Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland
School of Mathematical and Computer Sciences

Heriot-Watt University

Lilia: Office G.54

Email: lilia@macs.hw.ac.uk

Higher Order Logic and Sequent Calculus. Introduction

e In order to formally reason about mathematical objects, or programs we

need a formal language PVS uses higher order logic.
e Constructions in higher order logic used in PVS:

— 1 not

— A and

— V or

— — if ... then

— <> if and only if

— Vx : XP(x)

— dx : xP(x)

— = is equal to

— p(t1,++., tn), t1,..., ty, are in relationship with each other: (t1,...,t,)
are called atoms:

Examples

e The atoms p(ty, ..., t,) can have the form:
—a<b
-1<1+1
— even(4), odd(5);
e Examples of formulae are:
- Vx,y :Nat o x+1<y+1
- Vx,y:Nat o x<y—=-x<y+1
— Vprime(p) : Nat <> —3x : Natl < x and x < p A divides(x, p)
— Vx, y : Real square(x + y) = square(x) + square(y) + 2 * x * y

Predicate versus higher order logic: what is an order

e Predicates that speak of domain objects are of first-order.

e Predicates that speak of objects of at most ith order are themselves i 4+ 1th
order.

e Functions that take and return domain objects are of first-order.

e Functions that take and return objects of at most i-th order are themselves
I + 1-th order.

Example: The induction principle is second order.
VP : Nat — BoolP0O A Vn : Nat(P(n) — P(n+ 1)) — Nat : P(n)

Higher-order logic

e When reasoning about physical objects the following principles are
considered valid:

— law of excluded middle: AV —A
— law of double negation: = —A — A

Example: Either there are errors in the code, or there are no errors in the
code.

Intuitionistic or constructive logic

e Mathematical objects.
e The law of excluded middle is not observed.

e To prove dx : Xp(x) in Intuitionistic logic means to find a witness t for
which p(t) holds.

Sequent calculus for first-order logic

The most important types of deduction systems are:

e natural deduction
— models the natural style of reasoning;
— principle of forward reasoning: deriving conclusions, deriving conclusions
from the conclusions, etc.
e sequent calculus;
— conclusions and premises are treated in the same way.

— the proof consists o judgments rather than conclusions;
e PVS is based on a sequent calculus for higher order classical logic.

e COQ is based on higher order intuitionistic logic with inductive types.

Sequent Calculus for Classical Logic

Definition: A multiset is a set that can distinguish how often en element occurs
in it. Alternatively: a list that cannot see the order of its elements.

Examples

1. A VBAABAAB

2. A VBAANBC = D
3. ANBAVBAAB

The first and the last multiset are equal.

Sequents

A sequent is an object of the form:
- A

where:
e Both [and A are multisets of formulae.

Meaning: Whenever all of the [are true then at least one A is true.

Propositional rules

e Axiom:

e [he cut rule:

[VAIFAA

[LAIFB [FAA

[A

10

Structural rules

e Weakening (left):

e Weakening (right):

[A
[LAIFA

[- A
[FAA

11

Structural rules (Cntd)

e Contraction (left):

e Contraction (right):

LA AIFA
[LAIFA

A A A
[FAA

12

Rules for the constants

o (T left):

o (L-left):

o (T right):

o (L-right):

[A
[, TIFA

[, LIFA

[FA, T

[- A
A, L

13

Rules for negation

e Negation (left):

e Negation (right):

A A
[, -AIFA

[LAIFA
[- A, -A

14

Rules for Conjunction and Disjunction

o (A left):
A BIFA
[LAABIFA
o (V-left):
AIFA T,BIFA
AV BIFA
e (A right):
r-AA TFAB
A AAB
e (V-right):
- A A B
[-A AV B

Premises and conclusions are treated in the same way.

15

Rules for — and <

o (—r-left):

o (—-right):

o («+>-left):

o (<>-right):

[-AA ILBIFA
[LA— BIF A

[LAIFA,B
[-AA— B

[LAIFB,A B — AIFA
LA+ BIF A

[FAA—=B TIFAB—=A

[WA A+ B

16

Rules for the quantifiers

o (V-left):

o (I-left):

o (V-right):

e (J-right):

The t is an arbitrary term of type X and X is not free in [, A

[, Plx:=t]IFA
[, Vx: XP(x) IF A

[, Plx:=y]lFA
[, 3Ix : XP(x) IF A

[IF A, Plx ;= y]
[A, Vx : XP(x)

[IF A, P[x := t]
[1F A, Ix : XP(x)

17

Rules for equality

e Reflection:

e Replication:

[FAt=1t

t; = to, [[ta] IF Alts]

F[tl] | A[tl]

18

Rules for IF

PVS has an |IF operator:

The operator is defined as (AA B)V -AAC

|F-left

IF-right

LA BIFA T,-A CIFA

I IF(A B, C)IF A

MAIFA B TI,-AIFA,C

[IF AIF(A, B, C)

19

Overview of the type systems in PVS

Types in programming languages:
e Provide structure;
e Provide specification with documents;
e Are naturally allocated with functions;

e Ensure certain correctness properties (e.g. strong normalisation of typed A

calculus.

20

Types in logic

Many logics are untyped (e.g. propositional logic);
Type specification is convenient (automatically checkable);
Type specification is expressible in the logic itself;

In type theory there is a close link between types and logic (PVS is not
based on type theory).

21

Types in PVS

e A type in PVS is a set of values.

e Questions:
— Which values contain a given type?
— How can one construct these values?

— What purpose do the types serve?

22

Types in PVS

Basic built in types:

bool: two element set of true values TRUTH and FALSE;
nat: countable set of natural numbers 0, 1, 2 ...;

int: countable set of integers -2, -1, 0, 1, 2 ..;;

rat: countable set of rational numbers 1, 0.5 % ;

1

real: uncountable set of real numbers 1, 0.33, T

S

23

Constructing types from types

Tuples:
e Type [T1,..., Tp], n>1
e Meaning: Cartesian product 71 X ... X T,.
e Constructor: ()
e Destructors 1/, ..., n

e Examples:

— [int] = int
— (7, TRUE)= [int, bool]
— (7, TRUE)'1=7

— (7, TRUE)'2=TRUE

We will study:

e Interactive proof tools (proof assistants):
— offer to prove theorems step by step;
— user has to select an appropriate command;
— each step that the prover offers is logically sound;

— granularity varies;

e Theory behind higher order theorem provers:
— deductive calculi
— data types;

— typed lambda calculus versus higher order logic;

e Applications of PVS to small functional programs.

25

