
PVS System Guide
Version 2.4 • December 2001

S. Owre
N. Shankar
J. M. Rushby
D. W. J. Stringer-Calvert
{Owre,Shankar,Rushby,Dave_SC}@csl.sri.com

http://pvs.csl.sri.com/

SRI International
Computer Science Laboratory • 333 Ravenswood Avenue • Menlo Park CA 94025

{Owre,Shankar,Rushby,Dave_SC}@csl.sri.com
http://pvs.csl.sri.com/

The initial development of PVS was funded by SRI International. Subsequent en-
hancements were partially funded by SRI and by NASA Contracts NAS1-18969 and
NAS1-20334, NRL Contract N00014-96-C-2106, NSF Grants CCR-9300044, CCR-
9509931, and CCR-9712383, AFOSR contract F49620-95-C0044, and DARPA Orders
E276, A721, D431, D855, and E301.

Contents

Contents i

1 Introduction 1

2 A Brief Tour of PVS 7
2.1 Creating the Specification . 8
2.2 Parsing and Typechecking . 10
2.3 Proving . 11
2.4 Status . 15
2.5 Generating LATEX . 15

3 PVS Commands 17
3.1 Exiting PVS . 18
3.2 Getting Help . 18
3.3 Editing PVS Files . 19
3.4 Parsing and Typechecking . 20

3.4.1 Parsing . 20
3.4.2 Typechecking . 21
3.4.3 Typechecking Information . 22

3.5 Proving . 23
3.5.1 Proving a Single Formula . 24
3.5.2 Proving Sets of Formulas . 26
3.5.3 Selecting Decision Procedures 28
3.5.4 Editing and Viewing Proofs 29
3.5.5 Displaying Proof Information 33
3.5.6 Adding and Modifying Declarations 34
3.5.7 Prover Emacs Commands . 36
3.5.8 General Commands . 36
3.5.9 Prover Commands . 36
3.5.10 Proof Stepper Commands . 38

3.6 Prettyprinting . 39
3.7 Viewing TCCs . 39
3.8 PVS Files and Theories . 40

i

ii CONTENTS

3.8.1 Finding Files and Theories . 40
3.8.2 Creating New Files and Theories 41
3.8.3 Importing Files and Theories 42
3.8.4 Deleting Files and Theories 42
3.8.5 Saving Files . 42
3.8.6 Mailing PVS Files . 43
3.8.7 Dumping Files . 44

3.9 PVS Output . 44
3.9.1 Printing Buffers and Regions 44
3.9.2 Printing Files and Theories 45
3.9.3 Generating alltt Output . 45
3.9.4 Generating LATEX Output . 46

3.10 Display Commands . 48
3.11 Context Commands . 51
3.12 Library Commands . 53
3.13 Browsing . 54
3.14 Theory Status . 55
3.15 Proof Status . 56
3.16 Environment Commands . 57
3.17 Interrupting PVS . 57

4 Customizing PVS 59
4.1 Invoking PVS . 59
4.2 Emacs . 61
4.3 The PVS Image . 62
4.4 Window Systems . 62

5 Running PVS in Batch Mode 65
5.1 Validation Runs . 68
5.2 Example Validation Run . 69

5.2.1 The Specification . 70
5.2.2 The Validation File . 70
5.2.3 The Validation Run . 70
5.2.4 The Log File . 71

A Introduction to Emacs 75
A.1 Leaving Emacs . 77
A.2 Getting Help . 78
A.3 Files . 78
A.4 Buffers . 79
A.5 Cursor Motion commands . 79
A.6 Error Recovery . 80
A.7 Search commands . 80

CONTENTS iii

A.8 Killing and Deleting . 81
A.9 Yanking . 81
A.10 Marking . 82

Bibliography 83

Index 85

iv CONTENTS

Chapter 1

Introduction

The Prototype Verification System (PVS) provides an integrated environment for
the development and analysis of formal specifications, and supports a wide range
of activities involved in creating, analyzing, modifying, managing, and documenting
theories and proofs. This manual describes the system, including the system com-
mands, the computing environment, how to get and install PVS, customization, and
a short tutorial on Emacs. The complete set of manuals for the PVS system consists
of this manual, the language reference [3], and the prover guide [7]. There are also
several supporting technical reports: the formal semantics of PVS [6], an advanced
tutorial [5], and a description of the abstract datatypes mechanism [4]. All of these
manuals (and much more!) are available online at http://pvs.csl.sri.com/

The rest of this chapter provides a broad overview of PVS; the facilities provided
by the system are discussed in the order you are likely to encounter them.

The PVS Environment

PVS runs on SUN 4 (SPARC) workstations using Solaris 2 or higher and PC systems
running Redhat Linux. PVS is implemented in Common Lisp, but it is not necessary
to know Lisp to effectively use the system.1 PVS runs best using the X window system,
though it is not required. The Emacs (Gnu Emacs or XEmacs) editors provide the
interface to PVS; familiarity with Emacs and access to the Gnu Emacs manual [8]
(usually available as an info file) are desirable. A brief introduction to Emacs is
provided in Appendix A on page 75 of this manual. The LATEX generating facilities
require a good understanding of the LATEX document preparation system [1]. If you
have Tcl/Tk available, there are PVS interfaces provided that display proof trees,
theory hierarchies, and proof commands. Instructions for obtaining and installing
the PVS system as well as Emacs, X windows, LATEX, and Tcl/Tk may be found at
http://pvs.csl.sri.com.

1The only exception to this is in writing complex prover strategies.

1

http://pvs.csl.sri.com/
http://pvs.csl.sri.com

2 1 Introduction

The PVS Language

The specification language of PVS is built on higher-order logic; i.e., functions can
take functions as arguments and return them as values, and quantification can be ap-
plied to function variables. There is a rich set of built-in types and type-constructors,
as well as a powerful notion of subtype. Specifications can be constructed using
definitions or axioms, or a mixture of the two.

Specifications are logically organized into parameterized theories and datatypes .
Theories are linked by import and export lists. Specifications for many foundational
and standard theories are preloaded into PVS as prelude theories that are always
available and do not need to be explicitly imported. Details on the PVS language
may be found in the PVS language reference [3].

Specification Files and the PVS Context

PVS specifications are ordinary ascii text files prepared and modified using a text
editor—usually the Emacs editor that acts as the interface to PVS. A PVS specifica-
tion consists of any number of such files, each of which contains one or more theories
or datatypes. PVS specification files have the .pvs extension.

Each specification file has associated with it a proof file (with the .prf extension)
that saves the proof scripts generated during proof attempts on formulas contained
in the associated PVS specification file. In addition, the system generates binary
representations of the typechecked specification files (with the .bin extension) that
speed up retypechecking when a PVS session is resumed in the same context.

The set of files and theories constituting a specification, together with various
items of status information, comprise a PVS context. The PVS context retains infor-
mation about the state of a specification and verification from one PVS session to the
next. This information is primarily kept in the .pvscontext file that is associated
with each PVS context. It keeps track of which formulas have been proved, and which
binary files are valid by keeping track of the write dates associated with the various
files.

PVS contexts are closely related to directories, and the term context is used in
this document to refer to either the PVS context or its associated directory. Note
that the directory may contain files other than those produced by or for PVS, but
these are not considered to be a part of the context.

During a PVS session, there is always a current context in which the activities
of PVS take place. For example, typechecking of a specification file is allowed only
if that file is a part of the current context. There are commands for changing the
current context during a PVS session, so that it is unnecessary to exit PVS just to
change contexts. Because contexts are associated with UNIX directories there can be
at most one PVS context in a directory, so for most purposes a PVS context and its
containing directory can be treated synonymously.

1 Introduction 3

PVS Libraries

PVS has a library facility that allows files and theories from one PVS context to be
used in another, thus allowing for general reuse, and making it easier to standardize
theories that are frequently used. There are two ways that the library facility can
be used: by explicitly importing a theory from a different PVS context within a
specification, or by issuing a command that effectively extends the prelude.

The PVS User Interface

You interact with the PVS system through a customized Emacs. It is expected,
though not required, that editing of specifications is performed with this editor. Using
other editors is quite painful, as they cannot directly interact with the underlying Lisp
image.

Instructions are issued to PVS by means of Emacs commands. For example, in
order to perform a proof, the cursor is positioned at a formula declaration in the Emacs
buffer and the Emacs command M-x prove or the key sequence C-c p is issued. PVS
returns information to you through various display mechanisms provided by Emacs
or Tcl/Tk.

The PVS interface allows a certain amount of parallel activity. For example,
you can continue editing theories or perform any other activity supported by Emacs
while PVS is typechecking a series of theories or performing a lengthy proof. Also, you
need not wait for one PVS activity to finish before issuing another command; most
commands are queued for execution in the order they were issued, but certain status
and other short commands preempt any ongoing analyses, perform their function,
and then return the system to its previous activity.

Prettyprinting

The PVS prettyprinter rearranges the layout of PVS specification text into a standard,
regular format. The commands allow the prettyprinting of files, theories, regions, or
individual declarations. You can choose whether to prettyprint specification text, but
output from PVS itself is always prettyprinted.

Parsing

The parser checks theories for syntactic consistency and builds an internal represen-
tation that is used by other components of the system. When errors are detected by
the parser or other components of PVS, the cursor is generally placed at the location
where the error was detected and an error message is displayed in a pop-up window.

4 1 Introduction

Typechecking

The PVS typechecker analyzes theories for semantic consistency and adds semantic
information to the internal representation built by the parser. The type system of
PVS is not algorithmically decidable; theorem proving may be required to establish
the type-consistency of a PVS specification. The theorems that need to be proved
are called type-correctness conditions (TCCs). TCCs are attached to the internal
representation of the theory and displayed on request. There are commands available
that attempt to prove the TCCs using built-in prover strategies. You may choose
when to prove the TCCs, but until they are proved the theory that generated them
is not considered to be typechecked.

The PVS system automatically tracks the status of theories (whether they have
been changed, parsed, typechecked etc.) and also takes care of the dependencies
among theories. For example, if the specification text of a theory is changed and
then a command is issued that requires semantic information, PVS will parse and
typecheck the theory automatically. More subtly, if the text of a theory that is used
by the current theory is changed, both theories will need to be typechecked in order
to guarantee consistency. This happens automatically as the need arises.

It is often necessary to make changes in theories on which long chains of other
theories depend, and frequent reparsing and retypechecking of such theory chains
can be very time-consuming. Therefore PVS provides commands which allow limited
additions and modifications of declarations without requiring that the associated
theories be retypechecked (Section 3.5.6, page 34).

There is some incremental typechecking that goes on at the theory level. When
a typecheck command is issued on a PVS file that has been modified, the file is first
parsed, and the resulting abstract syntax is compared to the previous abstract syn-
tax. If they are the same, the theory is not retypechecked. Otherwise it typechecks as
usual. Comments, added or deleted whitespace, and certain kinds of expression trans-
formations (such as changing a + 1 to +(a,1)) will thus not trigger retypechecking.

Browsing

Specifications can be quite large and involve many theories and files, and it can
become difficult to remember all the identifiers declared, their locations, definitions,
and uses. PVS provides facilities for displaying or visiting the declaration of an
identifier indicated by the cursor, for displaying all references to an identifier, and for
producing a cross-reference of all declared identifiers.

1 Introduction 5

Proving

PVS provides a powerful interactive proof checker with the ability to store and replay
proofs. PVS can be instructed to perform a single proof, or to rerun all the proofs in
a given theory, all the proofs of all the lemmas used in a proof, or all the proofs in an
entire specification. This manual describes how to enter the prover and some of the
commands for obtaining and editing proof information. Details on the proof checker
commands may be found in the prover guide.

Status and Proof Chain Analysis

The PVS system provides several commands for determining the status of specifica-
tion elements such as theories and formulas. You can, for example, inquire whether
a theory has been typechecked or whether a specific formula has been proved.

Proof chain analysis is an important form of status report. An individual theorem
is considered proved when it is the conclusion of a successful proof, but this is a local
notion; the result is a true theorem only if all the lemmas appearing in its proof have
themselves been proved or stated as axioms or definitions, and all TCCs have been
discharged. Proof chain analysis assures that all of the aforementioned obligations
are discharged. In addition to recording whether or not the proof chain is sound, the
output of this analysis also identifies the axiomatic foundation of the given theorem.

Generating Output

When a formal specification and verification is complete, it is usually desirable to
present it to others in as readable a form as possible. PVS provides commands for
generating LATEX versions of the specifications and proofs that can be included in
typeset documents. The output produced can be controlled by user-supplied tables
so that mathematical notation, including infix and mix-fix symbols and subscripts and
superscripts, can be created easily. This customized prettyprinting facility makes it
possible to reproduce the notation standard to some branch of mathematics or com-
puter science, thereby assisting peer review of the formal specification. The typeset
specifications are also of value during the development of a formal specification and
verification, as they allow direct comparison with existing, informal presentations and
analyses.

Display Commands

There are a few commands available for displaying graphical information using an
interface to the Tcl/Tk system. These include the display of proof trees, theory
hierarchies, and prover commands. These displays are interactive; for example the

6 1 Introduction

proof tree display is updated as a proof is developed, and clicking on a theory in the
theory hierarchy display pops up an Emacs buffer containing that theory specification.

Other Commands

There are other miscellaneous commands are not easily categorized, such as com-
mands for sending bug reports, interrupting PVS, getting help, and some commands
that help in editing PVS files.

Chapter 2

A Brief Tour of PVS

In this section we introduce the system by developing a theory and doing a simple
proof. This will introduce the most useful commands and provide a glimpse into the
normal usage of PVS. You will get the most out of this section if you are sitting in
front of a terminal with PVS installed.1. In the following we assume some familiarity
with UNIX and Emacs. If you are unfamiliar with Emacs you may want to look at
the introduction in Appendix A on page 75.

Start by going to a UNIX shell and creating a working directory (using mkdir).
Next, change (cd) to this working directory and start up PVS by typing pvs.2 This
command executes a shell script which runs Emacs, loads the necessary PVS Emacs
extensions, and starts the PVS lisp image as a subprocess. See Chapter 4 on page 59
for further details on the pvs command and its parameters. After a few moments, you
should see the welcome screen indicating the version of PVS being run, the current
directory, and instructions for getting help. You may be asked whether you want to
create a new context in the directory; answer yes unless it is the wrong directory
or you don’t have write permission there, in which case you should answer no and
provide an alternative directory when prompted. When you are ready to exit PVS,
type the key sequence C-x C-c.

In the following, PVS Emacs commands are given first in their long form, followed
by an alternative abbreviation and/or key binding in parentheses. For example, the
command for proving in PVS is given as M-x prove (M-x pr, C-c p). This command
can be entered by holding down the Meta key,3 then pressing x. Release the Meta key,
then type prove (or pr) and press the Return key. Alternatively, hold the Control

key down while typing a c, then let go and type a p. The Return key does not

1If you don’t have it installed, see the instructions at http://pvs.csl.sri.com
2You may need to include a pathname, depending on where and how PVS is installed.
3Most keyboards provide a Meta key (hence the M- prefix). On the SUN4, this key is labeled 3;

IBM style keyboards tend to use the Alt key. The Meta key is like the shift key—to use it simply
hold the Meta key down while typing another key. If your keyboard does not have a Meta key, you
can press the Escape key for the same effect. Note that the Escape key does not act as a shift, but
is pressed and released before the command, e.g. Escape followed by x followed by pr.

