Basic PVS Specification Language Features

Ben L. Di Vito

NASA Langley Research Center
Formal Methods Team

b.l.divito@larc.nasa.gov
phone: (757) 864-4883
fax: (757) 864-4234
http://shemesh.larc.nasa.gov/ bld

NASA Langley PVS Training Course
22-25 April 2003

Lexical Rules

PVS has a conventional lexical structure

e Comments begin with ‘%’ and go to the end of the line

® lIdentifiers are composed of letters, digits, ‘7', and *_’

— They must begin with a letter

— They are case sensitive
® Numbers are composed of digits only — no floating point format
® Strings are enclosed in double quotes

® Reserved words are not case sensitive
— Examples: FORALL exists BEGIN end

® Many special symbols

— Examples: [# #] -> (: :) >=

Basic PVS Language Features April 2003 — 1 of 22

Expressions

PVS allows many operators and constructors for use in forming expressions

Equality relations
Arithmetic expressions
Logical expressions, formulas
Conditional expressions
Function application
Lambda abstraction

Override expressions

Every expression must be properly typed

Typechecker emits TCCs if it's unsure

Basic PVS Language Features

Record construction, component access
Tuple construction, component access
LET and WHERE expressions

Set expressions

Lists and strings

Pattern matching on data types

Name resolution

April 2003 — 2 of 22

Equality relations

Equality operations are defined for any type

® Two operators available:

X =y
z /=7

® Both sides of an equality/inequality must be of compatible types
x * y = 4is vald
true /= 4 is illegal

® A (dis)equality is legal if there is a common supertype

® TCCs may be generated when subtypes are involved

® Equality on function values entails special techniques when proving

— Use of extensionality inference rule

Basic PVS Language Features April 2003 — 3 of 22

Arithmetic Expressions

PVS has the usual assortment of arithmetic operations

® Relational operators:

® Binary operators:

® Unary operators:

® Numeric constants are limited to integers
— Decimal point format is not available
— Can construct rational numbers
— Examples: 1/2, 22/7

® Base type for arithmetic is real

— Subtypes built in for naturals, integers, etc.

— Automatic coercions performed when needed

Basic PVS Language Features April 2003 — 4 of 22

Logical Expressions and Formulas

Logical expressions may be used to construct both propositional and predicate calculus

formulas
® Logical constants: true and false
® Propositional connectives:
— Negation: NOT
— Conjunction: AND, &
— Disjunction: OR
— Implication: =>, IMPLIES
— Equivalence: <=>, IFF
® Quantified formulas:
— Universal: FORALL x: P(x), also with ALL
— Existential: EXISTS x: Q(x), also with SOME
® A few other synonyms and operators are available

Basic PVS Language Features

April 2003

— bof22

Conditional Expressions

Conditional expressions come in two basic varieties
® |F expressions:
IF a THEN b ELSE c¢ ENDIF
® Evaluates to either b or ¢ according to the value of boolean expression a
® Subexpressions b and ¢ must have compatible types
® Type of resulting expression is the common supertype of b and ¢
® The ELSE clause is not optional

® Also can have multiple tests and branches:
IF x < O THEN -1 ELSIF x = O THEN O ELSE 1 ENDIF

® Can include any number of ELSIF clauses

Basic PVS Language Features April 2003 — 6 of 22

Conditional Expressions (Cont’d)

® COND expressions:

COND m = n -> n,
m>n -> gcd(m - n, n),
m<n->gcdlm, n - m)
ENDCOND

® Allows multiway conditional evaluation similar to IF expressions containing ELSIF clauses

® PVS generates coverage and disjointness TCCs to ensure expression is well formed

— Disjointness: at most one case applies

— Coverage: at least one case applies

® COND expressions are used in table-based specifications

Basic PVS Language Features April 2003 — 7 of 22

Tabular Expressions

Complex conditional expressions can be put in the form of tables:

TABLE Yj—=—==== === === mmmmmm e A
Il m=n | m > n | m < n 11
St A
I n | gcd(m - n, n) | gcd(m, n - m) |
S T

ENDTABLE

® Semantically equivalent to COND expressions
® More complex forms also available
® Can directly express many types of tables used in practice

