Automated Reasoning for Software Engineering

L. Georgieva and A. Ireland

School of Mathematical and Computer Sciences Heriot-Watt University

Lilia: Office G.54

Email: lilia@macs.hw.ac.uk

Higher Order Logic and Sequent Calculus. Introduction

- In order to formally reason about mathematical objects, or programs we need a formal language PVS uses higher order logic.
- Constructions in higher order logic used in PVS:
 - ¬ not
 - $\land and$
 - V or
 - $\rightarrow \text{if} \dots \text{then}$
 - \leftrightarrow if and only if
 - $\forall x : XP(x)$
 - $-\exists x: xP(x)$
 - = is equal to
 - $p(t_1, \ldots, t_n)$, t_1, \ldots, t_n are in relationship with each other: (t_1, \ldots, t_n) are called atoms;

Examples

- The atoms $p(t_1, \ldots, t_n)$ can have the form:
 - -a < b
 - -1 < 1 + 1
 - even(4), odd(5);
- Examples of formulae are:
 - $\forall x, y : \text{Nat} \leftrightarrow x + 1 < y + 1$
 - $\forall x, y : \text{Nat} \leftrightarrow x < y \rightarrow x < y + 1$
 - $\forall \text{prime}(p) : \text{Nat} \leftrightarrow \neg \exists x : \text{Nat} 1 < x \text{ and } x < p \land \text{divides}(x, p)$
 - $\forall x, y : \text{Real square}(x + y) = \text{square}(x) + \text{square}(y) + 2 * x * y$

Predicate versus higher order logic: what is an order

- Predicates that speak of domain objects are of first-order.
- Predicates that speak of objects of at most ith order are themselves i+1th order.
- Functions that take and return domain objects are of first-order.
- Functions that take and return objects of at most i-th order are themselves i+1-th order.

Example: The induction principle is second order.

$$\forall P : Nat \rightarrow \text{Bool}P0 \land \forall n : Nat(P(n) \rightarrow P(n+1)) \rightarrow \text{Nat} : P(n)$$

Higher-order logic

- When reasoning about physical objects the following principles are considered valid:
 - law of excluded middle: $A \vee \neg A$
 - law of double negation: $\neg \neg A \implies A$

Example: Either there are errors in the code, or there are no errors in the code.

Intuitionistic or constructive logic

- Mathematical objects.
- The law of excluded middle is not observed.
- To prove $\exists x : Xp(x)$ in Intuitionistic logic means to find a witness t for which p(t) holds.

Sequent calculus for first-order logic

The most important types of deduction systems are:

- natural deduction
 - models the natural style of reasoning;
 - principle of forward reasoning: deriving conclusions, deriving conclusions from the conclusions, etc.
- sequent calculus;
 - conclusions and premises are treated in the same way.
 - the proof consists o judgments rather than conclusions;
- PVS is based on a sequent calculus for higher order classical logic.
- COQ is based on higher order intuitionistic logic with inductive types.

Sequent Calculus for Classical Logic

Definition: A multiset is a set that can distinguish how often en element occurs in it. Alternatively: a list that cannot see the order of its elements.

Examples

- 1. $A \lor B \land A \land B \land A \land B$
- 2. $A \lor B \land A \land B \land C \implies D$
- 3. $A \wedge B A \vee B A \wedge B$

The first and the last multiset are equal.

Sequents

A sequent is an object of the form:

$$\Gamma \Vdash \Delta$$

where:

• Both Γ and Δ are multisets of formulae.

Meaning: Whenever all of the Γ are true then at least one Δ is true.

Propositional rules

• Axiom:

$$\Gamma, A \Vdash \Delta, A$$

• The cut rule:

$$\frac{\Gamma, A \Vdash B \qquad \Gamma \Vdash \Delta, A}{\Gamma \Vdash \Delta}$$

Structural rules

• Weakening (left):

$$\frac{\Gamma \Vdash \Delta}{\Gamma, A \Vdash \Delta}$$

• Weakening (right):

$$\frac{\Gamma \Vdash \Delta}{\Gamma \Vdash \Delta, A}$$

Structural rules (Cntd)

• Contraction (left):

$$\frac{\Gamma, A, A \Vdash \Delta}{\Gamma, A \Vdash \Delta}$$

• Contraction (right):

$$\frac{\Gamma \Vdash \Delta, A, A}{\Gamma \Vdash \Delta, A}$$

Rules for the constants

$$\frac{\Gamma \Vdash \Delta}{\Gamma, \top \Vdash \Delta}$$

• (⊥-left):

$$\Gamma, \perp \Vdash \Delta$$

• (⊤ right):

$$\overline{\Gamma \Vdash \Delta, \top}$$

• (**⊥**-right):

$$\frac{\Gamma \Vdash \Delta}{\Gamma \Vdash \Delta, \perp}$$

Rules for negation

• Negation (left):

$$\frac{\Gamma \Vdash \Delta, A}{\Gamma, \neg A \Vdash \Delta}$$

• Negation (right):

$$\frac{\Gamma,A \Vdash \Delta}{\Gamma \Vdash \Delta, \neg A}$$

Rules for Conjunction and Disjunction

• (∧ left):

$$\frac{\Gamma, A, B \Vdash \Delta}{\Gamma, A \land B \Vdash \Delta}$$

• (V-left):

$$\frac{\Gamma, A \Vdash \Delta \quad \Gamma, B \Vdash \Delta}{\Gamma, A \lor B \Vdash \Delta}$$