7

http://pvs.csl.sri.com

8 2.1 Creating the Specification

need to be pressed when giving the key binding form. In PVS all commands and
abbreviations are invoked by first typing a M-x; everything else is a key-binding. In
later sections we will refer to commands by their long form name, without the M-x

prefix. Some of the commands prompt for an argument and specify a default; if the
default is the desired one, you can simply type the Return key.

To begin, type M-x pvs-help (C-c h) for an overview of the commands available
in PVS, and use C-v and M-v to browse the help file and get a feel for the commands
provided by PVS. Type q to exit the help buffer. If you are running Emacs under
X windows, you should see a menu bar across the top of the window, including a
PVS entry. If you move the mouse cursor over this entry, and press the left mouse
button, a menu will be displayed that also shows all the PVS commands (including
the help commands). This menu may also be used to invoke the commands, though
most users prefer to learn the keyboard commands as this is generally faster. When
discussing the PVS commands we will not mention the PVS menu, but you should
be aware that all of the PVS Emacs commands are available as menu entries.

2.1 Creating the Specification

Now let’s develop a small specification. Figure 2.1 shows a specification for summation
of the first n natural numbers, as it appears in Emacs. The sum specification is in the
top window, and a proof is in progress in the bottom. The mode line indicates that
PVS is ready for a command.

This simple theory has no parameters and contains three declarations. The first
declares n to be a variable of type nat, the built-in type of natural numbers. The next
declaration is a recursive definition of the function sum(n) whose value is the sum of
the first n natural numbers. Associated with this definition is a measure function,
following the MEASURE keyword, which is explained below. The final declaration is a
formula which gives the closed form of the sum.

The sum theory may be introduced to the system in a number of ways, all of which
create a file with a .pvs extension.4 The most common ways are:

1. Simply use M-x find-file (C-x C-f), or M-x find-pvs-file (M-x ff, C-c

C-f), provide sum.pvs for the file name and type in the specification.5

2. Use the M-x new-pvs-file command (M-x nf) to create a new PVS file, and
type sum when prompted for a file name. Then simply type the specification
into the buffer (a basic template will be provided).

3. Since the file is included in the distribution in the Examples subdirectory of
the main PVS directory, it can be imported with the M-x import-pvs-file

4The file does not have to be named sum.pvs, it simply needs the .pvs extension.
5If there is already a file called sum.pvs in the current context, this will load that file.

2.1 Creating the Specification 9

Figure 2.1: The sum Specification in Emacs

10 2.2 Parsing and Typechecking

command (M-x imf). Use the M-x whereis-pvs command to find the path of
the main PVS directory.

4. Finally, any external means of introducing a file with extension .pvs into the
current directory will make it available to the system; for example, going to a
UNIX window and using vi to type it in, or cp to copy it from the Examples

subdirectory.

2.2 Parsing and Typechecking

Once the sum specification is displayed in the current buffer, it can be parsed with
the M-x parse (M-x pa) command, which checks the syntactic consistency of the
specification and creates the internal abstract representation for the theory described
by the specification. If the system finds an error during parsing, an error window will
pop up with an error message, and the cursor will be placed in the vicinity of the
error. If you didn’t get an error, introduce one (say by misspelling the VAR keyword),
then move the cursor somewhere else and parse the file again—note that the buffer
is automatically saved. Fix the error and parse once more. In practice, the parse
command is rarely used, as the system automatically parses the specification when it
needs to.

The next step is to typecheck the file by typing M-x typecheck (M-x tc, C-c

C-t), which checks for semantic errors, such as undeclared names and ambiguous
types. After sum has been typechecked, a message is displayed in the minibuffer
indicating that two TCCs were generated. These TCCs represent proof obligations
that must be discharged before the sum theory can be considered typechecked. The
proofs of the TCCs may be postponed indefinitely, though in general it is a good idea
to view TCCs to convince yourself that they are provable before moving on to other
proofs in your specification. TCCs can be viewed using the M-x show-tccs (M-x
tccs, C-c C-q s) command, the results of which are shown in Figure 2.2 below.

% Subtype TCC generated (at line 7, column 33) for n - 1
% untried

sum_TCC1: OBLIGATION FORALL (n): NOT n = 0 IMPLIES n - 1 >= 0;

% Termination TCC generated (at line 7, column 29) for sum
% untried

sum_TCC2: OBLIGATION FORALL (n): NOT n = 0 IMPLIES n - 1 < n;

Figure 2.2: TCCs for Theory sum

The first TCC is due to the fact that sum takes an argument of type nat, but the
type of the argument in the recursive call to sum is integer, since nat is not closed
under subtraction. Note that the TCC includes the condition NOT n = 0, which holds
in the branch of the IF-THEN-ELSE in which the expression n - 1 occurs.

2.3 Proving 11

The second TCC is needed to ensure that the function sum is total, i.e., terminates.
PVS does not directly support partial functions, although its powerful subtyping
mechanism allows PVS to express many operations that are traditionally regarded as
partial. The measure function is used to show that recursive definitions are total by
requiring the measure to decrease with each recursive call.

These TCCs are trivial, and in fact can be discharged automatically by using the
M-x typecheck-prove (M-x tcp) command, which attempts to prove all TCCs that
have been generated. (Try it.)

2.3 Proving

We are now ready to try to prove the main theorem. Place the cursor on the line
containing the closed form theorem, and type M-x prove (M-x pr or C-c p). A new
buffer will pop up, the formula will be displayed, and the cursor will appear at the
Rule? prompt, indicating that the prover is ready to accept input. The commands
needed to prove this theorem constitute only a very small subset of the commands
available to the prover. In fact, for this proof all that is actually needed is the single
command (induct-and-simplify "n"), which is a more powerful strategy. For more
information on these and other prover commands consult the prover guide [7].

First, notice the display, which consists of a single formula (labeled {1}) under a
dashed line. This is a sequent ; formulas above the dashed lines are called antecedents
and those below are called consequents . The interpretation of a sequent is that the
conjunction of the antecedents implies the disjunction of the consequents. Either or
both of the antecedents and consequents may be empty. An empty antecedent is
equivalent to true, and an empty consequent is equivalent to false, so if both are
empty the sequent is false. Every proof in PVS starts with a single consequent.

The basic objective of the proof is to generate a proof tree of sequents in which all
of the leaves are trivially true. The nodes of the proof tree are sequents, and while
in the prover you will always be looking at an unproved leaf of the tree, called the
current sequent. The current branch of a proof is the branch leading back to the root
from the current sequent. When a given branch is complete (i.e., ends in a proved
leaf), the prover automatically moves on to the next unproved branch, or, if there are
no more unproven branches, notifies you that the proof is complete.

Now on to the proof. We will prove this formula by induction on n. To do this,
type (induct "n").6 This is not an Emacs command, rather it is typed directly at
the prompt, including the parentheses. As indicated, two subgoals are generated;
the one displayed is the base case, where n is 0. To see the inductive step, type
(postpone), which postpones the current subgoal and moves on to the next unproved

6PVS expressions are case-sensitive, and must be put in double quotes when they appear as
arguments in prover commands.

12 2.3 Proving

one. Type (postpone) a second time to cycle back to the original subgoal (labeled
closed form.1).

Three extremely useful Emacs key bindings to know here are M-p, M-n, and M-s.
M-p gets the last input typed to the prover; further uses of M-p cycle back in the
input history. M-n works in the opposite direction. To use M-s, type the beginning
of a command that was previously input, and type M-s. This will get the previous
input that matches the partial input; further uses of M-s will find earlier matches.
Try these key bindings out; they are easier to use than to explain. Thus to type the
second postpone command above, you can either type M-p or type (po followed by
M-s. Section 3.5.7 on page 36 describes further useful shortcut commands for the
prover.

To prove the base case, we need to expand the definition of sum, which is done by
typing (expand "sum"). After expanding the definition of sum, we issue the (assert)
command, which applies the decision procedures of the prover to simplify the conse-
quent to TRUE, completing the proof of this subgoal. The prover then automatically
moves on to the next subgoal, which is the inductive step.

The first thing to do here is to eliminate the FORALL quantifier. This can most
easily be done with the skolem! command7, which provides new constants for the
bound variables. To invoke this command type (skolem!) at the prompt. The
resulting formula may be simplified by typing (flatten), which will break up the
consequent into a new antecedent and consequent. The obvious thing to do now is to
expand the definition of sum in the consequent. This again is done with the expand

command, but this time we want to control where it is expanded, as expanding it in
the antecedent will not help. So we type (expand "sum" +), indicating that we want
to expand sum in the consequent.8

The final step is to invoke the PVS decision procedures, which can automatically
decide certain fragments of arithmetic. This is done by typing (assert). The assert
command actually does a lot more than decide arithmetical formulas, performing
three basic tasks:

• It tries to prove the subgoal using the decision procedures.

• It stores the subgoal information in an underlying database, allowing automatic
use to be made of it later.

• It simplifies the subgoal by rewriting (if any auto-rewrites have been given) and
by using the underlying decision procedures.

These arithmetic and equality procedures are the main workhorses of most PVS
proofs.

7The exclamation point differentiates this command from the skolem command, where you pro-
vide the new constant names.

8We could also have specified the exact formula number (here 1), but including formula numbers
in a proof tends to make it less robust in the face of changes. There is more discussion of this in the
prover guide [7].

2.3 Proving 13

The proof is now complete, and is saved in the sum.prf file. The buffer from
which the prove command was issued is then redisplayed if necessary, and the cursor
is placed on the formula that was just proved. The entire proof transcript is shown
below. Yours may be slightly different, depending on your window size and the
timings involved.

closed_form :

|-------
{1} FORALL (n: nat): sum(n) = n * (n + 1) / 2

Rule? (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
closed_form.1 :

|-------
{1} sum(0) = 0 * (0 + 1) / 2

Rule? (postpone)
Postponing closed_form.1.

closed_form.2 :

|-------
{1} FORALL (j: nat):

sum(j) = j * (j + 1) / 2 IMPLIES sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

Rule? (postpone)
Postponing closed_form.2.

closed_form.1 :

|-------
{1} sum(0) = 0 * (0 + 1) / 2

Rule? (expand "sum")
Expanding the definition of sum,
this simplifies to:
closed_form.1 :

|-------
{1} 0 = 0 / 2

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.1.

closed_form.2 :

14 2.3 Proving

|-------
{1} FORALL (j: nat):

sum(j) = j * (j + 1) / 2 IMPLIES sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

Rule? (skolem!)
Skolemizing,
this simplifies to:
closed_form.2 :

|-------
{1} sum(j!1) = j!1 * (j!1 + 1) / 2 IMPLIES

sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
closed_form.2 :

{-1} sum(j!1) = j!1 * (j!1 + 1) / 2
|-------

{1} sum(j!1 + 1) = (j!1 + 1) * (j!1 + 1 + 1) / 2

Rule? (expand "sum" +)
Expanding the definition of sum,
this simplifies to:
closed_form.2 :

[-1] sum(j!1) = j!1 * (j!1 + 1) / 2
|-------

{1} 1 + sum(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of closed_form.2.

Q.E.D.

Run time = 0.81 secs.
Real time = 223.01 secs.

A brief version of the just completed proof can be generated by the command
command M-x show-last-proof.

2.4 Status 15

2.4 Status

Now type M-x status-proof-theory (M-x spt) and you will see a buffer that dis-
plays the three formulas in sum, along with an indication of their proof status. This
command is useful to see which formulas and TCCs still require proofs. Another use-
ful command is M-x status-proofchain (M-x spc), which analyzes a given proof to
determine its dependencies. To use this, go to the sum.pvs buffer, place the cursor on
the closed form theorem, and enter the command. A buffer will pop up indicating
that the proof is complete, and that it depends on the TCCs and the nat induction

axiom, as well as some definitions and TCCs provided by the prelude.

2.5 Generating LATEX

In order to try out this section, you must have access to LATEX and a TEX previewer
such as xdvi.

Type M-x latex-theory-view (M-x ltv). You will be prompted for the theory
name to which you should type sum, or just Return if sum is the default. You will
then be prompted for the TEX previewer name. Either the previewer must be in
your path, or the entire pathname must be given. This information will only be
prompted for once per session, after which PVS assumes that you want to use the
same previewer. You can set the previewer automatically, by adding the following
line to your ~/.pvsemacs file.

(setq pvs-latex-viewer "previewer ")

sum: theory

begin

n: var nat

sum(n): recursive nat = (if n = 0 then 0 else n+ sum(n− 1) endif)
measure (λ (n: nat): n)

closed form: theorem sum(n) = n× (n+ 1)/2
end sum

Figure 2.3: Theory sum with default translations

After a few moments the previewer will pop up displaying the sum theory, as shown
in Figure 2.3. Note that * has been translated as × and LAMBDA as λ. These and other
translations are built into PVS; you may also specify translations for keywords and
identifiers by providing a substitution file named pvs-tex.sub, that contains com-
mands to customize the LATEX output. For example, if the substitution file contains
the two lines

16 2.5 Generating LATEX

sum: Theory
begin

n: var nat

∑n
i=0 i: recursive nat = (if n = 0 then 0 else n+

∑n−1
i=0 i endif)

measure (λ (n: nat): n)

closed form: theorem
∑n
i=0 i = n× (n+ 1)/2

end sum

Figure 2.4: Theory sum with additional translations

THEORY key 7 {\large\textbf{\textrm{Theory}}}
sum 1 2 {\sum_{i = 0}^{#1} i}

the output will look like Figure 2.4. See Section 3.9.4 on page 46 for more details.

Chapter 3

PVS Commands

This chapter contains descriptions for all PVS commands; the commands are grouped
according to function. A summary of the information in this chapter is also provided
in the buffer displayed by the M-x pvs-help command. The information in this
chapter is best absorbed after reading and experimenting with the brief tour provided
in Chapter 2.

Each of the following sections begins with a table summarizing the commands dis-
cussed in that section; each table entry gives the full name of the command, available
aliases and/or key bindings, a brief description, and the effect of providing command
arguments. Commands are invoked by typing M-x followed by the command name
or its abbreviation, or by using a (less mnemonic) key sequence. For example, the
typecheck command can be invoked by typing M-x typecheck or one of the alternate
forms M-x tc or C-c C-t. The behavior of many of the commands can be modified
by providing an argument, and many of the commands work on regions.1 For ex-
ample, preceding the typecheck command with a C-u or M-1 forces the file to be
reparsed and typechecked, even if it has already been typechecked. Each command
that takes an argument has a second line prefixed by Arg: that describes the effect
of the argument.

Many PVS commands are appropriate at either the file or theory level; yielding
two different commands. For example, the command for creating a new PVS file is
new-pvs-file, while the command new-theory creates a template for a new the-
ory within the current PVS file. In general, a command foo that applies to both
files and theories will have a version named M-x foo -pvs-file and one named M-x

foo -theory.

1See Section 4.9 of [8] for details on providing arguments to commands, and Section 9 for creating
and manipulating regions.

17

18 3.2 Getting Help

3.1 Exiting PVS

Command Aliases Function
exit-pvs C-x C-c Terminate PVS session
suspend-pvs C-x C-z Suspend PVS

The exit-pvs command first saves the context information (see the save-context
command) and then exits PVS. If there is a proof in progress, the system will not
exit, but will instead output a message asking you to exit the prover, thus giving you
the opportunity to save the proof before exiting.