® \Well-formedness analysis is available through TCC mechanism

Basic PVS Language Features April 2003

— 8of22

Function Application

Function application can be a little more involved than normal when higher-order features are
present
® Basic function application:
f (%) gly, z) h(0, f(a)) + 1
® Infix operators can be applied in prefix style
+(x, y) x(y, -(z, 1))
® Expressions can evaluate to functions, which are then applied to other expressions

f: [nat -> [real -> reall] allows £(1) (x)
g: [nat,nat -> [real -> realll] allows g(2,3) (h(z))
h: [nat,real -> [bool,int -> reall]] allows h(0, f(a)) (true, 39)

® Signatures of functions and corresponding types are used to sort things out

® Function being applied could be given as the value of a variable, which looks the same as
regular application

f(x), g(y, z) if £ and g are variables of suitable function types

Basic PVS Language Features April 2003 — 9 of 22

Lambda Abstraction

Lambda expressions allow writing function-valued expressions without having to explicitly
introduce named functions

® Typical examples:
LAMBDA j: O
LAMBDA i: table(i)
LAMBDA x,y: x + 2 x y
LAMBDA (p: prime): 2°p - 1

® Evaluates to a function of 2 arguments with a signature derived from the variable types
and expression types

® Lambda expressions can be used wherever a function value of the appropriate type is used
— As part of defining expressions for larger functions
— As a value supplied to data structure update operations
— As the function being applied to one or more arguments
— Example: (LAMBDA (p: prime): 2°p - 1)(3) =7

® Lambda expressions pop up a lot because of PVS's orientation toward function types and
higher-order logic

Basic PVS Language Features April 2003 — 10 of 22

Function Overriding

Another way to construct new function values is to override/update an existing function
value to create a new one

® Basic form:
f WITH [(0) := 2, (1) := 3]
table WITH [(i) := g(i)]
matrix WITH [(i)(j) := x * y]
r WITH [‘a := 1, ‘D(1)‘c := 0]
f WITH [(-1) |-> g(0)]

® Evaluates to a new function formed from the original that differs on one or more elements
of its domain

® |-> form extends domain of function, resulting in a different type
® Useful for specifying state-changing operations on large data objects

® Meaning is best visualized by considering function update and then application:

(f WITH [(1) := al)(j) =
IF i = j THEN a ELSE f(j) ENDIF

Basic PVS Language Features April 2003 — 11 of 22

Record Operations

PVS has facilities for record construction, field selection, and updates
® Record construction:
(# ready := true, timestamp := T + 1, count := 0 #)

® Field selection is similar to the familiar r.ready notation from programming languages:

IF r‘ready THEN r‘timestamp ELSE O ENDIF

® Field selection is also possible using function application:

IF ready(r) THEN timestamp(r) ELSE O ENDIF

® Record update:

r WITH [ready := false, timestamp := current]

— Evaluates to r with two of its fields updated as indicated

Basic PVS Language Features April 2003 — 12 of 22

Tuple Operations

Tuple construction, field selection, and updates are similar to those of records
® Tuple construction:
(true, T + 1, 0)
® Tuple selection is similar to record field selection:
IF t‘1 THEN t¢2 ELSE O ENDIF
® Tuple update:

t WITH [¢‘1 := false, ‘2 := current]

— Evaluates to t with two of its components updated as indicated

Basic PVS Language Features April 2003 — 13 of 22

LET and WHERE Expressions

Two expression types are used to introduce named subexpressions
® Basic form:

LET x = 2, y: nat = x * x IN f(x, y) +y
® LET variables are local to the LET expression

e Within the IN part, variables denote values as if the subexpressions were substituted in
their place

e WHERE form is analogous:
f(x, y) + y WHERE x = 2, y: nat = x * X

® There is also a tuple form to implicitly name components:

LET (x, y, 2z) =t INX +y *x z
® LET and WHERE expressions are useful for modeling sequential computation steps

® LET is more typical but WHERE is useful with tables

Basic PVS Language Features April 2003 — 14 of 22

Misc. Expressions

Several other expression types are available in PVS

® C(oercions alert the typechecker to type membership
a/b :: int
— Assuming b divides a

® Sets are represented in PVS as predicates over a base type

® Set expressions:
{n: int | n < 10}
— Equivalent to LAMBDA (n: int): n < 10
® List constructors:
(: 1, 2, 3, 4 :)
— Equivalent to cons(1, cons(2, ... null))
® String constants:

— "A character string"

