
Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.50

Email: lilia@macs.hw.ac.uk

1

Logic in Computer Science

Computation is deduction

• logic programming, relational data bases

• operational semantics of PLs

Proof theory

• mathematics on the computer

• constructive proofs and program synthesis

Axiomatized domains

• modelling in logic

• knowledge representation

• specification and verification

• rapid prototyping

Descriptive complexity theory
2

Part 1: First-Order Logic

• formalizes fundamental mathematical concepts

• expressive (Turing-complete)

• not too expressive (not axiomatizable: natural numbers, uncountable sets)

• rich structure of decidable fragments

• rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3

1.1 Syntax

• non-logical symbols (domain-specific)

terms, atomic formulas

• logical symbols (domain-independent)

Boolean combinations, quantifiers

4

Signature

Usage: fixing the alphabet of non-logical symbols

Σ = (Ω, Π),

where

• Ω a set of function symbols f with arity n ≥ 0, written f /n,

• Π a set of predicate symbols p with arity m ≥ 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also called

a propositional variable. We use letters P, Q, R, S , to denote propositional

variables.

Refined concept for practical applications: many-sorted signatures (corresponds

to simple type systems in programming languages);

5

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of)

variables.

6

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any

variable is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced brackets which

we may also view as marked, ordered trees. The markings are function symbols

or variables. The nodes correspond to the subterms of the term. A node v that

is marked with a function symbol f of arity n has exactly n subtrees

representing the n immediate subterms of v .

7

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A, B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality . Admitting equality does not really increase the

expressiveness of first-order logic. But deductive systems where equality is

treated specifically can be much more efficient.

8

Literals

L ::= A (positive literal)

| ¬A (negative literal)

9

Clauses

C , D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

10

First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F , G , H ::= ⊥ (falsum)

| > (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F =⇒ G) (implication)

| (F ≡ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)

11

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p =⇒ >p ≡

(binding precedences)

– ∨ and ∧ are associative and commutative

– =⇒ is right-associative

• Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

• infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences; examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()

12

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Exampes of formulas over this signature are:

∀x , y(x ≤ y ≡ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x , y(x ∗ s(y) ≈ x ∗ y + x)

∀x , y(s(x) ≈ s(y) =⇒ x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

13

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be defined

in first-order logic with equality just with the help of +. The first formula

defines ≤, while the second defines zero. The last formula, respectively, defines

s.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces

the “redundant” symbols.

Consequently there is a trade-off between the complexity of the quantification

structure and the complexity of the signature.

14

Bound and Free Variables

In QxF , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx . An occurrence

of a variable x is called bound, if it is inside the scope of a quantifier Qx . Any

other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

15

Example

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) =⇒ q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.

16

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in

all inference systems for first-order logic. In the presence of quantification it is

surprisingly complex.

By F [s/x] we denote the result of substituting all free occurrences of x in F by

the term s.

Formally we define F [s/x] by structural induction over the syntactic structure of

F by the equations depicted on the next page.

17

Substitution of a Term for a Free Variable

x [s/x] = s

x ′[s/x] = x ′ ; if x ′ 6= x

f (s1, . . . , sn)[s/x] = f (s1[s/x], . . . , sn[s/x])

⊥[s/x] = ⊥

>[s/x] = >

p(s1, . . . , sn)[s/x] = p(s1[s/x], . . . , sn[s/x])

(u ≈ v)[s/x] = (u[s/x] ≈ v [s/x])

¬F [s/x] = ¬(F [s/x])

(FρG)[s/x] = (F [s/x]ρG [s/x]) ; for each binary connective ρ

(QyF)[s/x] = Qz((F [z/y])[s/x]) ; with z a “fresh” variable

18

Why Substitution is Complicated

We need to make sure that the (free) variables in s are not captured upon

placing s into the scope of a quantifier, hence the renaming of the bound

variable y into a “fresh”, that is, previously unused, variable z .

Why this definition of substitution is well-defined will be discussed below.