The suspend-pvs command suspends the Emacs process, except under X-
windows, where the command has no effect. The system first asks whether the context
should be saved; if you answer yes the save-context command is invoked prior to
suspending PVS. This may take a while, as the save-context may have to save any
number of files, depending on what has changed in the context. The suspended job
can be restarted from the UNIX shell in which it was suspended by first determining
the job number (using the UNIX command “jobs”) and then typing “fg %n”, where
n is the job number.2

3.2 Getting Help

Command Aliases Function
help-pvs, pvs-help C-c h Display the PVS help buffer
help-pvs-bnf, pvs-help-bnf C-c C-h b Display the pvs grammar
help-pvs-language, C-c C-h l Display help for the PVS language
pvs-help-language

help-pvs-prover, C-c C-h p Display help for the prover commands
pvs-help-prover

help-pvs-prover-command, C-c C-h c Display help for prover command
pvs-help-prover-command

help-pvs-prover-strategy, C-c C-h s Displays the specified prover strategy
pvs-help-prover-strategy

x-prover-commands Displays the prover commands in a
Tcl/Tk window

help-pvs-prover-emacs, C-c C-h e Display help for prover emacs commands
pvs-help-prover-emacs

pvs-release-notes, C-c C-h r Display PVS release notes

The help-pvs command displays a summary of PVS commands in the PVS Help

buffer. Help may be obtained for an individual command by typing C-h f followed
by the command or its abbreviation, or by typing C-h k followed by the key sequence

2This assumes you are running the csh or tcsh shell. To restart under a shell lacking job control,
use the UNIX command ps to determine the process id (pid) and then do kill -CONT pid.

3.3 Editing PVS Files 19

that invokes the command. These are built in to Emacs, and may be used to get help
for any Emacs command or key sequence, not just PVS commands.

The help-pvs-bnf command provides the PVS grammar in BNF form, and the
help-pvs-language command displays a summary of the PVS language with exam-
ples in the Language Help buffer.

The help-pvs-prover command displays the documentation string for all of
the prover commands in the Prover Help buffer. The help-pvs-prover-command

displays the documentation string for the specified command, and the
help-pvs-prover-strategy command provides the arguments, definition, format
string, and documentation string for the specified command. The latter is useful for
finding out exactly what a strategy does, or for defining your own strategies based on
existing ones. If you are running under the X window system, x-prover-commands
provides an easy interface to get help for individual prover commands.

The help-pvs-prover-emacs command displays a summary of the commands
that provide a convenient Emacs interface to the PVS prover. This is discussed in
more detail in Section 3.5.7, page 36. The help text appears in the Prover Emacs

Help buffer.
The pvs-release-notes command displays the release notes for the running ver-

sion of PVS. The text appears in the PVS Release Notes buffer.

3.3 Editing PVS Files

Command Aliases Function
forward-theory M-} Move forward to beginning of next theory
backward-theory M-{ Move backward to beginning of previous theory
find-unbalanced-pvs C-c] Find unbalanced delimiters
comment-region C-c ; Comment out all lines in the current region

Arg: Uncomment all lines in the current region

PVS specification files are edited using the standard Emacs editing commands.
Appendix A, page 75 gives a brief introduction to the most useful Emacs commands
for editing PVS files.

The forward-theory and backward-theory commands are used to move to dif-
ferent theories within a single PVS file. The cursor is moved to the beginning of a
theory; if there are no preceding or following theories to move to, the message “No
more theories” or “No earlier theories” is displayed and the cursor remains un-
changed.

The find-unbalanced-pvs command checks whether there are any unbalanced
parentheses (()), square brackets ([]), curly braces ({ }), or BEGIN-END pairs. If
none are found, the message “All delimiters balance” is displayed. Otherwise the
cursor is left at the token for which there is no match and a corresponding message
is displayed.

20 3.4 Parsing and Typechecking

The comment-region command inserts the comment character (%) at the begin-
ning of every line in the specified region. To uncomment a region, simply provide
an argument to the command, and all commented lines within the region will be
uncommented.

3.4 Parsing and Typechecking

3.4.1 Parsing

Command Aliases Function
parse pa Parse file in current buffer

Arg: Forces the file to be reparsed

Parsing a PVS specification accomplishes two things: first, it checks that the
specification is syntactically correct, i.e., satisfies the PVS grammar, and second, it
builds the internal abstract grammar data structures. The parse command is not
normally used, as typechecking will automatically parse the file if required. Note that
only files (with extension .pvs) may be parsed. When a file is parsed, it becomes a
part of the context if it wasn’t already, and any proofs that have been saved for the
file are reinstated. If the file being parsed has a valid .bin file, then this file is loaded
instead (this will result in the file being typechecked as well as parsed).

Parsing is invoked by moving the cursor to a buffer containing a file in the current
context, and issuing the parse command. While parsing the file, the minibuffer
displays the message “Parsing foo .” If there is no error, the message “foo parsed

in # seconds” is displayed. If the file has not changed since the last time it was
parsed, the message “foo is already parsed” is displayed. To force reparsing,
provide an argument to the parse command. Note that the argument is usually not
needed, as changes to the file are automatically detected by the system and the file
is reparsed in that case.

When an error is detected, the file is displayed with the cursor at the location
where the error was detected, which is frequently after the actual source of the error.
In addition, the PVS Error buffer is displayed with an explanatory error message.
You may need to consult the language manual for details on the grammar.

Certain language features may result in the parser producing theory messages.
See the show-theory-messages command (page 22) for details.

3.4 Parsing and Typechecking 21

3.4.2 Typechecking

Command Aliases Function
typecheck tc, C-c C-t Typecheck theories in current buffer

Arg: Force reparsing and retypechecking
typecheck-importchain tci Typecheck importchain of theories

Arg: Force reparsing and retypechecking
typecheck-prove tcp Typecheck theories, proving TCCs

Arg: Force reparsing and retypechecking
typecheck-prove-importchain tcpi Typecheck importchain of theories,

proving TCCs
Arg: Force reparsing and retypechecking

Typechecking a PVS specification checks semantic constraints, determines the
types of expressions, and resolves names (see the language manual [3]). Typecheck-
ing is invoked much like parsing, and automatically parses the file if necessary. Er-
rors are indicated in the same manner as for parsing, although the cursor is usually
more accurately positioned at the error. As in parsing, an argument to the com-
mand forces reparsing and retypechecking. Without the argument, typecheck and
typecheck-importchain are the same. With the argument, typecheck only reparses
and retypechecks the current file, while typecheck-importchain forces reparsing and
retypechecking of the entire import chain of the theories of the current file.

Forcing a file to be retypechecked is done primarily for development and debug-
ging, as is the case for reparsing. If you have typechecked a set of PVS files, made
some changes and found an error on retypechecking that shouldn’t have occurred,
try forcing a typecheck of the file where the error occurred. If that doesn’t help, try
forcing with typecheck-importchain. The error should disappear after that, unless
it is a true typecheck error. If it is not a simple typecheck error, send a bug report
to pvs-bugs@csl.sri.com.

The typechecker will automatically attempt to typecheck any theories appearing in
IMPORTING clauses. If the theories appear in the current context, then the associated
file is typechecked, otherwise PVS tries to find a file with the same name as the theory.
For example, in typechecking

IMPORTING foo[int]

the current context (reflected in the context file .pvscontext) is searched for a file
known to contain theory foo. If no such file is found, then the file foo.pvs is sought.
If that also cannot be found, the system complains and the desired file must be
manually located (or created) and typechecked.

The typecheck-prove command typechecks the file, and then attempts to prove
the generated TCCs. If the file is already typechecked, but the TCC proofs have not
yet been attempted, then they are attempted in the order they were generated. The
TCC proof attempts are made with built-in prover strategies (selected according to
the type of TCC generated). These strategies basically expand all definitions in the

22 3.4 Parsing and Typechecking

TCC, and repeatedly skolemize, perform heuristic instantiation, lift IFs, and invoke
the decision procedures.3 As explained in the prover guide, you may redefine the tcc

strategies; usually to extend their capabilities.
The typecheck-prove-importchain command typechecks the file, and attempts

to prove the TCCs of all the theories on the import chain that have not already been
attempted. Providing an argument forces the retypechecking of the import chain.

The typecheck-prove commands can take some time, especially if there are a lot
of TCCs. This can be controlled in a number of ways:

Use these commands sparingly. Our experience is that TCCs should be analyzed
whenever a new specification is created, significantly modified, or is nearing
completion. At these times it pays to use the typecheck-prove command and
to look at the TCCs that weren’t subsequently proved, and check that they at
least seem provable. After minor changes, we find it best to use just typecheck
and defer consideration of the TCCs until later.

Define your own TCC strategy. The prover guide describes techniques for defin-
ing your own strategies, and you may change existing ones, such as the tcc

strategy to be more efficient for your particular specifications. Changing the
tcc strategy should probably be done in the pvs-strategies file in the current
context, especially if it is tailored to the specifications in that context.

Use judgements to cut down on the number of TCCs. The language manual
describes how to do this.

Use NONEMPTY TYPE or CONTAINING in type declarations This is also described
in the language manual.

When typechecking is completed, a message is displayed, indicating the total
number of TCCs generated along with a breakdown of the number proved, subsumed4,
and unproved.

3.4.3 Typechecking Information

Command Aliases Function
show-theory-warnings Show typechecker warnings for the given theory
show-pvs-file-warnings Show typechecker warnings for the given file
show-theory-messages Show typechecker messages for the given theory
show-pvs-file-messages Show typechecker messagess for the given file

3The TCC strategies are variants of a powerful strategy called (grind), which is useful for more
than just TCCs.

4A TCC is subsumed if there is an earlier TCC which implies it. PVS uses a simple syntactic
test, so not all possible subsumptions will be determined.

3.5 Proving 23

In the process of typechecking a specification, conversions5 may be applied to
make an expression type correct. This may not be what the user intended, so in
addition to reporting the number of TCCs generated during typechecking the system
will also report the generation of any messages or warnings.6

If there is only one possible conversion that could be applied to make an expres-
sion type correct, a message is generated. If there were multiple possibilities, the
typechecker will choose one and generate a warning.

3.5 Proving

The prover is described in full in the prover guide [7], here we simply describe the
commands used to invoke the prover and to rerun proofs noninteractively.

The prover may be applied to a single formula, all formulas in a theory, all formulas
in the import chain of a theory, all formulas in a PVS file, or all formulas in the proof
chain of a given formula. Only the prove, x-prove, step-proof and x-step-proof

commands lead to prover interaction; the other commands simply rerun proof scripts
that have been previously generated.

PVS keeps track of the status of formulas within and across sessions. The sta-
tus may be one of four values; “untried” means that no proof has been attempted,
“proved” means that the proof has been completed, “unchecked” means that a proof
has been completed, but that the specification has been modified since the proof
attempt, and “unfinished” means that a proof has been attempted, but not yet com-
pleted. Formulas labelled as “proved” will be “complete” or “incomplete”. The
status is only “complete” when all formulas (including TCCs) upon which the proof
is dependent have been completed.

Modifying a specification causes the proof status of all proved formulas to revert
to “unchecked,” although the proof scripts are retained.7

5See the Language Guide[3] for details of conversions.
6Whilst in the prover, a message is generated directly to indicate any conversions applied to the

sequent.
7PVS currently tracks the consequences of changes rather coarsely: any change in a file reverts

all the proofs in that file, and all those in theories that depend on that file (and so on, transitively)
to the “unchecked” state.

24 3.5 Proving

3.5.1 Proving a Single Formula

Command Aliases Function
prove pr, C-c p Prove formula pointed to by cursor
x-prove xpr, C-c C-p x Start proof along with X display
step-proof prs, C-c C-p s Set up proof stepper for current formula
x-step-proof xsp, C-c C-p X Combines x-prove and step-proof
redo-proof prr C-c C-p r Redo the proof of formula at cursor

Arg: don’t display the proof
prove-next-unproved-formula

prnext, C-c C-p n Start proof on next unproved formula

To invoke the prover on a single formula, move the cursor to any part of the desired
formula and type the prove command. The formula may be in a PVS file, a buffer
generated by the prettyprint-expanded command (with extension .ppe), a buffer
generated by the show-tccs command (with extension .tccs), or a prelude buffer
produced by one of the view-prelude commands.8 If the formula has already been
proved, then you will be asked whether the proof should be retried; a no answer ends
the prove command. Otherwise, if the formula has an associated proof script, you
will be asked whether to rerun the proof or start over. In either of these two cases, the
proof is displayed in the *pvs* buffer. If the proof script terminates before completing
the proof or if no script was requested, the prover will prompt for a command, which
should be typed directly into the *pvs* buffer at the Rule? prompt.9 At this point
you are interacting with the prover, and certain commands will be unavailable until
the prover is exited.10

The prover exits automatically when a proof is successfully completed. If at
any time you want to exit the prover, go to the bottom of the *pvs* buffer11 and
type (quit) to the Rule? prompt. If there is no such prompt, type C-c C-c and
(restore) to get to the prompt. Once the prover is exited, control is returned to the
buffer from which the prover was invoked, with the cursor positioned at the beginning
of the formula being proved. Do not kill the *pvs* buffer, as this will also kill the
associated PVS process.

The x-prove command is exactly like the prove command, except that it also
pops up a window in which the proof tree is represented graphically. See section 3.10,

8Of course, the prelude formulas have already been proved; this facility allows you to explore the
proofs.

9The system tries to keep as much of the proof visible as possible by redisplaying the screen
so that the Rule? prompt is at the bottom of the window. This feature is not always desir-
able (e.g., over a slow modem connection), and may be turned off by setting the Emacs variable
pvs-maximize-proof-display to nil.

10 Specifically, the commands parse, typecheck, prove, change-context, exit-pvs, and all of
the prove commands of this section are unavailable while the prover is active.

11While in the prover you may freely move around in the *pvs* buffer or move to any other buffer
to examine specifications or perform ordinary editing functions.

3.5 Proving 25

page 48 for more details. If you are not running under X windows, then a warning
message will be displayed and the command will be treated as a prove command.

The step-proof command is used to initiate the proof stepper, and is invoked in
the same way as the prove command. Two buffers are displayed, one showing the
sequent (the *pvs* buffer) and the other showing the proof script associated with the
formula, if any (the Proof buffer). Section 3.5.10, page 38 explains how to use the
proof stepper.

The x-step-proof command combines the x-prove and step-proof commands.
The prove-next-unproved-formula command invokes the prover on the next

unproved formula at or beyond the current cursor position. If the formula already
has a proof, you will be asked whether to go ahead and run it or to start anew. Note
that starting a new proof will not delete the old proof unless you allow the prover to
overwrite it at the end of the proof session.

The redo-proof command is invoked exactly like the prove command, but simply
reruns the proof with no questions asked. An error is signaled if the indicated formula
has no associated proof. In addition, if an argument is provided, the proof will not
be displayed interactively—instead the proof is processed in the background, and the
status of the proof is provided in the minibuffer when the attempt is completed.

