characterizes classes of properties).
Logic can be very useful in practice too (concise and expressive).

First success stories in analyzing circuit designs, communication protocols,
distributed algorithms!

11

Model checking in practice

Model checking can be very useful!
e Main strength: model checking can detect subtle design errors.

e In practice, formal verification is actually testing because of approximations:
— when modeling the system,
— when modeling the environment,
— when specifying properties,

— when performing the verification.
e Therefore "bug hunting” is really the name of the game!

e Main goal: find errors that would be hard to find otherwise.

12

Limitations of model checking

FSM (=state space) can itself be the product of smaller FSMs.

Model checking is usually linear in the size of the state space, but the size
of the state space is usually exponential (or worse) in the system

description (program).
State-space exploration is fundamentally hard (NP, PSPACE or worse).

Engineering challenge: how to make model checking scalable?

13

Divide-and-conquer approaches

Abstraction: hide/approximate details.

Compositionality: check first local properties of individual components,
then combine these to prove correctness of the whole system. Algorithmic
approaches:

"Symbolic verification”: represent state space differently (BDD).

State-space pruning techniques: avoid exploring parts of the state space
(partial-order methods, symmetry methods).

Techniques to tackle the effects of state explosion (bit-state hashing,
state-space compression, caching).

Result: Several order of magnitudes gained!

14

Hardware verification

Hardware verification is an important application of model checking and
related techniques.

The finite-state assumption is not unrealistic for hardware.

The cost of errors can be enormous (Pentium bug).

The complexity of designs is increasing very rapidly (system on a chip).
However, model checking still does not scale very well.

Many designs and implementations are too big and complex.

Hardware description languages (Verilog, VHDL) are very expressive.

Using model checking properly requires experienced staff.

15

Model checking and software

e Analysis of software models: (e.g., SPIN)

e Analysis of communication protocols, distributed algorithms.

e Models specified in extended FSM notation.

e Restricted to design.

e Analysis of software models that can be compiled: (SDL, VFSM)

e Same as above except that FSM can be compiled to generate the core of
the implementation.

e More popular with software developers since reuse of "model” is possible.
Analysis still restricted to "FSM part” of the implementation.

Challenge: how to apply model checking to analyze software in programming
languages (C, C++4, Java) and real size of code (100,000’s lines)?

16

Theorem proving for software engineering

e Theorem proving (automated deduction) is:
— logical deduction performed by a machine.

— at the intersection of three areas:

*x mathematics: motivation and techniques;
x logic: framework and reasoning techniques;
x computer science: automation techniques;

— extensively studied.

17

Theorem proving: motivation

e Depth

— depth: the problem requires mathematical insight (pure mathematics,
Robinson’s conjecture, Fermat's theorem)

— complexity: shallow problem, many cases, usually in computer science.

18

Theorem proving: applications

Formalizing mathematics;

Discovery of proofs of mathematical conjectures:
— provers for geometry

— computer algebra systems

Software and hardware productivity and reliability systems
— verification of prototypes
— implementations

— automatic program synthesis from specifications;

Formalizing semantics of programming languages:
— properties of the semantics;
— verification of interpreters and compilers;

— self validating compilers (ongoing research).

19

Prototype verification systems

Based on a rich specification language (higher-order logic 4+ dependent
types + inductive types)

One "programs” a prototype of the implementation
Skill required to find a good abstraction

Then one can "test” the prototype: E.g., the prototype is "well-typed”
E.g., prove that it satisfies certain desired requirements

This is a way to learn about the problem to be solved

Use a proof assistant for this purpose

20

Using proof assistant

e [he human does the hard work
— Formulate lemmas
— Select the induction principle

— Guide case splitting

e The proof assistant does the bookkeeping
— Make sure we do not overlook cases
— Make sure the proof rules suggested are applicable

— Record and pretty-print the proof

21

Using proof assistant

Typical interaction:

— Proof assistant shows the current assumptions + goals
— User instructs the assistant to focus on a goal

— User decides what is the next step

— Rewrite an assumption using a forward proof rule

— Rewrite the goal using a backward proof rule

— This either proves the goal or produces a new subgoal

— lterate until no more subgoals
Often the user has to remember complicated rule names

Grind in Prototype Verification System (PVS) discharges many small
subproofs

Many assistants are programmable and partially automated.

Examples: PVS, HOL, Lego, Touchstone;

22

Automatic synthesis of code

Specifications: requires Pre(x) ensures Post (x, x')
Specification is implementable.

Prove this fact with a theorem prover.

"run” the proof: given x, construct x'.

The algorithm is extracted from the proof strategy.
— lemmas — auxiliary functions.
— case split — conditional.

— induction — (primitive) recursion.
This is done frequently in Coq.
Must have a complete specification.

Running proofs might not be efficient.

23

Soundnes and completeness

e Soundness: If the theorem is valid then the program meets specification.

e Completeness: If the theorem is provable then it is valid.

24

From theorems to proofs

Proving theorems is hard.

Use an interactive theorem prover.

Human must put the annotations and drive the prover.

Or, use an automatic theorem prover.

There is still interaction for refining the annotations.

Automatic provers use heuristics. Hard to predict the outcome, unintuitive.

But there are special cases in which automated theorem proving is very
effective.

25

Theorem proving: conclusions

e Theorem proving strengths

very expressive

e [heorem proving weaknesses

too ambitious: sacrifice soundness.

too hard to use/understand: bring it closer to typing.
a great toolbox for software checking.

symbolic evaluation.

satisfiability procedures.

26

We will study:

e Interactive proof tools (proof assistants):
— offer to prove theorems step by step;
— user has to select an appropriate command;
— each step that the prover offers is logically sound;

— granularity varies;

e Theory behind higher order theorem provers:
— deductive calculi
— data types;

— typed lambda calculus versus higher order logic;

e Applications of PVS to small functional programs.

27