• (∧ right):

$$\frac{\Gamma \Vdash \Delta, A \quad \Gamma \Vdash \Delta, B}{\Gamma \Vdash \Delta, A \land B}$$

• (V-right):

$$\frac{\Gamma \Vdash \Delta, A, B}{\Gamma \Vdash \Delta, A \lor B}$$

Premises and conclusions are treated in the same way.

Rules for \rightarrow and \leftrightarrow

• $(\rightarrow -left)$:

$$\frac{\Gamma \Vdash \Delta, A \quad \Gamma, B \Vdash \Delta}{\Gamma, A \to B \Vdash \Delta}$$

• $(\rightarrow$ -right):

$$\frac{\Gamma, A \Vdash \Delta, B}{\Gamma \Vdash \Delta, A \to B}$$

• (↔-left):

$$\frac{\Gamma, A \Vdash B, A \quad B \to A, \Vdash \Delta}{\Gamma, A \leftrightarrow B \Vdash \Delta}$$

• $(\leftrightarrow -right)$:

$$\frac{\Gamma \Vdash \Delta, A \to B \quad \Gamma \Vdash \Delta, B \to A}{\Gamma \Vdash \Delta, A \leftrightarrow B}$$

Rules for the quantifiers

• (∀-left):

$$\frac{\Gamma, P[x := t] \Vdash \Delta}{\Gamma, \forall x : XP(x) \Vdash \Delta}$$

• (∃-left):

$$\frac{\Gamma, P[x := y] \Vdash \Delta}{\Gamma, \exists x : XP(x) \Vdash \Delta}$$

• (∀-right):

$$\frac{\Gamma \Vdash \Delta, P[x := y]}{\Gamma \Vdash \Delta, \forall x : XP(x)}$$

• (∃-right):

$$\frac{\Gamma \Vdash \Delta, P[x := t]}{\Gamma \Vdash \Delta, \exists x : XP(x)}$$

The t is an arbitrary term of type X and X is not free in Γ , Δ

Rules for equality

• Reflection:

$$\Gamma \Vdash \Delta, t = t$$

• Replication:

$$\frac{t_1=t_2, \Gamma[t_2] \Vdash \Delta[t_2]}{\Gamma[t_1] \Vdash \Delta[t_1]}$$

Rules for IF

- PVS has an IF operator:
- The operator is defined as $(A \land B) \lor \neg A \land C$
- IF-left

$$\frac{\Gamma, A, B \Vdash \Delta \quad \Gamma, \neg A, C \Vdash \Delta}{\Gamma, \mathit{IF}(A, B, C) \Vdash \Delta}$$

• IF-right

$$\frac{\Gamma, A \Vdash \Delta, B \quad \Gamma, \neg A \Vdash \Delta, C}{\Gamma \Vdash \Delta IF(A, B, C)}$$

Overview of the type systems in PVS

Types in programming languages:

- Provide structure;
- Provide specification with documents;
- Are naturally allocated with functions;
- ullet Ensure certain correctness properties (e.g. strong normalisation of typed Λ calculus.

Types in logic

- Many logics are untyped (e.g. propositional logic);
- Type specification is convenient (automatically checkable);
- Type specification is expressible in the logic itself;
- In type theory there is a close link between types and logic (PVS is not based on type theory).

Types in PVS

- A type in PVS is a set of values.
- Questions:
 - Which values contain a given type?
 - How can one construct these values?
 - What purpose do the types serve?

Types in PVS

Basic built in types:

- **bool**: two element set of true values TRUTH and FALSE;
- nat: countable set of natural numbers 0, 1, 2 ...;
- **int**: countable set of integers -2, -1, 0, 1, 2 ...;
- rat: countable set of rational numbers 1, 0.5 $\frac{1}{3}$,...;
- **real**: uncountable set of real numbers 1, 0.33, $\frac{1}{\sqrt{3}}$, π ;

Constructing types from types

Tuples:

- Type $[T_1, ..., T_n], n \ge 1$
- Meaning: Cartesian product $T_1 \times ... \times T_n$.
- Constructor: ()
- Destructors 1', ..., n'
- Examples:
 - -[int] = int
 - (7, TRUE)= [int, bool]
 - (7, TRUE)'1=7
 - (7, TRUE)'2=TRUE

We will study:

- Interactive proof tools (proof assistants):
 - offer to prove theorems step by step;
 - user has to select an appropriate command;
 - each step that the prover offers is logically sound;
 - granularity varies;
- Theory behind higher order theorem provers:
 - deductive calculi
 - data types;
 - typed lambda calculus versus higher order logic;
- Applications of PVS to small functional programs.