26 3.5 Proving

3.5.2 Proving Sets of Formulas

Command Aliases Function
prove-theory prt, C-c C-p t Rerun unproved proofs in theory

Arg: include those already proved
prove-theories Rerun proofs in specified theories

Arg: include those already proved
prove-pvs-file Rerun unproved proofs in current file

prf, C-c C-p f Arg: include those already proved
prove-importchain Rerun prove-theory on IMPORT chain

pri, C-c C-p i Arg: include those already proved
prove-importchain-subtree Rerun prove-theory on specified subtree

pris of IMPORT chain
Arg: include those already proved

prove-proofchain Rerun proofs on formulas in proofchain
prp, C-c C-p p Arg: include those already proved

prove-formulas-theory Try unproved formulas with specified strategy
prft Arg: attempt proved formulas as well

prove-formulas-pvs-file Try unproved formulas with specified strategy
prff, C-c C-p U Arg: attempt proved formulas as well

prove-formulas-importchain Try unproved formulas with specified strategy
prfi Arg: attempt proved formulas as well

prove-formulas-importchain-subtree Try unproved formulas with specified strategy
prfs Arg: attempt proved formulas as well

prove-tccs-theory Try unproved TCCs with specified strategy
prft Arg: attempt proved TCCs as well

prove-tccs-pvs-file Try unproved TCCs with specified strategy
prff, C-c C-p U Arg: attempt proved TCCs as well

prove-tccs-importchain Try unproved TCCs with specified strategy
prfi Arg: attempt proved TCCs as well

prove-tccs-importchain-subtree Try unproved TCCs with specified strategy
prfs Arg: attempt proved TCCs as well

prove-untried-theory Try untried proofs with specified strategy
prut, C-c C-p u Arg: attempt TCCs as well

prove-untried-pvs-file Try untried proofs with specified strategy
pruf, C-c C-p U Arg: attempt TCCs as well

prove-untried-importchain Try untried proofs with specified strategy
prui Arg: attempt TCCs as well

prove-untried-importchain-subtree Try untried proofs with specified strategy
prus Arg: attempt TCCs as well

Proof scripts can be rerun using the prove-theory, prove-pvs-file,
prove-importchain, prove-importchain-subtree and prove-proofchain

commands, which simply rerun the proof scripts, if any, for all of the formulas of the
theory, its PVS file, import chain, import chain subtree, or proof chain, respectively.

3.5 Proving 27

The import chain of a theory is simply the transitive closure of the IMPORTINGs
including those implicit in a theory declaration. The prove-importchain-subtree

command takes additional theory name arguments and excludes these theories and
their subtree from the importchain. The proof chain of a given formula is the
transitive closure of the formulas used in the proof of that formula. These commands
skip formulas that have no proof scripts, and normally skip formulas which already
have status “proved;” providing an argument to the command forces PVS to reprove
all formulas that have proof scripts. When any of these commands finish processing,
the corresponding proof status command is automatically invoked to display the
results (see Section 3.15).

The prove-theories command prompts for theory names (with completion) one
at a time, until an empty theory name is provided, and then runs prove-theory on
each of these.

The commands prove-formulas-theory, prove-formulas-pvs-file,
prove-formulas-importchain, prove-formulas-importchain-subtree

prove-tccs-theory, prove-tccs-pvs-file, prove-tccs-importchain,
and prove-tccs-importchain-subtree prove-untried-theory,
prove-untried-pvs-file, prove-untried-importchain, and
prove-untried-importchain-subtree are all similar, but allow a given strat-
egy to be applied to all applicable formulas.

For the prove-formulas commands, all unproved formulas that are not TCCs
or axioms or postulates are attempted with the provided strategy, which defaults to
(grind). The prove-tccs commands are similar, but only attempt unproved TCCs,
and the default strategy is (tcc). With an argument, the already proved formulas are
also attempted. If a given proof attempt succeeds, then it replaces any existing proof.
If it fails and the given formula already has a proof, then the original proof is kept.
Otherwise the new proof is associated with the formula. Thus after these commands
all attempted formulas will have proofs associated with them. The strategy is any
acceptable single prover command, as in the following example.

(then (grind :if-match nil) (inst?) (grind))

The prove-untried commands are similar, but they only affect formulas that
have no associated proof, and providing an argument attempts TCCs that have no
proofs as well. To apply a strategy to just the untried TCCs, redefine the tcc in your
pvs-strategies Note that after any of these commands, all attempted formulas will
have associated proofs, so issuing the same command with a different strategy will
have no effect.

28 3.5 Proving

3.5.3 Selecting Decision Procedures

Command Function
new-decision-procedures

Set the default to new decision procedures
old-decision-procedures

Set the default to old decision procedures
prove-theory-using-default-dp

Rerun unproved proofs in specified theory using default decision procedures
Arg: include those already proved

prove-theories-using-default-dp
Rerun proofs in specified theories using default decision procedures
Arg: include those already proved

prove-pvs-file-using-default-dp
Rerun unproved proofs in current file using default decision procedures
Arg: include those already proved

prove-importchain-using-default-dp
Rerun prove-theory on IMPORT chain using default decision procedures
Arg: include those already proved

prove-importchain-subtree-using-default-dp
Rerun prove-theory on subtree of IMPORT chain using default dec. procedures
Arg: include those already proved

prove-proofchain-using-default-dp
Rerun proofs on all formulas in proof chain using default decision procedures
Arg: include those already proved

These commands have no effect if PVS was invoked with the -force-decision-
procedures switch; see Section 4.1

See the prover manual for a discussion of the new and old decision procedures;
here we simply describe the commands for controlling their use.

The new-decision-procedures and old-decision-procedures commands set
the default decision procedures to be used in subsequent proofs. When a single
formula is attempted that doesn’t have a proof, the default decision procedure is
automatically used. If it already has a proof that was developed using the other
decision procedure, you will be prompted whether to use the default or stay with
the original decision procedure. When a proof is saved, the decision procedure used
during the proof is saved as well. For the prover commands such as prove-theory,
the proofs are each attempted with the decision procedure they were developed with.
The remaining commands allow existing proofs to be rerun using the default decision
procedures, and otherwise behave exactly as the similarly named commands defined
in the previous section.

3.5 Proving 29

3.5.4 Editing and Viewing Proofs

Command Aliases Function
edit-proof show-proof Edit the proof of the indicated formula
install-proof C-c C-i Install proof on the indicated formula
install-and-step-proof C-c s Install proof on a formula and step
install-and-x-step-proof C-c x Install proof on formula, display, and step
revert-proof Revert to previous proof of formula
remove-proof Remove proof associated with a formula
show-proof-file Edit the proofs of the indicated PVS file
show-orphaned-proofs Edit the orphaned proofs
show-proofs-theory Show all proofs of a theory
show-proofs-pvs-file Show all the proofs of a PVS file
show-proofs-importchain Show all proofs of importchain of a theory
install-pvs-proof-file Installs proof file for typechecked theory
load-pvs-strategies Loads a pvs-strategies file
set-print-depth Sets print depth for printing sequents
set-print-length Sets print length for printing sequents
set-print-lines Sets number of lines to print

for each sequent formula
set-rewrite-depth Sets the print depth for rewrite messages
set-rewrite-length Sets the print length for rewrite messages
dump-sequents Save unproved sequents to a file
toggle-proof-prettyprinting Toggles the prettyprinting of proof files

Every formula of a specification for which a proof has been attempted has an asso-
ciated proof script that reflects the commands used during the proof attempt. Proof
scripts may be edited using the edit-proof command. This command is invoked on
the formula declaration at the cursor; the formula may occur in a specification buffer
(with extension .pvs), a prettyprint-expanded buffer (with extension .ppe), a show-
tccs buffer (with extension .tccs), or a buffer generated by one of the view-prelude

commands. When the edit-proof command is invoked, it creates a buffer with the
name Proof containing the relevant proof script,12 which may then be edited using
the standard Emacs editing commands. Editing proof scripts is a convenient way to
handle modifications made to a specification, and allows the same proof script to be
revised and used for many similar formulas. The Proof buffer normally persists until
the next time the edit-proof command is invoked, allowing the same proof script
to be attached to different formulas using install-proof.

A proof script records a tree of prover commands that will generate a proof of
the given formula. Although the proof tree does not record verbatim the commands
originally typed to the prover, the proof script should be easy to understand. For
example, the Proof buffer of the formula closed form in the sum example would
contain

12If the formula has no proof script, an empty Proof buffer is created.

30 3.5 Proving

;;; Proof for formula sum.closed_form
;;; developed with old decision procedures
(""
(INDUCT "n")
(("1" (EXPAND "sum") (ASSERT))
("2" (SKOLEM!) (FLATTEN) (EXPAND "sum" +) (ASSERT))))

When editing is complete, the proof script may be attached either to the original,
or to a different formula using the install-proof command. If this command is
invoked in the Proof buffer, it attaches the new proof script to the original formula
and offers to rerun the proof. The proof script may also be attached to any other
formula by invoking install-proof in a .pvs, .ppe, or .tccs buffer, in which case
the script is attached to the formula at the cursor. The previous proof script for
the chosen formula is saved, and may be retrieved by means of the revert-proof

command, which swaps the previous script with the current one. If no proof is being
edited (i.e., there is no Proof buffer), an error is reported.

The proof may also be installed using the install-and-step-proof or
install-and-x-step-proof commands, both of which install the proof and initi-
ate the proof stepper; the latter also displays the proof tree.

Checkpoints may be added to the Proof buffer obtained by the edit-proof com-
mand. To add a checkpoint, position the cursor and type C-c a. The checkpoint
is indicated by a double exclamation point (!!). Any number of checkpoints may
be added. When the proof is installed using C-c C-i, these are changed to the
checkpoint proof rule, and branches of the proof that do not have a checkpoint on
them are wrapped in a just-install-proof proof rule. When this proof is rerun, it
will run until it hits a checkpoint, and then prompt for a prover command. When it
hits a just-install-proof, it simply installs the given commands and marks that
branch as proved. This allows the prover to quickly get to the next checkpoint, with-
out attempting to reprove branches that do not have checkpoints in them. When a
proof that has just-install-proof rules in it is finished, the prover asks whether
the proof should be rerun, as the formula will not be considered proved until the proof
is rerun.

To remove a checkpoint from the Proof buffer, position the cursor at the check-
point and type C-c r. To remove all checkpoints, type C-c DEL.

In addition to the above, the key bindings for browsing and the prover emacs
(tab) commands are available in a Proof buffer.

The remove-proof command is used to remove the proof associated with the
specified formula. The primary use for this is to remove proofs from axioms for which
a proof attempt has been made.

If a proof is in progress, proofs may still be edited, but the prover must be exited
before the edited proof may be attached to a formula. Note that invoking edit-proof

on the formula currently being proved will display the proof script stored with the for-

3.5 Proving 31

mula, if there is one. To display the current proof script, use the show-current-proof
command described below.

As noted above, each specification file (with extension .pvs) has an associated
proof file of the same name with a .prf extension. This file contains the proof scripts
for all of the formulas of the specification file whose proofs have been attempted. The
show-proof-file command allows you to browse a proof file, and select or view any
of the associated proof scripts. A Proofs File buffer is created with a line for each
proof script in the file. You may select a proof script for editing, or simply view
the script in a pop-up buffer. This command may be used to look at the proof file
of any context or PVS file—in this respect it is analogous to the import-pvs-file

command.
To view a proof script, place the cursor on the desired line, and type “v.” The

proof script will be displayed in a pop-up buffer, but may not be edited. To edit
a proof script, position the cursor and type “s.” This will create or use the Proof

buffer which may be edited and attached to formulas exactly as described above.
While developing a specification, some theorems or even entire theories may be

moved around or deleted, creating orphaned proofs. Orphaned proofs are saved in the
orphaned-proofs.prf file. In some cases, the system will recognize that an orphaned
proof should be reattached to a formula, and will ask whether it should go ahead.

The show-orphaned-proofs command provides access to the orphaned proofs
file by means of an Orphaned Proofs buffer that displays the formula name, theory
name, and file name associated with each orphaned proof. A given proof may be
selected by moving the cursor to the line and typing “s,” which pops up the Proof

buffer. This buffer is the same as the one generated by the edit-proof command,
except that there is no default formula, so that install-proof (C-c C-i) will not
work from the Proof buffer. Typing a “d” on a proof line deletes the corresponding
entry from the orphaned proof file, typing a “v” pops up a View Proof buffer, and
typing a “q” exits the orphaned proof buffer.

The commands show-proofs-theory, show-proofs-pvs-file, and show-

proofs-importchain display all of the proofs of the associated theory, PVS file,
or importchain in a buffer named Show Proofs, which is in PVS View mode.

The install-pvs-proof-file command prompts for a PVS file name, and reads
in the corresponding proof file, replacing any proofs that may have been loaded or
developed. This command is needed in order to get a new proof file accepted in a
context. When specification files are parsed and/or typechecked, the corresponding
proof files are read in. After that the system will not pay any attention to changes
made to the proof file, but simply update it as changes are made that affect proof
status. This command allows you to modify the file or copy a new one in and get it
installed.

The load-pvs-strategies command loads the strategies files from your home
directory, imported libraries, and the current context. This command is only needed
when a new strategy is being developed during a proof; when a proof is started

32 3.5 Proving

the system checks whether any of the strategy files have changed and automatically
loads them if they have. See the prover guide [7] for details on the contents of the
pvs-strategies files.

The set-print-depth, set-print-length, and set-print-lines commands
control how much of an expression is displayed in a sequent. If the print depth
and length are set to 0 and the lines is NIL, then the entire sequent is displayed. This
is the default. If the depth is set to a positive integer, then any subterms at that depth
are replaced by a pound sign (#). Similarly, if the length is set to a positive integer,
then any subterms beyond the specified length are replaced by three periods (...).
The length and depth of an expression are not easy to define, because it is related to
the abstract syntax used by the prettyprinter. In general, expressions separated by
commas have a length, while subterms13 are deeper by one than the containing terms.
If the print lines is set to a number n, then only the first n lines of each formula of
the sequent is displayed, and remaining lines are replaced by two periods (..). Note
that all these commands are also rules in the prover that otherwise behave as a SKIP,
so it is easy to adjust the printout interactively.

The set-rewrite-depth and set-rewrite-length commands control how much
information to output when printing the results of automatic rewrites. Normally,
both the rule name and the expression being rewritten are displayed in the proof
commentary when an auto-rewrite is triggered. The value should be a positive number
or NIL. If it is a positive number, then any subexpression at that depth or length will
be replaced by a pair of periods (..) or three periods (...) respectively. If it is 0
(zero), then only the rule name is displayed. If it is NIL, then there is no bound.

The dump-sequents command indicates that any incomplete proof attempt should
save the remaining unproved sequents to file. If the proof is for formula foo from
theory th, then the file containing the unproved sequents is named th-foo.sequents.
If the formula is proved, then no file is generated, and any file left from an earlier
attempt on this formula is removed.

The toggle-proof-prettyprinting command toggles whether to prettyprint the
proof file (with extension .prf) associated with a PVS file. Prettyprinted files are easier
to read, edit, and email, but they take a lot longer to generate. By default, proof files
are prettyprinted.

13For example, the operator and arguments are subterms of an application.

3.5 Proving 33

3.5.5 Displaying Proof Information

Command Function
show-current-proof Display the current proof
show-last-proof Displays printout of most recent proof

Arg: make it brief
set-proof-backup-number Set number of backup proof files to retain

Arg: number of files to retain
show-proof-backup-number Show number of backup proof files retained
ancestry Display the ancestry of the current sequent
siblings Display the siblings of the current sequent
show-hidden-formulas Display the hidden formulas in the current sequent
show-auto-rewrites Display the currently used auto-rewrite rules
show-expanded-sequent Display the sequent in expanded form

Arg: also expand names from the prelude
show-skolem-constants Display the Skolem constants and their types
explain-tcc Display the explanation for a TCC
usedby-proofs Display formulas whose proofs refer to the

declaration at the cursor
pvs-set-proof-parens Control parentheses display in proofs

These commands work only while an interactive proof is being developed, i.e.,
after the prove command. The show-current-proof command shows the current
proof in the *Proof* buffer in the same format as the edit-proof command, but the
displayed proof may not be edited. The primary use of this facility is for reviewing
the development of a proof in progress and applying parts of it to other branches
using the rerun prover command, as described in the prover guide[7].