19

General Substitutions

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise distinct,

and then denote the mapping

[s1/x1, . . . , sn/xn](y) =







si , if y = xi

y , otherwise

We also write xσ for σ(x).
20

Modifying a Substitution

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =







t, if y = x

σ(y), otherwise

21

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

>σ = >

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρ Gσ) ; for each binary connective ρ

(Qx F)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

E: Convince yourself that for the special case σ = [t/x] the new definition

coincides with our previous definition (modulo the choice of fresh names for the

bound variables).
22

Structural Induction

Theorem:

Let G = (N, T , P, S) be a context-free grammara and let q be a property of

T∗ (the words over the alphabet T of terminal symbols of G).

q holds for all words w ∈ L(G), whenever one can prove these 2 properties:

1. (base cases)

q(w ′) holds for each w ′ ∈ T∗ such that X ::= w ′ is a rule in P.

2. (step cases)

If X ::= w0X0w1 . . . wnXnwn+1 is in P with Xi ∈ N, wi ∈ T∗, n ≥ 0, then

for all w ′
i ∈ L(G , Xi), whenever q(w ′

i) holds for 0 ≤ i ≤ n, then also

q(w0w
′
0w1 . . . wnw

′
nwn+1) holds.

Here L(G , Xi) ⊆ T∗ denotes the language generated by the grammar G from

the nonterminal Xi .

aInfinite grammars are also admitted.

23

Structural Recursion

Theorem:

Let G = (N, T , P, S) be a unambiguous context-free grammar. A function f is

well-defined on L(G) (that is, unambiguously defined) whenever these 2

properties are satisfied:

1. (base cases)

f is well-defined on the words w ′ ∈ Σ∗ for each rule X ::= w ′ in P.

2. (step cases)

If X ::= w0X0w1 . . . wnXnwn+1 is a rule in P then

f (w0w
′
0w1 . . . wnw

′
nwn+1) is well-defined, assuming that each of the f (w ′

i)

is well-defined.

Q: Why should G be unambiguous?

24

Substitution Revisited

Q: Does Theorem 24 justify that our homomorphic extension

apply : FΣ(X) × (X → TΣ(X)) → FΣ(X),

with apply(F , σ) denoted by Fσ, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is (deliberately) left

unspecified. That can be easily fixed by adding an extra variable counter

argument to the apply function.

The second problem is that Theorem 24 applies to unary functions only. The

standard solution to this problem is to curryfy, that is, to consider the binary

function as a unary function producing a unary (residual) function as a result:

apply : FΣ(X) → ((X → TΣ(X)) → FΣ(X))

where we have denoted (apply(F))(σ) as Fσ.

E: Convince yourself that this does the trick.
25

1.2. Semantics

To give semantics to a logical system means to define a notion of truth for the

formulas. The concept of truth that we will now define for first-order logic goes

back to Tarski.

In classical logic (dating back to Aristoteles) there are “only” two truth values

“true” and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

26

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and its

universe.

By Σ-Alg we denote the class of all Σ-algebras.

27

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be

defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a

map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

28

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . , A(β)(sn)), f /n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to modified

assignments. To that end, let β[x → a] : X → A, for x ∈ X and a ∈ A,

denote the assignment

β[x 7→ a](y) :=







a if x = y

β(y) otherwise

29

Truth Value of a Formula in A with Respect to β

The set of truth values is given as {0, 1}. A(β) : Σ-formulas → {0, 1} is

defined inductively over the structure of F as follows:

A(β)(⊥) = 0

A(β)(>) = 1

A(β)(p(s1, . . . , sn)) = 1(A(β)(s1), . . . , A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1A(β)(s) = A(β)(t)

A(β)(¬F) = 1A(β)(F) = 0

A(β)(FρG) =ρ (A(β)(F), A(β)(G))

with ρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

30

Ex: “Standard” Interpretation N for Peano Arithmetic

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n, m) 7→ n + m

∗N : (n, m) 7→ n ∗ m

≤N = {(n, m) | n less than or equal to m}

<N = {(n, m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

31

Values over N for Sample Terms and Formulas

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

32

Part 2: Higher Order Logic and Sequent Calculus

• In order to formally reason about mathematical objects, or programs we

need a formal language PVS uses higher order logic.

