
Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

1

Lecture 1: Continued

2

Theorem proving for software engineering

• Theorem proving (automated deduction) is:

– logical deduction performed by a machine.

– at the intersection of three areas:

∗ mathematics: motivation and techniques;

∗ logic: framework and reasoning techniques;

∗ computer science: automation techniques;

– extensively studied.

3

Interesting problems

• Halting problem: it is impossible to write a diagnostic program that will tell

you if a given program will terminate.

• Gödel’s incompleteness theorems: any formal system that includes

arithmetic is either

– incomplete (there are some properties that are true but cannot be

proved) OR

– inconsistent (contains one or more contradictions that allow you to

prove properties that are false).

Safety critical systems: failure results in physical injury, loss of life, financial loss.

Application areas: aerospace, medical equipment, process control.

4

Example: reactor shutdown system (SDS)

SDS is a watchdog system that

• monitors system parameters.

• shuts down if it observes bad behaviour.

Example: if parameters exceed certain set points: shut down the reactor.

5

Safety considerations

• Check for short circuits or sensor failures.

• Use dead-band to eliminate “chatter”.

• Increase the operating margin by power dependant set points.

• Identify unreliable operating regions.

• Use multiple sensors to improve reliability.

6

The process

• Multiple reviewers do:

– software requirements specifications review;

– software design description review;

– code review.

• Testing:

– unit testing: each individual program separately.

– software integration testing: components when they are combined.

– validation testing: test the system against the requirements.

Logic: unambiguous, precise language for specification.

7

Is it enough?

• Incorrect design despite multiple reviewers.

• Testing cannot cover all possible cases.

• Minor changes result in another extensive and expensive round of testing.

Solution: prove that the design implements the specification, e.g.

• Theorem proving: use PVS to prove that

for all inputs x : Spec(x) = Design(x)

• Model checking: verify automatically that Design is a model of Spec

written as a logical formula.

Advantages: independent system check, not affected by the expectations of the

reviewer; domain coverage, automation.

8

Example

Example:

• the PentiumTM bug could have been detected by computer aided

verification tools.

• CAV was used to prove the correctness of the suggested fix.

• PVS has been used in similar cases.

9

Theorem proving: motivation

• Depth

– depth: the problem requires mathematical insight (pure mathematics,

Robinson’s conjecture, Fermat’s theorem)

– complexity: shallow problem, many cases, usually in computer science.

10

Theorem proving: applications

• Formalizing mathematics;

• Discovery of proofs of mathematical conjectures:

– provers for geometry

– computer algebra systems

• Software and hardware productivity and reliability systems

– verification of prototypes

– implementations

– automatic program synthesis from specifications;

• Formalizing semantics of programming languages:

– properties of the semantics;

– verification of interpreters and compilers;

– self validating compilers (ongoing research).
11

Basic inference loop of a saturation theorem prover

Implemented in: Gandalf, SPASS, OTTER, Vampire.

Input: clausal set.

Output on termination: a proof of unsatisfiability or a saturated clause set.

Usable
clauses

Worked Off
Clauses

New
clauses

Selected
clause

Inferences

Newly generated clauses

Inter-
reduction

Inter-
reduction

New added to Usable after interreduction.

12

Prototype verification systems

• Based on a rich specification language (higher-order logic + dependent

types + inductive types)

• One ”programs” a prototype of the implementation

• Skill required to find a good abstraction

• Then one can ”test” the prototype: E.g., the prototype is ”well-typed”

E.g., prove that it satisfies certain desired requirements

• This is a way to learn about the problem to be solved

• Use a proof assistant for this purpose

13

Using proof assistant

• The human does the hard work

– Formulate lemmas

– Select the induction principle

– Guide case splitting

• The proof assistant does the bookkeeping

– Make sure we do not overlook cases

– Make sure the proof rules suggested are applicable

– Record and pretty-print the proof

14

Using proof assistant

• Typical interaction:

– Proof assistant shows the current assumptions + goals

– User instructs the assistant to focus on a goal

– User decides what is the next step

– Rewrite an assumption using a forward proof rule

– Rewrite the goal using a backward proof rule

– This either proves the goal or produces a new subgoal

– Iterate until no more subgoals

• Often the user has to remember complicated rule names

• Grind in Prototype Verification System (PVS) discharges many small

subproofs

• Many assistants are programmable and partially automated.

• Examples: PVS, HOL, Lego, Touchstone;
15

Automatic synthesis of code

• Specifications: requires Pre(x) ensures Post (x, x’)

• Specification is implementable.

• Prove this fact with a theorem prover.

• ”run” the proof: given x, construct x’.

• The algorithm is extracted from the proof strategy.

– lemmas → auxiliary functions.

– case split → conditional.

– induction → (primitive) recursion.

• This is done frequently in Coq.

• Must have a complete specification.

• Running proofs might not be efficient.
16

Soundness and completeness

• Soundness: If the theorem is valid then the program meets specification.

• Completeness: If the theorem is provable then it is valid.

17

From theorems to proofs

• Proving theorems is hard.

• Use an interactive theorem prover.

• Human must put the annotations and drive the prover.

• Or, use an automatic theorem prover.

• There is still interaction for refining the annotations.

• Automatic provers use heuristics. Hard to predict the outcome, unintuitive.

• But there are special cases in which automated theorem proving is very

effective.

18

Theorem proving: conclusions

• Theorem proving strengths

– very expressive

• Theorem proving weaknesses

– too ambitious: sacrifice soundness.

– too hard to use/understand: bring it closer to typing.

– a great toolbox for software checking.

– symbolic evaluation.

– satisfiability procedures.

19

We will study:

• Interactive proof tools (proof assistants):

– offer to prove theorems step by step;

– user has to select an appropriate command;

– each step that the prover offers is logically sound;

– granularity varies;

• Theory behind higher order theorem provers:

– deductive calculi

– data types;

– typed lambda calculus versus higher order logic;

• Applications of PVS to small functional programs.

20