The show-last-proof command provides a display of the commentary and sub-
goals associated with the most recently completed proof in the Proof Display buffer.
This version does not contain the undo, skip, or postpone steps and provides a clean
version that shows the commentary and subgoals. This printout is useful in trying to
summarize the proof for publication. With an argument, many of the sequents are
suppressed, and within a sequent, formulas which haven’t changed since the previous
sequent display are elided.

The set-proof-backup-number command indicates the number of backups to
be kept for proof files. If the argument is 0, then no backups are kept. If it is 1,
then before the .prf file is written, the old copy is retained with extension .prf~.
For larger arguments, that number of old .prf files are retained with the extension
.prf.~x~, with increasing values of x. For example, if the argument is 3, and backup
files foo.prf.~3~, foo.prf.~4~, and foo.prf.~5~ exist, when the next backup is
created foo.prf.~3~ is removed and foo.prf.~6~ is created. The default value is 1,
and PVS will revert to this behaviour on each invocation. Thus, it is recommended
that this command be placed in the file .pvsemacs in your home directory, e.g.:

(set-proof-backup-number 5)

34 3.5 Proving

The current number of proof files being retained is reported by the show-

proof-backup-number command.
The ancestry command displays the branch of the proof from the root to the

current sequent in the Ancestry buffer, and the siblings command displays the
siblings of the current sequent in the Siblings buffer, where the siblings are those
sequents of the proof tree which share the same parent.

The show-hidden-formulas command displays the formulas that have been hid-
den in the current branch of the proof. These formulas are displayed in the Hidden

buffer. Each formula is displayed with a number which may be referred to in the
reveal prover command (see the prover guide [7]).

The show-auto-rewrites command displays the auto-rewrite rules that are in
effect for the current sequent. The rules are displayed in the *Auto-Rewrites* buffer,
in reverse of the order in which they were introduced i.e., the most recently introduced
ones first. The order is significant since if there is a clash and two or more rewrite
rules are applicable, the most recently introduced one is applied first.

The show-expanded-sequent command displays the current sequent in the
Expanded Sequent buffer, with each variable, constant and operator expanded to
its full type, including the theory and its parameters, unless they are from the cur-
rent theory or the prelude. With an argument, prelude names are also expanded.
show-skolem-constants displays the type of all skolem constants introduced in the
current proof in the Proof Display buffer. Normally names from the prelude are
not expanded, an argument expands these as well.

A TCC subgoal is marked as such in a proof. Invoking the explain-tcc command
provides some explanation for why the TCC was generated, giving the type of TCC,
and the expression which caused its generation.

The usedby-proof command provides a list of formulas whose proofs refer to the
given declaration. This works by looking through the formulas of all the currently
typechecked theories of the current context; in particular, for prelude or library dec-
larations it will not locate all formulas that ever referred to the declaration, as this
information would be difficult to maintain and be of marginal use. The buffer gener-
ated by the usedby-proof command is the same as that for the find-declaration

command, with the same key-bindings for viewing and going to the listed declarations.
The pvs-set-proof-parens command asks whether to show parentheses, and if

so, sets a variable indicating that sequents should be displayed with full parenthe-
sization. This is mostly useful for proofs involving large arithmetic terms, where it
may otherwise be difficult to figure out whether a given rewrite rule should apply.

3.5.6 Adding and Modifying Declarations

Command Aliases Function
add-declaration Add declarations to a PVS theory
modify-declaration Modify the indicated declaration body

3.5 Proving 35

Declarations are normally added and modified directly in a specification buffer; the
system determines the differences and updates the corresponding internal structures
accordingly. This can be quite expensive, as any theories which import a modified
theory must be retypechecked. However, there are two commands that allow decla-
rations to be added and modified without causing retypechecking. This is especially
important during proof development, when these commands allow you to make ad-
justments to theories precisely when the need for such an adjustment is discovered.

The add-declaration command inserts new declarations before the declaration
at the cursor. When invoked, it pops up an empty buffer named Add Declaration.
Declarations may be typed in and edited just as in a specification buffer. When
editing is completed, the new declarations may be installed by typing C-c C-c. The
new declarations are parsed, typechecked, and checked for uniqueness; if an error
is discovered it is reported in the usual way. If there is no error, the declarations
are inserted above the declaration located at the cursor when the add-declaration

command was invoked. If a proof is in progress, it will have access to the new
declarations if they are visible, i.e., exported,14 declarations of a theory used by the
theory whose formula is being proved, or they occur in the same theory and precede
the formula being proved.

The modify-declaration command is used to modify the body of a constant
or formula declaration; modifying the signature of a constant or any other kind of
declaration is not permitted because these modifications have potentially non-local
ramifications. This command is similar to the add-declaration command: the
Modify Declaration buffer pops up containing the declaration at the cursor, and
the modified declaration is installed by typing C-c C-c. If the modified declaration
typechecks and maintains the same id and signature, it is installed in the theory and
is immediately available for use in a proof. Otherwise the cursor is placed in the
vicinity of the error and a message is displayed indicating the nature of the error.

Both add-declaration and modify-declaration update the buffer containing
the affected theory and mark the buffer as unchanged; the system considers the af-
fected theory typechecked. However, the checks cannot guarantee that everything
is sound; for example, any proofs done using a declaration that was later modified
will need to be reproved, and any theory which uses a theory to which declarations
have been added should eventually be retypechecked, as ambiguities may have inad-
vertently been introduced. Thus these commands should be viewed as a convenient
way to explore proofs; they should not be used in the “validation” phase of the veri-
fication. Proofs constructed when either of these commands is successfully used are
marked unchecked; i.e., the proofs will need to be rerun to change their status to
proved.

14See the Language Reference for a definition of exported declarations. In short, formal parameters
and variable declarations may never be exported, and, by default, everything else is exported.

36 3.5 Proving

3.5.7 Prover Emacs Commands

The prover commands can be somewhat tedious to type in, especially the simple ones
that are used regularly, such as assert, grind and skosimp*. C. Michael Holloway
of NASA Langley created an extension to Emacs to relieve some of the tedium, and
was kind enough to make these extensions available to PVS. This section describes
those extensions in three subsections: General Commands, Prover Commands, and
Proof Stepper Commands.

3.5.8 General Commands

Command Aliases Function
pvs-prover-any-command TAB TAB Insert (prompted for) command
pvs-prover-quotes TAB ’
pvs-prover-wrap-with-parens TAB C-j

The pvs-prover-any-command prompts for a command (with completion), and
inserts it in the prover buffer with the cursor positioned for additional arguments.
This command is provided for those prover commands that do not have an Emacs
key binding associated with them.

The pvs-prover-quotes command makes it easier to give PVS types and expres-
sions, by inserting a pair of double quotes around the current cursor location. The
pvs-prover-wrap-with-parens command wraps a given prover command in paren-
theses and send it to the prover. You must be at the end of the prover input to use
this command.

3.5.9 Prover Commands

These commands simply prompt for any arguments, and then apply the specified
prover command to those arguments. After all the arguments, if any, have been
given the command is immediately executed by the prover. Not all prover commands
are represented below, and even for those that are given below not all arguments
are prompted for. Commands with complex arguments are generally easier to type in
directly, using the M-x pvs-prover-any-command command if desired. The M-p, M-n,
and M-s keys are particularly useful in this case, as a mistyped prover command can
easily be brought back and corrected, or a complex command that is used frequently
may be easily brought back.

The prover command associated with the following Emacs commands should be
obvious. Details for any given command may be found by typing C-h d followed by
the command name, e.g., pvs-prover-auto-rewrite.

3.5 Proving 37

Command Aliases Function
pvs-prover-apply-extensionality TAB E
pvs-prover-assert TAB a
pvs-prover-auto-rewrite TAB A
pvs-prover-auto-rewrite-theory TAB C-a
pvs-prover-bddsimp TAB B
pvs-prover-beta TAB b
pvs-prover-case TAB c
pvs-prover-case-replace TAB C
pvs-prover-decompose-equality TAB =
pvs-prover-delete TAB d
pvs-prover-do-rewrite TAB D
pvs-prover-expand TAB e
pvs-prover-extensionality TAB x
pvs-prover-flatten TAB f
pvs-prover-grind TAB G
pvs-prover-ground TAB g
help-pvs-prover-command TAB H
pvs-prover-hide TAB C-h
pvs-prover-iff TAB F
pvs-prover-induct TAB I
pvs-prover-induct-and-simplify TAB C-s
pvs-prover-inst TAB i
pvs-prover-inst-question TAB ?
pvs-prover-lemma TAB L
pvs-prover-lift-if TAB l
pvs-prover-model-check TAB M
pvs-prover-musimp TAB m
pvs-prover-name TAB n
pvs-prover-postpone TAB P
pvs-prover-prop TAB p
pvs-prover-quit TAB C-q
pvs-prover-replace TAB r
pvs-prover-replace-eta TAB 8
pvs-prover-rewrite TAB R
pvs-prover-skolem-bang TAB !
pvs-prover-skosimp TAB S
pvs-prover-skosimp-star TAB *
pvs-prover-split TAB s
pvs-prover-tcc TAB T
pvs-prover-then TAB C-t
pvs-prover-typepred TAB t
pvs-prover-undo TAB u

38 3.5 Proving

3.5.10 Proof Stepper Commands

Command Aliases Function
pvs-prover-one-proof-step TAB 1
pvs-prover-many-proof-steps TAB @
pvs-prover-undo-one-proof-step TAB U
pvs-prover-undo-many-proof-steps TAB C-u
pvs-prover-skip-one-proof-step TAB #

The proof stepper is invoked with the step-proof or x-step-proof command,
though it may be used after a proof is begun simply by putting the cursor on the
formula in the specification and typing M-x edit-proof, which pops up the Proof
buffer. When this buffer is available, the proof stepper may be used. The proof step-
per keeps track of the current position within the Proof buffer, and when invoked from
the *pvs* buffer, sends the next command(s) from the Proof buffer to the prover,
changing the current position to point to the next command. When step-proof is
invoked, the current position is at the beginning of the buffer. You may go to the
Proof buffer and edit it or change position within it, and the stepper will then use
the new information. The pvs-prover-one-proof-step command just invokes the
next single command in the proof buffer. The next command in this sense is not
necessarily simple, for example the next command may be

(apply (then* (skosimp*) (expand "foo") (lift-if) (ground)))

in which case the entire apply is invoked, not the individual components.
The pvs-prover-many-proof-steps prompts for the number of proof steps, and

iterates the pvs-prover-one-proof-step command that many times.
The pvs-prover-undo-one-proof-step undoes the last command, and backs up

one position in the Proof buffer. The pvs-prover-undo-many-proof-steps com-
mand prompts for the number of steps to undo, and has the same effect as invoking
pvs-prover-undo-one-proof-step that many times. The difference between these
and the pvs-prover-undo command is that the latter does not change the position
of the cursor within the Proof buffer.

The pvs-prover-skip-one-proof-step skips the next proof step.
If you are using a recent version of Emacs, then the next prover command should

be highlighted in the Proof buffer. All of the commands of this section move the
highlight the appropriate direction. The highlight does not always point to the correct
location; in particular, if you go to the Proof buffer, move the cursor, and go back to
the *pvs* buffer, then the highlight is not moved, but the next command is relative
to the cursor position, not the highlight. The highlight is only accurate right after
one of these commands.

3.6 Prettyprinting 39

3.6 Prettyprinting

Command Aliases Function
prettyprint-theory ppt, C-c C-q t Prettyprint theory
prettyprint-pvs-file ppf, C-c C-q f Prettyprint PVS file
prettyprint-declaration ppd, C-c C-q d, C-M-q Prettyprint declaration
prettyprint-region ppr, C-c C-q r, C-M-\ Prettyprint region
pvs-set-linelength Set prettyprinting line length

These commands are used to prettyprint portions of a specification using the
built-in formatting rules. The prettyprinted sections replace the originals in the
specification buffers, which are then marked as unmodified. If the prettyprinted
version is not the desired one, the Emacs commands undo or revert-buffer may
be used to return to the earlier state. Prettyprint commands are used primarily to
“clean-up” after adding new declarations or making a significant change to an existing
declaration.

The prettyprint-theory command prettyprints the specified theory, and the
prettyprint-pvs-file prettyprints all the theories of the specified file; if the file has
only one theory, then these are equivalent. The prettyprint-declaration command
prettyprints the declaration at the cursor and the prettyprint-region command
prettyprints all the declarations within the specified region.

Note that comments are generally lost during prettyprinting.15

The pvs-set-linelength command sets the line length used to control
prettprinting. The default is the width (in characters) of the starting window.

3.7 Viewing TCCs

Command Aliases Function
prettyprint-expanded ppe, C-c C-q e Prettyprint expanded theory in new buffer
show-tccs tccs, C-c C-q s Show the TCCs of the specified theory

Arg: Show only unproved TCCs

As described in the introduction, the typechecker may generate obligations called
type-correctness conditions (TCCs), which must be discharged before the correspond-
ing theory is considered type correct. PVS does not insist that TCCs be taken care
of during typechecking; it simply stores the TCCs in the internal form of the theory,
as if they were declared before the declaration which spawned them. At some point
it is necessary to view and prove the TCCs, which is accomplished by means of the
commands described below.

The prettyprint-expanded command provides a view of the entire theory (in-
cluding the expanded definitions of inline ADTs and conversions), with the TCCs

15The problem of disappearing comments will probably be corrected eventually, but it is not
currently one of our priorities.

40 3.8 PVS Files and Theories

inserted as described above. When this command is invoked, it prompts for a theory
name, and then pops up a buffer containing the expanded theory. The name of the
buffer is derived from the theory name, with the extension .ppe. The buffer is read-
only, and may not be parsed or typechecked, although proofs of any displayed TCCs
or other formulas may be initiated in the usual way, simply by moving the cursor to
the formula to be proved and invoking the prove command.

The show-tccs command pops up a buffer with the extension .tccs displaying
just the TCCs. PVS prompts for the theory name and the name of the buffer is derived
from the theory name with the extension .tccs; the buffer is read-only. Proofs of
TCCs are initiated exactly as described above.

The advantage to using the prettyprint-expanded command is that TCCs are
shown in context, so it is easy to determine their derivation. On the other hand, the
show-tccs command is faster to process and includes information about the proof
status in comments associated with each TCC.

When the theory associated with either of these buffers is reparsed or retype-
checked, the buffers are killed to ensure that all displayed information is current.