• Constructions in higher order logic used in PVS:

– ¬ not

– ∧ and

– ∨ or

– → if . . . then

– ↔ if and only if

– ∀x : XP(x)

– ∃x : xP(x)

– = is equal to

– p(t1, . . . , tn), t1, . . . , tn are in relationship with each other: (t1, . . . , tn)

are called atoms;
33

Examples

• The atoms p(t1, . . . , tn) can have the form:

– a < b

– 1 < 1 + 1

– even(4), odd(5);

• Examples of formulae are:

– ∀x , y : Nat ↔ x + 1 < y + 1

– ∀x , y : Nat ↔ x < y → x < y + 1

– ∀prime(p) : Nat ↔ ¬∃x : Nat1 < x and x < p ∧ divides(x , p)

– ∀x , y : Real square(x + y) = square(x) + square(y) + 2 ∗ x ∗ y

34

Predicate versus higher order logic: what is an order

• Predicates that speak of domain objects are of first-order.

• Predicates that speak of objects of at most ith order are themselves i + 1th

order.

• Functions that take and return domain objects are of first-order.

• Functions that take and return objects of at most i-th order are themselves

i + 1-th order.

Example: The induction principle is second order.

∀P : Nat → BoolP0 ∧ ∀n : Nat(P(n) → P(n + 1)) → Nat : P(n)

35

Higher-order logic

• When reasoning about physical objects the following principles are

considered valid:

– law of excluded middle: A ∨ ¬A

– law of double negation: ¬¬A =⇒ A

Example: Either there are errors in the code, or there are no errors in the

code.

36

Intuitionistic or constructive logic

• Mathematical objects.

• The law of excluded middle is not observed.

• To prove ∃x : Xp(x) in Intuitionistic logic means to find a witness t for

which p(t) holds.

37

Sequent calculus for first-order logic

The most important types of deduction systems are:

• natural deduction

– models the natural style of reasoning;

– principle of forward reasoning: deriving conclusions, deriving conclusions

from the conclusions, etc.

• sequent calculus;

– conclusions and premises are treated in the same way.

– the proof consists o judgments rather than conclusions;

• PVS is based on a sequent calculus for higher order classical logic.

• COQ is based on higher order intuitionistic logic with inductive types.

38

Sequent Calculus for Classical Logic

Definition: A multiset is a set that can distinguish how often en element occurs

in it. Alternatively: a list that cannot see the order of its elements.

Examples

1. A ∨ B A ∧ B A ∧ B

2. A ∨ B A ∧ B C =⇒ D

3. A ∧ B A ∨ B A ∧ B

The first and the last multiset are equal.

39

Sequents

A sequent is an object of the form:

Γ
 ∆

where:

• Both Γ and ∆ are multisets of formulae.

Meaning: Whenever all of the Γ are true then at least one ∆ is true.

40

Propositional rules

• Axiom:

Γ, A
 ∆, A

• The cut rule:
Γ, A
 B Γ
 ∆, A

Γ
 ∆

41

Structural rules

• Weakening (left):
Γ
 ∆

Γ, A
 ∆

• Weakening (right):
Γ
 ∆

Γ
 ∆, A

42

Structural rules (Cntd)

• Contraction (left):
Γ, A, A
 ∆

Γ, A
 ∆

• Contraction (right):
Γ
 ∆, A, A

Γ
 ∆, A

43

Rules for the constants

• (> left):
Γ
 ∆

Γ, >
 ∆

• (⊥-left):

Γ, ⊥
 ∆

• (> right):

