Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland
School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

Lecture 1: Continued

Theorem proving for software engineering

e Theorem proving (automated deduction) is:
— logical deduction performed by a machine.

— at the intersection of three areas:

*x mathematics: motivation and techniques;
x logic: framework and reasoning techniques;
x computer science: automation techniques;

— extensively studied.

Interesting problems

e Halting problem: it is impossible to write a diagnostic program that will tell

you if a given program will terminate.

e Godel's incompleteness theorems: any formal system that includes

arithmetic is either

— incomplete (there are some properties that are true but cannot be
proved) OR

— inconsistent (contains one or more contradictions that allow you to

prove properties that are false).

Safety critical systems: failure results in physical injury, loss of life, financial loss.
Application areas: aerospace, medical equipment, process control.

Example: reactor shutdown system (SDS)

SDS is a watchdog system that
e monitors system parameters.
e shuts down if it observes bad behaviour.

Example: if parameters exceed certain set points: shut down the reactor.

Safety considerations

Check for short circuits or sensor failures.

Use dead-band to eliminate “chatter”.

Increase the operating margin by power dependant set points.
|dentify unreliable operating regions.

Use multiple sensors to improve reliability.

The process

e Multiple reviewers do:
— software requirements specifications review;
— software design description review;

— code review.
e J[esting:
— unit testing: each individual program separately.

— software integration testing: components when they are combined.

— validation testing: test the system against the requirements.

Logic: unambiguous, precise language for specification.

Is it enough?

e Incorrect design despite multiple reviewers.

e Testing cannot cover all possible cases.

e Minor changes result in another extensive and expensive round of testing.
Solution: prove that the design implements the specification, e.g.

e Theorem proving: use PVS to prove that
for all inputs x : Spec(x) = Design(x)

e Model checking: verify automatically that Design is a model of Spec
written as a logical formula.

Advantages: independent system check, not affected by the expectations of the
reviewer; domain coverage, automation.

Example

Example:

e the Pentium ™ bug could have been detected by computer aided
verification tools.

e CAV was used to prove the correctness of the suggested fix.

e PVS has been used in similar cases.

Theorem proving: motivation

e Depth

— depth: the problem requires mathematical insight (pure mathematics,
Robinson’s conjecture, Fermat's theorem)

— complexity: shallow problem, many cases, usually in computer science.

10

Theorem proving: applications

Formalizing mathematics;

Discovery of proofs of mathematical conjectures:
— provers for geometry

— computer algebra systems

Software and hardware productivity and reliability systems
— verification of prototypes
— implementations

— automatic program synthesis from specifications;

Formalizing semantics of programming languages:
— properties of the semantics;
— verification of interpreters and compilers;

— self validating compilers (ongoing research).

11

Basic inference loop of a saturation theorem prover

Implemented in: Gandalf, SPASS, OTTER, Vampire.
Input: clausal set.

Output on termination: a proof of unsatisfiability or a saturated clause set.

New added to Usable after interreduction.

Y

\ Selected/\ Inter- /
Usable clause { Worked Off r(eduction New

A A
Inferences

Newly generated clauses

12

Prototype verification systems

Based on a rich specification language (higher-order logic 4+ dependent
types + inductive types)

One "programs” a prototype of the implementation
Skill required to find a good abstraction

Then one can "test” the prototype: E.g., the prototype is "well-typed”
E.g., prove that it satisfies certain desired requirements

This is a way to learn about the problem to be solved

Use a proof assistant for this purpose

13

Using proof assistant

e [he human does the hard work
— Formulate lemmas
— Select the induction principle

— Guide case splitting

e The proof assistant does the bookkeeping
— Make sure we do not overlook cases
— Make sure the proof rules suggested are applicable

— Record and pretty-print the proof

14

Using proof assistant

Typical interaction:

— Proof assistant shows the current assumptions + goals
— User instructs the assistant to focus on a goal

— User decides what is the next step

— Rewrite an assumption using a forward proof rule

— Rewrite the goal using a backward proof rule

— This either proves the goal or produces a new subgoal

— lterate until no more subgoals
Often the user has to remember complicated rule names

Grind in Prototype Verification System (PVS) discharges many small
subproofs

Many assistants are programmable and partially automated.

Examples: PVS, HOL, Lego, Touchstone;

15

Automatic synthesis of code

Specifications: requires Pre(x) ensures Post (x, x')
Specification is implementable.

Prove this fact with a theorem prover.

"run” the proof: given x, construct x'.

The algorithm is extracted from the proof strategy.
— lemmas — auxiliary functions.
— case split — conditional.

— induction — (primitive) recursion.
This is done frequently in Coq.
Must have a complete specification.

Running proofs might not be efficient.

16

Soundness and completeness

e Soundness: If the theorem is valid then the program meets specification.

e Completeness: If the theorem is provable then it is valid.

17

From theorems to proofs

Proving theorems is hard.

Use an interactive theorem prover.

Human must put the annotations and drive the prover.

Or, use an automatic theorem prover.

There is still interaction for refining the annotations.

Automatic provers use heuristics. Hard to predict the outcome, unintuitive.

But there are special cases in which automated theorem proving is very
effective.

18

Theorem proving: conclusions

e Theorem proving strengths

very expressive

e [heorem proving weaknesses

too ambitious: sacrifice soundness.

too hard to use/understand: bring it closer to typing.
a great toolbox for software checking.

symbolic evaluation.

satisfiability procedures.

19

We will study:

e Interactive proof tools (proof assistants):
— offer to prove theorems step by step;
— user has to select an appropriate command;
— each step that the prover offers is logically sound;

— granularity varies;

e Theory behind higher order theorem provers:
— deductive calculi
— data types;

— typed lambda calculus versus higher order logic;

e Applications of PVS to small functional programs.

20