3.8 PVS Files and Theories

3.8.1 Finding Files and Theories

Command Aliases Function
find-pvs-file ff, C-c C-f Find buffer containing named PVS file
find-theory ft Find buffer containing named theory
view-prelude-file vpf List prelude file
view-prelude-theory vpt List prelude theory
view-library-file vlf List library file
view-library-theory vlt List library theory

The find-pvs-file command finds or creates a buffer containing the specified
file and makes it the current buffer. The file should be specified by filename only;
i.e., the directory and .pvs suffix should not be given. The find-theory command
determines the PVS file containing the specified theory, does a find-pvs-file for
that file, and puts the cursor at the start of the specified theory. If the theory cannot
be found an appropriate error message is displayed.16

PVS has a number of built-in theories which provide the primitive types, constants,
and formulas of the language. These built-in theories reside in the prelude file. The
view-prelude-file command displays the prelude file in a buffer in read-only mode.
The view-prelude-theory command displays a specified prelude theory in read-only
mode. Completion is supported; to find out what prelude theories are available,

16Note that find-pvs-file and find-theory will only find files and theories that are in the
current PVS context

3.8 PVS Files and Theories 41

hit the space bar when prompted for a theory name. Prelude displays are strictly
informative; although they resemble a normal PVS specification, they do not belong
to the current context and therefore may not be parsed or typechecked. Proofs may
be attempted as described in the prove command description. Prelude theories may
be copied to a new buffer and modified, as long as their names are changed; theory
names of the prelude may not be reused. Viewing the prelude is useful for finding out
what types, constants, and formulas are available, for seeing paradigmatic examples
of specifications, and for trying out the prover on some readily available formulas.

The view-library-file and view-library-theory commands operate in a sim-
ilar manner to the view-prelude-file and view-prelude-theory commands. They
allow for completion on those libraries which are imported into the current context,
and will pop up a buffer containing the contents of the file, moving the cursor to the
beginning of the specified theory for view-library-theory. Giving an argument to
view-library-file allows for completion on all of the distributed libraries as well
(i.e. those in the lib subdirectory of the PVS installation) whether they are imported
into the current context or not.

The view-library-file and view-library-theory commands may not report
all of the theories which have been imported into the context if the specification files
in the context have not yet been typechecked. A warning message will be printed to
this effect if there are no imported libraries found.

3.8.2 Creating New Files and Theories

Command Aliases Function
new-pvs-file nf Create PVS buffer containing named theory

Arg: Create minimal template
new-theory nt Create named theory in current buffer

Arg: Create minimal template

The new-pvs-file command prompts for a new file name, creates an associated
buffer, and inserts a template for a theory with the given name. The new-theory

command prompts for a theory name and puts the template in the current buffer, thus
adding a new theory to the associated file. These commands are merely conveniences;
a new PVS file may be created simply by using find-file, giving the new file name
(with the .pvs extension), and typing in the theory. Similarly, a new theory may be
added to a given PVS file simply by typing the theory in at an appropriate place in
the file. In these cases, the theories and files are unknown to the context until they
are parsed. The template normally includes comments indicating the form of formal
parameters and the assumings section; with an argument a minimal template is used
that simply gives the beginning and end of the specified theory.

42 3.8 PVS Files and Theories

3.8.3 Importing Files and Theories

Command Aliases Function
import-pvs-file imf Import a text file as a PVS file
import-theory imt Import a theory into the current buffer

The commands described here allow files and theories to be imported from other
contexts. The import-pvs-file command prompts for a source file (including direc-
tory, but omitting the .pvs extension) and a target file (a new PVS filename without
directory or extension) and copies the former to the latter, and places the file in the
current context. In addition, the corresponding proof file is copied.

The import-theory command is similar, but prompts for a theory within the
source as well as the source; the theory is copied after the current theory in the
current PVS buffer. It is an error to invoke this command from any buffer other than
a .pvs buffer.

3.8.4 Deleting Files and Theories

Command Aliases Function
delete-pvs-file df Delete PVS file from the context

Arg: Delete the file from the directory
delete-theory dt Delete theory from PVS file

The delete-pvs-file command deletes a specified PVS file from the context,
which means that all included theories are removed from the context, and any theories
which depend on them are marked as untypechecked. Note that the file is not actually
deleted, but simply removed from the context, so theory names declared in the file
may be reused. To delete the file, a command argument must be supplied, in which
case all of the associated proofs are copied to the orphaned proof file.

The delete-theory command deletes a theory from the file which contains it,
removes it from the context, untypechecks any dependent theories, and copies any
proofs to the orphaned proof file. Note that using standard Emacs commands to
delete the theory from a PVS file and reparsing the file will have the same effect.

3.8.5 Saving Files

Command Aliases Function
save-pvs-file C-x C-s Save PVS file in current buffer
save-some-pvs-files ssf Save modified PVS files
save-pvs-buffer Saves the current buffer to file

PVS files are usually saved automatically at certain points, e.g., prior to parsing,
typechecking, or proving. The save commands allow you to explicitly request the
saving of files. The save-pvs-file and save-some-pvs-files commands are almost

3.8 PVS Files and Theories 43

identical to the Emacs commands save-buffer and save-some-buffers, except that
they work only with PVS buffers.

The save-pvs-buffer command copies the contents of the current buffer to the
specified file name, without renaming the buffer. This command should be used for
buffers that have no associated file instead of the Emacs write-file command, which
does rename the buffer.

3.8.6 Mailing PVS Files

Command Aliases Function
smail-pvs-files Send a set of PVS files by e-mail
rmail-pvs-files Read a set of PVS files sent by smail-pvs-files

These commands make it easy to send and receive sets of PVS files. At least
two messages are sent: one that is composed by you, to explain the contents of
the following message(s), and the rest which are the files tarred, compressed, and
translated to ascii. If the resulting file is large, then it is also split into smaller pieces
that are mailed separately.

The smail-pvs-files command prompts for a root file, an e-mail address (de-
faults to pvs-bugs@csl.sri.com, or the last address used in this session), a CC: list,
and a subject line. A mail buffer is then popped up so that you can compose your
message. When you have completed your message, type C-c C-c to send it.17 At that
point the patch revision number is added to the end of your message, the PVS files in
the import chain of the root file are collected along with the associated proof files and
the files pvs-strategies, pvs-tex.sub, ~/pvs-strategies, ~/pvs-tex.sub, and
~/.pvsemacs. Those files collected from your home directory will be put in a newly
created directory named PVSHOME. Then all of these file will be sent using tarmail,
which uses tar, compress, btoa, and split to send the files collected, splitting them
into multiple parts if necessary. A buffer is popped up showing the result of the
tarmail command; you should look this over to verify that all of the desired files are
included, and that there are no errors. Use C-z 1 to remove this buffer. After the
files are sent, the PVSHOME directory is deleted.

The rmail-pvs-files command unpacks mail sent by smail-pvs-files. To
use this, first create a new directory in which to install the files, and, using your
favorite mailer, copy the files to the new directory with extensions corresponding
to the message order, e.g., mail.01, mail.02, etc. If there is just one file, leave
the extension off. Then invoke M-x rmail-pvs-files and give the root file name
when prompted (e.g., mail). The mail files will be unpacked using untarmail, and
a pop-up buffer will be displayed showing the files that have been unpacked. If a
directory named PVSHOME has been created, it will contain the PVS files from the
home directory of the person that sent the mail. If these are needed, they should

17If you change your mind about sending a message, simply kill (C-x k) the *mail* buffer.

44 3.9 PVS Output

be copied or merged into the corresponding files in your home directory. Check that
the patch version number that appears at the bottom of the first (readable) mail
message matches the patch revision number in the PVS Welcome buffer. If they don’t
match, the sender or receiver (or both) should update their PVS installations (see
http://pvs.csl.sri.com fro details).

3.8.7 Dumping Files

Command Aliases Function
dump-pvs-files Write files in IMPORT chain to file
undump-pvs-files Break dump file into separate PVS files

Arg: overwrites existing files without asking
edit-pvs-dump-file Edit a PVS dump file

The dump-pvs-files and undump-pvs-files commands allow entire specifica-
tions and their associated proofs to be saved to, and restored from, single text files.
The primary purpose of these commands is to allow complete specifications to be
communicated conveniently from one place to another, e.g., by electronic mail. A
secondary purpose is to make global edits, e.g., changing the name of a constant or
formula throughout all of the .pvs and .prf files.

The dump-pvs-files command prompts for the name of a PVS file and a file
pathname, and dumps the specification text and proofs of all theories on the import
chain of the theories of the specified theories to the given file. undump-pvs-files

prompts for a file pathname and performs the inverse process, importing all theo-
ries whose specification text is present in the named file. Both commands ask for
confirmation prior to overwriting an existing file.

The edit-pvs-dump-file command makes it easy to edit a dump file created
by dump-pvs-files. This is useful when you wish to send just a subset of the
theories in the import chain. Note that the system uses $$$ followed by the file name
as a separator; if these are modified files may be merged randomly when they are
undumped. The dump file buffer is put in outline mode, with these separators treated
as headings. The hide-body (C-c C-t) command will show just these separators,
making it easy to remove entire files. See the Emacs manual for more details on
outline mode.

3.9 PVS Output

3.9.1 Printing Buffers and Regions

Command Aliases Function
pvs-print-buffer Print buffer contents
pvs-print-region Print region contents

http://pvs.csl.sri.com

3.9 PVS Output 45

These PVS commands are used to send buffers to the printer and replace the
Emacs lpr-buffer and lpr-region commands, whose behavior they default to. This
behavior can be modified by setting the pvs-print-command, pvs-print-switches,
and pvs-print-title-switches Emacs variables. For example, to use enscript18

in gaudy mode producing two column rotated output, add the following lines to your
~/.pvsemacs file:

(setq pvs-print-command "enscript")
(setq pvs-print-switches ’("-G" "-2" "-r"))
(setq pvs-print-title-switches ’("-b" "-J"))

The pvs-print-command must be a single print command; pipes are not allowed.19

The pvs-print-switches variable contains a list of switches for the print command.
The pvs-print-title-switches contains switches that each expect a name; the
name provided to each of these switches is the name of the buffer in which the
command was invoked.

3.9.2 Printing Files and Theories

Command Aliases Function
print-theory ptt Send theory to printer
print-pvs-file ptf Send PVS file to printer
print-importchain pti Send theories in import chain to printer

These commands send the specified theories to the printer, using the
pvs-print-buffer and pvs-print-region commands. Multiple theories are con-
catenated into a single buffer, separated by page breaks, and then printed, thereby
saving paper on systems that print a burst page with each print job.

3.9.3 Generating alltt Output

Command Aliases Function
alltt-theory alt, C-c C-a t Format theory for LATEX alltt environment
alltt-pvs-file alf, C-c C-a f Format theories of file for LATEX alltt
alltt-importchain ali, C-c C-a i Format theories in import chain for LATEX alltt
alltt-proof alp, C-c C-a p Format last proof for LATEXalltt

Arg: make it brief

These commands allow a specification to be inserted into a LATEX document in an
alltt environment. The alltt environment is defined in a style file included with
the standard LATEX distribution. It is similar to the verbatim environment but allows
a little more flexibility—see the alltt.sty file for details.

18enscript is one of many print commands that provide better support and more options for
postscript printers than the default lpr command.

19To handle pipes, create a shell script somewhere in your path and set pvs-print-command to
its name.

46 3.9 PVS Output

For each theory foo within the specified set of theories, the file foo -alltt.tex

is created, which can then be inserted in a document in an alltt environment. The
only differences between the alltt file and the original theory are that the braces
({ and }) are preceded by \ so they will not be interpreted by LATEX, and tabs are
replaced by spaces.

The alltt-proof command asks for a filename, and generates a LATEX alltt text
file for the last proof attempted. If there was no proof attempted in the session, then
the system will state that a proof must be rerun. The proof is written in terse mode,
unless an argument is given, in which case it provides a verbose printout of the proof.

3.9.4 Generating LATEX Output

Command Aliases Function
latex-theory ltt, C-c C-l t Create LATEX for theory
latex-pvs-file ltf, C-c C-l f Create LATEX for theories of PVS file
latex-importchain lti, C-c C-l i Create LATEX for theories in importchain
latex-proof ltp, C-c C-l p Create LATEX for last proof

Arg: make it brief
latex-theory-view ltv, C-c C-l v Create LATEX for theory, LATEX and view
latex-proof-view lpv, C-c C-l P Create LATEX for last proof, LATEX, view
latex-set-linelength lts, C-c C-l s Set the linelength for LATEX text

The first three commands generate LATEX output for theories to be included in a
document. If one of these commands is invoked in a PVS specification, a new file with
the name of the theory and the .tex extension is generated in the current context
for each specified theory.

The latex-proof command asks for a filename, and generates a LATEX text file
for the last proof attempted. The default filename is the name of the formula last
proved, with a .tex extension. If there was no proof attempted in the session, then
the system will ask for a proof to be rerun. The proof is written verbosely, unless an
argument is given, in which case it provides a brief printout of the proof, in which
only the changed sequent formulas are printed..

In addition to the generated specification and proof files, a file named
pvs-files.tex is generated that includes all of the files generated in the last invo-
cation of one of these commands. The purpose of the pvs-files.tex file is two-fold:
to facilitate LATEXing and printing the theories, and to illustrate the inclusion of these
files in a document.

These commands make use of the prettyprinter, which uses the linelength to de-
termine where to make line breaks. For prettyprinting in Emacs buffers, this is set
according to the size of the window if in X windows, or to 80 otherwise. For pret-
typrinting specifications for LATEX, however, there is no easy way to determine the
“right” value, as the page width, number of columns, font size, etc., all contribute to
the determination of the actual value. The latex-set-linelength command allows

3.9 PVS Output 47

you to set the linelength according to your needs. The default value is 100, which
generates reasonable looking specifications for pvs-files.tex.

To process the generated files you must include the pvs.sty style file, located in
the main PVS directory. (see the LATEX manual [1] for details on including style files).

While generating a LATEX file for a theory, the system automatically makes sub-
stitutions for many of the built-in symbols; for example, FORALL is translated to the
symbol ∀. This capability can be extended to user-defined symbols by means of a
substitution file that specifies how to translate specified identifiers and keywords of a
given specification.

To specify your own substitutions, create a new file named pvs-tex.sub in the
current context or your home directory. Each row of this file specifies an identifier, its
kind and arguments, an estimated length (in ems), and the substitution. For example,

THEORY key 7 {\large\textbf{\textrm{Theory}}}
sum 1 2 {\sum_{i=0}^{#1} i}
sum (2 1) 2 {\sum_{i=#1}^{#2} #3}
sum [2] 1 {sum_{#1}^{#2}}
th.sum 1 2 {\bigoplus_{i=0}^{#1} i}

The identifier is an identifier or keyword in the specification; keywords must be
given in upper case, and identifiers must match the case given in the specification.

Identifiers may also include a theory name, for example, groups.+. This allows
the limited number of ASCII operators to be mapped to different LATEX symbols. Note
that actuals may not be included as this would require typechecking the substitution
file.

The kind field may be specified as one of the symbols id or key, a number, a
parenthesized sequence of numbers (e.g., (2 1 3)), or a number in square brackets.
The symbol key is used for keywords only; the others are used for translating iden-
tifiers. If the kind is simply id, substitution is done for occurrences of the identifier
that have no arguments or actual parameters provided. If the kind is a number, the
substitution is performed when the identifier appears with the specified number of
arguments. A kind field specified as a sequence of parenthesized numbers corresponds
to a curried function. For example, the fourth entry in the above set of substitutions
would be used for an occurrence of sum(a + 1, b)(n) in the specification. When the
number is in square brackets, the translation is used whenever the name appears with
that number of actual parameters. With the substitutions given above, an occurrence
of sum[int,3] would be translated to sum3

int.
When both the argument form and the actuals form are provided in the

pvs-tex.sub file and both are given in the specification, the argument form is used.
Thus using the above translation, sum[int,3](a+1,b)(n) would be translated to∑b
i=a+1 n.