Γ
 ∆, >

• (⊥-right):
Γ
 ∆

Γ
 ∆, ⊥

44

Rules for negation

• Negation (left):
Γ
 ∆, A

Γ, ¬A
 ∆

• Negation (right):
Γ, A
 ∆

Γ
 ∆, ¬A

45

Rules for Conjunction and Disjunction

• (∧ left):
Γ, A, B
 ∆

Γ, A ∧ B
 ∆

• (∨-left):
Γ, A
 ∆ Γ, B
 ∆

Γ, A ∨ B
 ∆

• (∧ right):
Γ
 ∆, A Γ
 ∆, B

Γ
 ∆, A ∧ B

• (∨-right):
Γ
 ∆, A, B

Γ
 ∆, A ∨ B

Premises and conclusions are treated in the same way.

46

Rules for → and ↔

• (→-left):
Γ
 ∆, A Γ, B
 ∆

Γ, A → B
 ∆

• (→-right):
Γ, A
 ∆, B

Γ
 ∆, A → B

• (↔-left):
Γ, A
 B, A B → A,
 ∆

Γ, A ↔ B
 ∆

• (↔-right):
Γ
 ∆, A → B Γ
 ∆, B → A

Γ
 ∆, A ↔ B

47

Rules for the quantifiers

• (∀-left):
Γ, P[x := t]
 ∆

Γ, ∀x : XP(x)
 ∆

• (∃-left):
Γ, P[x := y]
 ∆

Γ, ∃x : XP(x)
 ∆

• (∀-right):
Γ
 ∆, P[x := y]

Γ
 ∆, ∀x : XP(x)

• (∃-right):
Γ
 ∆, P[x := t]

Γ
 ∆, ∃x : XP(x)

The t is an arbitrary term of type X and X is not free in Γ, ∆

48

Rules for equality

• Reflection:

Γ
 ∆, t = t

• Replication:
t1 = t2, Γ[t2]
 ∆[t2]

Γ[t1]
 ∆[t1]

49

Rules for IF

• PVS has an IF operator:

• The operator is defined as (A ∧ B) ∨ ¬A ∧ C

• IF-left
Γ, A, B
 ∆ Γ, ¬A, C
 ∆

Γ, IF (A, B, C)
 ∆

• IF-right
Γ, A
 ∆, B Γ, ¬A
 ∆, C

Γ
 ∆IF (A, B, C)

50

Overview of the type systems in PVS

Types in programming languages:

• Provide structure;

• Provide specification with documents;

• Are naturally allocated with functions;

• Ensure certain correctness properties (e.g. strong normalisation of typed Λ

calculus.

51

Types in logic

• Many logics are untyped (e.g. propositional logic);

• Type specification is convenient (automatically checkable);

• Type specification is expressible in the logic itself;

• In type theory there is a close link between types and logic (PVS is not

based on type theory).

52

Types in PVS

• A type in PVS is a set of values.

• Questions:

– Which values contain a given type?

– How can one construct these values?

– What purpose do the types serve?

53

Types in PVS

Basic built in types:

• bool: two element set of true values TRUTH and FALSE;

• nat: countable set of natural numbers 0, 1, 2 ...;

• int: countable set of integers -2, -1, 0, 1, 2 ...;

• rat: countable set of rational numbers 1, 0.5 1
3
,... ;

• real: uncountable set of real numbers 1, 0.33, 1√
3
, π;

54

Constructing types from types

Tuples:

• Type [T1, . . . , Tn], n ≥ 1

• Meaning: Cartesian product T1 × . . . × Tn.

• Constructor: ()

• Destructors 1′, . . . , n′

• Examples:

– [int] = int

– (7, TRUE)= [int, bool]

– (7, TRUE)’1=7

– (7, TRUE)’2=TRUE

55

We will study:

• Interactive proof tools (proof assistants):

– offer to prove theorems step by step;

– user has to select an appropriate command;

– each step that the prover offers is logically sound;

– granularity varies;

• Theory behind higher order theorem provers:

– deductive calculi

– data types;

– typed lambda calculus versus higher order logic;

• Applications of PVS to small functional programs.

56