Basic PVS Language Features April 2003 — 15 of 22

Pattern Matching on Data Types

A special construct is available for working with abstract data types

® The CASES construct enables a kind of “pattern matching” on DATATYPE-introduced
values

CASES list OF
cons(elt, rest): append(reverse(rest),

cons(elt, null))
ELSE null

ENDCASES

® Allows conditional selection of alternative expressions

— Based on the form of a value with respect to its DATATYPE definition
— One clause per constructor

Basic PVS Language Features April 2003 — 16 of 22

Name Resolution

When names have been imported from multiple theories, name conflicts or ambiguity may
result

® The same name may be imported from different theories
® Or, the same name may be imported from different theory instances

® Three ways to reference “name” declared in theory “thy":

1. name
2. name [params]
3. thy[params] .name

® Method 1 works when there are no conflicts
® Method 2 works for some clashes

® Method 3 is guaranteed to be unambiguous

Basic PVS Language Features April 2003 — 17 of 22

Function Declaration

Named functions are declared using the constant declaration mechanism

® A function is simply a constant whose type is a function type

® As with simple data constants, function declarations may be either interpreted or
uninterpreted

® Typical uninterpreted function declarations:
abs(x): nat
max: [int, int -> int]
gcd(m, n): nat
ordered(s: num_list): bool

scalar_mult(a, (v: vector)): real

® Such undefined functions may be referenced freely in PVS specifications

— But there is nothing to expand during proofs

Basic PVS Language Features April 2003 — 18 of 22

Function Definition

Functions are defined by giving interpreted function declarations

® Typical function definitions:

abs(x): nat = IF x < 0 THEN -x ELSE x ENDIF
time(m: minute, s: second): nat = m * 60 + s
device_busy(d: control_block): bool = NOT d‘ready
scalar_mult(a, V): vector = LAMBDA i: a *x V(i)

® Type of defining expression must be contained in declared result type of function
® Result type may be any PVS type
® Function types allowed for arguments and result

® Recursive definitions allowed with special syntax provided

— But no mutual recursion across two or more definitions
® Rules are designed to ensure conservative extension of theory

® Macros are a variant of constant/function declarations

— They are expanded at typecheck time

Basic PVS Language Features April 2003 — 19 of 22

Recursive Function Definitions

Recursive definitions have a special form

® Recursion must be signaled so the system can check for well-foundedness of the
definition, i.e, that recursion is always bounded

factorial(n): RECURSIVE nat =

IF n = 0 THEN 1 ELSE n * factorial(n-1) ENDIF
MEASURE LAMBDA n: n

® A measure function must be provided

— Measure must strictly decrease on every recursive call
— Termination TCCs may be generated if this cannot be established

— Shortcuts allowed for simple measures: MEASURE n

® A special form also exists to deal with DATATYPE situations

® Inductive definitions are a related concept

Basic PVS Language Features April 2003 — 20 of 22

Formula Declarations

Various kinds of formulas may be included in a theory

® A formula declaration is a named logical formula (boolean expression)
transitive: AXIOM x < y AND y < z => x < z
distrib_law: LEMMA x * (y + z2) = x * y + X % z

friendly_skies: THEOREM
mode (aircraft) = cruise IMPLIES
altitude(aircraft) > 1000

® Formulas may contain free variables
— PVS assumes the universal closure:
FORALL x,y,z: x * (y+2) =X *y + X * z
® Declared formulas may be submitted to the theorem prover

— PVS tracks the proof status of formulas

® Multiple spellings available
— LEMMA, THEOREM, CONJECTURE, etc.
— All semantically equivalent except AXIOM and POSTULATE

Basic PVS Language Features April 2003 — 21 of 22

Special Formulas about Types

PVS allows special formulas to specify type attributes of function applications
® Judgements are lemmas about (sub)types that get applied automatically during type
checking

— They can obviate many TCCs that would otherwise be generated

@ Constant judgements can narrow the type of an expression

even_plus_even_is_even: JUDGEMENT +(el,e2) HAS_TYPE even_int
odd_plus_even_is_odd: JUDGEMENT +(ol,e2) HAS_TYPE odd_int

® Subtype judgements express type relationships

JUDGEMENT posrat SUBTYPE_QOF nzrat
JUDGEMENT nzrat SUBTYPE_OF nzreal

® Possible interactions with various type conversion features

— Extensions, restrictions, etc.

Basic PVS Language Features April 2003 — 22 of 22