The argument form also pertains to declarations; so a declaration of the form

i,j,n: VAR int

48 3.10 Display Commands

sum(i,j)(n): RECURSIVE int = ...

will be nicely printed, whereas the equivalent declaration

sum(i,j:int)(n:int): RECURSIVE int = ...

will still use the argument form, but will have types included, and

sum: RECURSIVE [int, int -> [int -> int]] = (LAMBDA ...)

will be translated using the id form.
The length field specifies the expected size of the substitution, excluding argu-

ments. The size is given in ems; an em is roughly the size of an m in the current font.
This number does not have to be accurate, it is used by the underlying prettyprinting
routines to determine the placement of line breaks. If the length field is a hyphen,
then the length is taken to be the length of the identifier.

The final field gives the substitution. The arguments, if any, are substituted for
#1, #2, etc. in the order given. For example, in the expression “sum(a + 1, b)(n),”
a + 1 would be substituted for #1, b for #2, and n for #3.

The substitution file overrides substitutions provided in the default substitution
file located in the PVS directory. In addition, a pvs-tex.sub file in your home
directory overrides the default, but does not override substitutions specified in the
current context. Finally, a substitution file for a specific theory may be provided; if
the theory name is foo, then the substitution file foo.sub overrides all of the above
when the theory foo is being processed.

3.10 Display Commands

Command Aliases Function
x-theory-hierarchy Display the IMPORTING chain from a theory
x-show-proof Display the proof of specified formula in an X window
x-show-current-proof Display the current proof in an X window

These commands provide graphical displays by making use of the Tcl/Tk [2]
system. To use these commands you must be running the X Window System and
have the DISPLAY environment variable correctly set. In addition, you must have
Tcl/Tk (version 7.3/3.6 or later) installed, and the wish command must be in your
path before you start PVS (or the variable pvs-wish-cmd must be set to the full
pathname of wish).

The x-show-current-proof command creates a window showing the current
proof tree. Every sequent in the tree is represented by a ` symbol. The proof
commands used to create the tree will also be shown between the ` symbols. This
tree will be automatically updated after every proof command.

To see the full text of a given sequent, click on the ` symbol. The ` will acquire a
number, and a new numbered window will pop up containing the text of the sequent.

3.10 Display Commands 49

Proof commands which are longer than a certain customizable length (see below) are
abbreviated; the full command can be seen by clicking on the abbreviation. Figure 3.1
shows an example proof display, in which the case rule and two sequents have been
clicked on. The look of your display will probably be different, depending on the
window manager you use and the defaults you set up for it.

Colors are used to display status information about the proof. These colors may
be specified using the X resource database (i.e., in your .Xresources or .Xdefaults
file). Stipple patterns may be specified instead of colors; a stipple pattern is specified
as @file, where file is either an absolute pathname of a file in X bitmap format or
the special bitmap name gray.20

The current resources and their defaults are:

Resource name Color default Monochrome default
pvs.windowbackground wheat white
pvs.displaybackground white white
pvs.displayforeground black black
pvs.activedisplaybackground mediumslateblue black
pvs.activedisplayforeground white white
pvs.buttonbackground lightblue white
pvs.buttonforeground black black
pvs.activebuttonbackground steelblue black
pvs.activebuttonforeground white white
pvs.troughcolor sienna3 black
pvs.currentColor DarkOrchid black
pvs.circleCurrent yes yes
pvs.tccColor green4 black
pvs.doneColor blue @gray
pvs.ancestorColor firebrick black
pvs.abbrevLen 35 35
pvs.displayfont lucidasanstypewriter-bold-12
pvs.buttonfont lucidasanstypewriter-10
pvs.proof.geometry none
pvs.theory-hierarchy.geometry none
pvs.prover-commands.geometry none

The foreground color is used for things that aren’t otherwise specified below. The
currentColor is used for the current sequent in the proof tree. The ancestorColor

is used for all the ancestors of the current sequent, up to the root. The doneColor is
used for sequents which have been proved. The tccColor is used for TCC’s. When
pvs.circleCurrent is set, the current sequent in the proof tree is circled.

Proof commands which are longer than abbrevLen characters are abbreviated.

20If file is not an absolute path, it is looked up in the wish subdirectory of the PVS directory,
which contains the gray bitmap.

50 3.10 Display Commands

Figure 3.1: A Proof Display Example

3.11 Context Commands 51

If the Emacs variable pvs-x-show-proofs is not NIL, then prove automatically
calls x-show-proof. This can be set in your .pvsemacs file.

The x-theory-hierarchy command prompts for a theory name and displays the
IMPORTING hierarchy rooted at that theory. In a complex hierarchy, it can be difficult
to follow the lines; to make this easier, when you move the mouse onto a theory
identifier, all the lines connecting that theory to other theories turn the highlight

color. Clicking on a theory identifier will bring up the theory in Emacs. Figure 3.2
shows an example of the theory hierarchy for the finite sets library, as produced
from clicking on the Gen PS button and selecting portrait.

The remainder of this section applies to both x-show-proof and
x-theory-hierarchy.

The layout in the windows created by these commands can be manually edited.
The editing commands are accessed by holding down the Control key while pressing
mouse buttons. In a proof window, pressing Control-button 1 and dragging moves
a whole proof subtree, while Control-button 2 moves a single sequent. In a theory
hierarchy window, Control-button 1 moves a theory. (Note that most proof com-
mands will do a relayout.) Once the layout is to your liking, the Gen PS button will
generate a PostScript file which contains the contents of the window. The filename
will be briefly displayed below the buttons.

The Config button will bring up a menu which will let you customize the hori-
zontal and vertical separations used by the automatic layout for the current window.
These can also be customized with the resource database.

Resource name Default
pvs*proof*xSep 10
pvs*proof*ySep 20
pvs*th-hier*xSep 50
pvs*th-hier*ySep 100

3.11 Context Commands

Command Aliases Function
list-pvs-files lf Display a list of PVS files in current context
list-theories lt Display a list of theories in current context
change-context cc Switch to a new context
save-context sc Save the current context
pvs-remove-bin-files Remove the .bin files of the current context
pvs-dont-write-bin-files Inhibit writing or loading of .bin files
pvs-do-write-bin-files Allows writing and loading of .bin files (default)
context-path cp Display pathname of current context

The list-pvs-files and list-theories commands prompt for a directory, de-
fault is to the current directory; if there is a PVS context in the given directory, these
commands list the PVS files or theories in that context. The resulting buffer is in a

52 3.11 Context Commands

Figure 3.2: The Theory Hierarchy for the finite sets Library

3.12 Library Commands 53

special mode, which allows the file/theory to be viewed (by typing a “v”), selected (by
typing a “s”) or imported (by typing an “i”). A file or theory may only be selected
if it is in the current context, and may only be imported if it is not. Importing a
theory from the list of theories will import the associated file.

The change-context command is similar to the “cd” command in UNIX; it saves
the context (see below), and changes the working directory to the specified one. The
PVS Welcome buffer is then displayed indicating the new directory. If the requested
directory does not exist, and the Emacs you are running supports make-directory,
then PVS offers to make a new one, including parent directories if necessary. If the
command fails for any reason, then the current context stays the same.

The save-context command saves the current state of the session in the con-
text file .pvscontext. In addition, any PVS files that have been typechecked will
generate a binary (.bin) file, unless there is already a current one saved, or the
dont-write-bin-files command has been invoked.

Under normal circumstances, binary (.bin) files corresponding to the specifica-
tion (.pvs) files are updated or created as needed. These binary files contain type
information, so that loading a binary file has the same effect as typechecking the cor-
responding PVS file, but is generally much faster. The down side is that binary files
take more disk space. If that is a problem then use the pvs-dont-write-bin-files,
which neither loads nor creates binary files. This can be added to your .pvsemacs

file, by adding the line

(pvs-dont-write-bin-files)

The pvs-do-write-bin-files undoes the effect of the pvs-dont-write-pvs-files,
and is not needed normally. The pvs-remove-bin-files command may be used to
remove the binary files that have been created.

The context-path command uses the minibuffer to display the directory path
associated with the current context.

3.12 Library Commands

Command Aliases Function
load-prelude-library Extend the prelude from the specified context
remove-prelude-library Remove the specified context from the prelude

The load-prelude-library command prompts for a context pathname
(i.e.,directory), and extends the prelude with all of the theories that make up that con-
text. Note that the theories that make up the context are defined by the .pvscontext
file in the associated directory—there may be specification files in the same directory
that are not a part of the context. The files that make up the context are typechecked
if necessary, and internally the prelude is extended. All of the theories of the current
context are untypechecked, as they may not typecheck the same way in the extended

54 3.13 Browsing

prelude. The PVS context is updated to reflect that the prelude has been extended.
Thus the next time this context is entered, the prelude will automatically be extended
(by typechecking the libraries if necessary).

This is just one of two means of gaining access to theories of a different context
(short of copying them). For an alternative approach see the language guide [3].

The remove-prelude-library command removes the specified library from the
prelude. It reverts all the theories of the current context to untypechecked to guar-
antee that no theories depend on the removed library. Note that the built-in prelude
may not be removed this way.

3.13 Browsing

Command Aliases Function
show-declaration M-. Show declaration of symbol at cursor
goto-declaration M-’ Go to declaration of symbol at cursor
find-declaration M-, Search for declarations of given symbol
whereis-declaration-used M-; Search for declarations which reference identifier
whereis-identifier-used C-M-; Search for declarations which reference identifier
list-declarations M-: Produce list of declarations in import chain
show-expanded-form C-. Show expanded form of term containing region

Arg: also expand names from the prelude

These commands browse a specification consisting of several PVS files and theo-
ries, providing information about where entities are declared and used. All of these
commands browse the prelude as well as user files.

The show-declaration command is used to determine the declaration associated
with the symbol or name at the cursor. Positioning the cursor on a name in the
specification and typing M-. yields a pop-up buffer displaying the declaration. This
command is useful to determine the type of a name, or the resolution determined by
the typechecker for an overloaded name. Note that when used on a record accessor
it will display the declaration of the record rather than just the record field.

The goto-declaration command goes to the declaration associated with the
symbol or name at the cursor. It pops up a buffer containing the theory associated
with the declaration, and positions the cursor at the declaration.

The find-declaration command takes a name and returns a list of all the dec-
larations with that name, the default name is the one under the cursor. Each row in
the display specifies the declaration name, its kind/type, and the theory to which it
belongs. Declarations in this list may be viewed by placing the cursor on the row of
interest and typing “v.” Typing “s” will read in the associated file and position the
cursor at the declaration. A “q” quits and removes the declaration buffer.

The whereis-declaration-used command generates a list of declarations
which reference the entity denoted by a given identifier. The related whereis-

identifier-used command generates a list of all references to a textually identical

3.14 Theory Status 55

identifier, which may or may not result from the same declaration, due to overload-
ing and multiple declarations. The list-declarations command generates a listing
of all the declarations in the import chain of the specified theory. For all of these
commands, the resulting buffer behaves exactly as described for find-declaration.

The show-expanded-form command displays the expanded form of the term con-
taining the region in the Expanded Form buffer. Each variable, constant and operator
is expanded to its full name including the theory name and its parameters, unless they
are from the current theory or the prelude. With an argument, prelude names are
also expanded. If the region is not defined, the current cursor location is used instead.

3.14 Theory Status

Command Aliases Function
status-theory stt, C-c C-s t Status of specified theory (parsed, etc.)
status-pvs-file stf, C-c C-s f Status of theories of current file
status-importchain sti, C-c C-s i Status of theories in import chain of theory
status-importbychain stb, C-c C-s b Status of theories in import by chain

These commands provide information regarding the status of the specified theories.
The status information for a theory indicates whether it is parsed or typechecked, and
provides the number of formulas, the number proved, the number of TCCs generated,
and the number of TCCs proved. Note that the number of formulas does not include
the TCCs.

The number of theory warnings and messages is also displayed. See the
show-theory-warnings and show-theory-messages on page 22 for more informa-
tion on these commands.

The status-theory command provides the status of the specified theory
in the minibuffer. The status-pvs-file, status-importchain, and status-
importbychain commands display the information in the PVS Status buffer with
a line for each theory. Using any of these commands on the sum theory yields

sum is typechecked: 1 formula, 1 proved; 2 TCCs, 2 proved; 0 warnings; 0 msgs

The show-theory-warnings and show-theory-messages (page 22) may be used
to see any warnings or messages.

The status-importchain and status-importbychain commands display the
IMPORTING chains of the specified theory, indented to indicate the tree structure.
The status-importchain command works recursively down the IMPORTINGs, dis-
playing the status of each theory unless it has been displayed earlier in the buffer.
The status-importbychain works in the opposite direction.

56 3.15 Proof Status

3.15 Proof Status

Command Aliases Function
status-proof sp, C-c s p Status of formula at cursor
status-proof-theory spt Status of formulas in theory

Arg: provide timing information
status-proof-pvs-file spf Status of formulas in PVS file

Arg: provide timing information
status-proof-importchain spi Status of formulas on importchain

Arg: provide timing information
status-proofchain spc Proofchain of formula at cursor
status-proofchain-theory spct Proofchain of specified theory
status-proofchain-pvs-file spcf Proofchain of current file
status-proofchain-importchain spci Proofchain of importchain

These commands provide the status of the proofs of the indicated formulas. The
status-proof command uses the minibuffer to display the proof status of the formula
at the cursor. The status can be one of proved, untried, unfinished, or unchecked.
Untried means that the proof has not yet been attempted. Unfinished means that the
proof has been attempted, but is not complete. Unchecked means that the proof was
successful at one point, but that some changes have been made that may invalidate
the proof.

The commands status-proof-theory, status-proof-pvs-file, and status-

proof-importchain use the PVS Status buffer to display the proof status for all of
the formulas within the theory, PVS file, or the import chain respectively. With an
argument, these commands display timing information as well.

The status-proofchain command provides a proof chain analysis of the formula
at the cursor and displays it in the PVS Status buffer. The proof chain analysis
indicates whether the formula has been proved, and analyses the formulas used in the
proof to insure that the proof is complete; lemmas used in the proof are proved and
sound, i.e., there are no circularities (e.g., using lemma A to prove B and vice-versa).

The commands status-proofchain-theory, status-proofchain-pvs-file,
and status-proofchain-importchain provide the proof chain analysis for each for-
mula of the theory, PVS file, and import chain of the specified theory, respectively,
in the PVS Status buffer.

3.16 Environment Commands 57

3.16 Environment Commands

Command Aliases Function
whereis-pvs Display the root PVS directory
pvs-version Display current version of PVS and underlying Lisp

pvs-mode Put current buffer in PVS mode
pvs-log Display the PVS Log buffer
status-display Display the PVS Status buffer
pvs-status Find out if PVS is busy
pvs Start the PVS process
pvs-load-patches Load new PVS patches

The whereis-pvs command is used to determine the directory where the PVS
system resides. This is useful for finding the example specifications and files that are
part of the PVS distribution.

The pvs-version command displays the current version of PVS.
The pvs-mode command puts the current buffer in PVS mode. This command is

not normally needed; buffers with a .pvs extension and buffers created by PVS are
automatically put in the proper mode.

Most of the messages that appear in the minibuffer are kept in the PVS Log buffer,
stamped with the time. The pvs-log command simply pops up the PVS Log buffer
so that you may view it.

The status-display command simply displays the PVS Status buffer. This is
the buffer used for most of the status commands.

The pvs command is what is used to actually start PVS after the Emacs files
have all been loaded. It is provided as a user command because there are times when
the PVS lisp subprocess has been killed and you wish to start up that process while
keeping the same Emacs session.

The pvs-load-patches command reloads the patches. This is useful when new
patches have been installed, and you wish to load them without exiting the system
and starting up again.

3.17 Interrupting PVS

Command Aliases Function
pvs-status Find out if Lisp is busy
pvs-interrupt-subjob C-c C-c Interrupt PVS (lisp) process
reset-pvs C-z C-g Abort PVS and resynchronize

Many PVS commands run in the background, allowing other editing activities to
proceed concurrently. The effect of issuing new commands while another command is
running depends on the command: background commands placed on the command
queue. Other (nonbackground commands) interrupt the currently running command,
execute, and return control to the interrupted command. The Emacs status line

58 3.17 Interrupting PVS

indicates the abbreviation of the command that is currently running, if any, or ready.
The pvs-status command provides information about both the currently running
command and the command queue.

To interrupt PVS for any reason, the following procedure is recommended. First,
if the keyboard is not responding, type the built-in Emacs command keyboard-quit
(C-g); it may need to be struck a few times before there is any response—usually a
beep and Quit appears in the minibuffer. This command interrupts Emacs, but has
no effect on any PVS commands that are still running. After Emacs responds go to
the end of the *pvs* buffer, and type C-c C-c. If Lisp is able to respond, you should
see the message

Error: Received signal number 2 (Keyboard interrupt)
[condition type: INTERRUPT-SIGNAL]

Restart actions (select using :continue):
0: continue computation
1: Return to Top Level (an "abort" restart)
[1c] PVS(22):

You can then type :continue 0 to keep going as it was never interrupted,
(restore) if you are in the middle of an ongoing proof and want to continue from the
state prior to the last atomic prover command (see the prover guide [7]), or :continue
1 or :reset to abort to the top level.

The Lisp process may not be able to respond to the interrupt right away, especially
if it has started garbage collection. If you really want to interrupt it, type more
C-c C-c interrupts; after about six of them it is supposed to respond regardless.
This is not recommended in general as it can leave the Lisp process in an unstable
state. Unfortunately, we have seen Allegro Common Lisp get into a state where it
is completely unresponsive, even after several interrupts and waiting for hours for a
response. This is rare, but if it happens the only recourse is to kill the process and
start up a new PVS session. See below for how to do this while allowing Emacs to
continue.

The reset-pvs command aborts any ongoing activity in PVS; its effects depend
on whether it is issued from the *pvs* buffer or from some other buffer. In the
former case, reset-pvs simply interrupts PVS as if you typed C-c C-c, as described
above. If reset-pvs is issued somewhere other than the *pvs* buffer, you are asked
whether to reset PVS in case the command was typed accidentally; if not, the current
command is aborted and the command queue is emptied.

If you wish to kill the PVS Lisp process, while keeping your current Emacs session,
simply go to the *pvs* buffer and kill it kill-buffer C-x k, then run pvs and the
PVS Lisp process will restart. All your other Emacs buffers are unaffected by this.

Chapter 4

Customizing PVS

PVS is a complex system, and utilizes many subsystems, including Lisp, Emacs, the
X window system, and Tcl/Tk. You can control aspects of these subsystems by a
combination of command-line arguments, environment variables, and various files. In
this section we discuss some aspects of the customization of these subsystems as they
relate to PVS.

4.1 Invoking PVS

PVS is invoked from a shell script named pvs in the PVS directory—this is a text
file, and may be examined or copied and modified to suit your taste. The script is a
Bourne shell script, and requires /bin/sh to execute correctly.1

PVS accepts a number of command-line arguments, as well as using environment
variables. The command-line arguments specific to PVS are

-h | -help | --help - Print a brief description of the command line options and
exit.

-lisp lispname - Specifies which lisp to use. The lisp image used for PVS is then
pvs-lispname , which should be located in a directory determined by the ma-
chine architecture. See Section 4.3, page 62 for details.

-redhat redhat-release - Specifies the release of the Redhat Linux operating sys-
tem you are using (different PVS binaries are required for libc5 and glibc C
libraries). PVS attempts to discover this for itself, but if the wrong binary is
chosen you can specify 4 or 5 using this argument. Note that Redhat 6 uses
the glibc libraries, which corresponds to the value 5.

-runtime - This is only needed at SRI, where the development version of the system
is used by default. With this option the runtime image is used instead.

1On some systems, /bin/sh is linked to the bash shell; this works as well.

59

60 4.1 Invoking PVS

-emacs emacsname - Specifies the Emacs to use; see below for details.

-decision-procedures new|old - Sets the default decision procedures to be used
in proofs. See Section 3.5.3, page 28 for details.

-force-decision-procedures new|old - Forces the chosen decision procedure to
be used regardless of the default decision procedure setting or which decision
procedures were used in developing a proof. Note that with this option there is
no way to switch between the new and old decision procedures.

-nw - Tells Emacs not to use its special interface to X.

-batch - Run PVS in batch mode. See chapter 5, page 65 for details.

-timeout: In batch mode, this causes typechecking and individual proof attempts to
be interrupted after the given number of seconds.

-nobg: Normally PVS starts in the background (with the & control operator). This
starts it in the foreground.

-raw: This runs PVS without Emacs. This is only useful for front ends, which must
do the same initialization as done by the Emacs interface.

-v number - Specifies verbosity level for PVS batch mode. See Chapter 5, page 65
for details.

-q - A standard emacs option to inhibit loading of the users .emacs file, but extended
in PVS to inhibit loading of the users .pvsemacs, .pvsxemacs-options and
.pvs.lisp files on startup.

-patchlevel level - Specifies which patch files to load. Level none loads no patch
files. Level rel loads the file patch2 from your PVS directory, which usu-
ally contains the release versions of PVS patches. Other valid levels are test

(loads the files patch2 and patch2-test) and exp (loads the files patch2,
patch2-test and patch2-exp). This option is mainly used for PVS develop-
ment.

Any other command-line arguments are passed directly to the underlying Emacs,
including those for X windows—these are discussed below.

In addition, the PVS script uses the environment variables PVSLISP, PVSEMACS,
and PVSXINIT, which may be set in your .cshrc or .login file to specify the defaults
you prefer. If both the environment variable and the corresponding command-line
argument are given, the command-line argument takes precedence. The PVSXINIT

variable is described in Section 4.4, page 62.

4.2 Emacs 61

4.2 Emacs

The PVS system uses Emacs as its user interface, and provides a number of files
that extend Emacs for use with PVS. For historical reasons, there are currently a
number of Emacs editors available. Because we wanted PVS to be freely available,
we have chosen to concentrate on just Gnu Emacs and XEmacs, which are also freely
available. To find out what version of Emacs you are using, start up Emacs and type
M-x emacs-version. We try to keep up with new releases of emacs and if necessary
patch files will be made available to support the new Emacs.

By default, the system uses emacs, which is assumed to be in your path when you
start up PVS. You may specify a different Emacs as specified above. When you start
PVS, is assumed (in order to supply X resources in the correct format) that if the
name of the emacs command contains the character “x” then you are using XEmacs.

PVS loads your ~/.emacs file first (assuming you have not specified the -q op-
tion as described on page 60), followed by PVSPATH /emacs/go-pvs.el, which de-
termines which version of emacs you are running and then loads the rest of the
PVS emacs files, including ILISP. At this point you may receive an error from PVS
saying that your Emacs version is unknown. PVS does not support Emacs 18 (or
earlier), but we try to keep up with new Emacs versions as they are released. Fi-
nally, the ~/.pvsemacs is loaded. If you are running XEmacs, the .pvsemacs file
will load XEmacs options from the .pvsxemacs-options file instead of the standard
.xemacs-options file, as some are incompatible with standard XEmacs.

In loading the files in this order, PVS functions and key bindings will overwrite
any conflicting ones defined in your .emacs file. .pvsemacs is the file to use to
override the key bindings and definitions given by PVS. This approach was taken to
ensure that the behavior of PVS by default follows the user guide, but can be readily
modified to suit your taste.

One file that is worth noting is the PVSPATH /emacs/emacs-src/

pvs-abbreviations.el file, where the abbreviations for many of the PVS
commands are given. You may define your own abbreviations for commands you use
a lot that don’t currently have abbreviations, by adding the appropriate lines in your
.pvsemacs file. For example, adding

(pvs-abbreviate ’show-tccs ’st)

will make M-x st an abbreviation for M-x show-tccs in addition to those already
defined. Note that you cannot redefine a name which is already in use.

If you would like to byte-compile your Emacs customizations, create a separate
file, byte-compile it, and load it from your .pvsemacs. Generally the kinds of forms
provided in a .pvsemacs file are simply variable settings and minor function defini-
tions, and are not worth byte-compiling. It is only worthwhile if a function is being
(re)defined that will be invoked noninteractively and frequently, for example, if you
want to modify the way the process filter works.

/emacs/emacs-src/pvs-abbreviations.el
/emacs/emacs-src/pvs-abbreviations.el

62 4.4 Window Systems

4.3 The PVS Image

PVS currently runs under Allegro Common Lisp on a number of different platforms.
PVS is provided as a Common Lisp image, meaning that it includes both the Lisp
runtime system and the PVS programs, so you do not need to have Allegro installed
on your system.

There is usually just one PVS image available at a given site, and if the system
is properly installed, nothing further needs to be done. If more than one image is
available, and the default one is not the desired one, then it can be specified using
either command-line arguments or environment variables. Invoking PVS with

pvs -lisp lucid -image pvs-lucid-sun4

will use the pvs-lucid-sun4 image. Note that -lisp lucid must be specified, so
that the Emacs interface can be set up properly. For linux, also see the -redhat

option on page 59.
Alternatively, the environment variables PVSLISP and PVSIMAGE may be set to get

the same effect. Note that command-line arguments take precedence.
After the PVS lisp image has started, it loads in the patch files as specified by the

-patchlevel argument and then loads the file .pvs.lisp from your home directory.
This file can be used to provide lisp customizations on a per user basis and for
overriding definitions in the patch file.

4.4 Window Systems

PVS was built primarily for the X window system, though it can be run from a
terminal interface. When run under X windows with the supported versions of Emacs,
the resource name will be set to PVS, and the window and icon names will be set to
PVS@host , where host is the host name of the system on which PVS was invoked.
These may be modified by adding command-line arguments or setting the PVSXINIT

environment variable.
You may customize the title and icon names by defining the function

pvs-title-string in your .pvsemacs file taking no arguments and returning a string
to be used as the title. This function is invoked at startup, and whenever the context
is changed. For example, the following provides the name of the pvs path, the patch
level (N for none, R for released, T for test, and E for experimental), the hostname,
and the last two components of the current context.

(defun pvs-title-string ()
(format "%s%s%s:%s/"

(trailing-components pvs-path 1)
(cond ((stringp (cadddr *pvs-version-information*)) "E")

((stringp (caddr *pvs-version-information*)) "T")

4.4 Window Systems 63

((stringp (cadr *pvs-version-information*)) "R")
(t "N"))

(let ((host (car (string-split ?. (getenv "HOSTNAME")))))
(format "@%s" host))

(trailing-components *pvs-current-directory* 2)))

For example, this might generate pvs2.3N@photon:lib/finite_sets/.
It is difficult to get a single setting for all of the Emacs versions; the following

table gives the arguments needed to set the resource, window, and icon names for the
various versions.

Emacs Resource Window Icon

emacs19 -rn -name

emacs19.29 (and later, -name

including emacs20)
xemacs -name -wn -in

Note: in emacs19, if -rn is not given, then -name is used for the resource name as
well. Emacs19.29 and later will give an error if the -rn argument is given.

The window name is the name used in the title bar of the PVS window, the icon
name is the name used in the icon, and the resource name is the name referred to
in the .Xdefault or .Xresource file that controls the defaults for X clients. An
example entry for PVS in one of these files might be

! PVS defaults

PVS.geometry: 80x63-0-0

PVS*pointerColor: Red

PVS*Font: *courier-medium-r-normal--12*

See the man pages for X and emacs, as well as the news and info pages for the version
of Emacs you are using for more details on X resources.

The PVSXINIT environment variable may be set2 to a string of command-line
arguments that are then appended to the defaults described above. You can also
change the default resource, window, and icon names, simply by adding them to
this variable (or by including them in the command-line arguments). Note that you
should make certain that the version of Emacs you are using matches the command-
line arguments as shown in the footnote. You can tell that there is a mismatch when
you start up PVS and find buffers with names matching command-line arguments,
e.g., -in or PVS@acorn.

2Generally environment variables are set in your shell startup file, e.g., .profile or .cshrc.

pvs2.3N@photon:lib/finite_sets/

64 4.4 Window Systems

Chapter 5

Running PVS in Batch Mode

To support validation runs, PVS supports a batch mode, which means that specifica-
tions and proofs being processed are not displayed. In batch mode there is no direct
interaction with PVS; it simply processes whatever files or functions are provided
and terminates after completing the last of them. PVS batch mode is built directly
on the underlying Emacs batch mode described in Section A.2 of the GNU Emacs
Manual [8].

If PVS is invoked in batch mode from a shell, then it may be interrupted (using
C-c), suspended (C-z), or run as a background job. The output may be redirected to
a file or piped to another command.1

To run PVS in batch mode, simply include the ‘-batch’ option in your call to
PVS. In addition, you should include one or more Emacs source files and/or a Emacs
or PVS function to run, using the ‘-l’ or ‘-load’ option to load a file, and the ‘-f’
or ‘-funcall’ option for a function. For example:

pvs -batch -l test.el

pvs -batch -f pvs-version

Note that the function option is severely limited, as it only allows a function name.
This means that only functions that take no arguments may be provided, for example,
pvs-version or whereis-pvs.

Running PVS in batch mode does cause your ~/.emacs file to be loaded, in
contrast to running Emacs in batch mode. If you want to suppress the loading of
your .emacs, include the ‘-q’ option, for example:

pvs -batch -q -l test.el

In batch mode PVS suppresses messages by default, though you can print your own
messages. You can also control the amount of printout using the verbose option, ‘-v’,
and providing a level number ranging from 0 to 3. The following table summarizes
the levels.

1The Emacs batch option actually sends its output to stderr rather than stdout; the pvs shell
script redirects this to stdout, as this is generally more useful and easier to work with.

65

66 5 Running PVS in Batch Mode

(pvs-message "Proving stamps2")

(change-context "~/pvs/test")

(let ((current-prefix-arg t))

(prove-pvs-file "stamps2"))

Figure 5.1: Batch File Example

level printout
0 User-defined pvs-messages only
1 Messages normally sent to the echo area and PVS errors
2 Status buffers
3 Proof replays

The pvs-message function is much like the Emacs message function, but the
message will get printed no matter what the level number is. If you want to print out
only when the level is 1 or higher, use message instead. Both take a control string
and an arbitrary number of arguments. An example is shown in Figure 5.1.

The file provided to the load option (‘-l’ or ‘-load’) is an ordinary Emacs file, and
usually has an .el extension. Inside this file you can invoke any PVS commands you
want, though many of them only make sense interactively. For example, the prove

command expects the cursor to be positioned at a given formula, which is difficult
(though not impossible) to do in batch mode. The various Tcl/Tk commands available
will not run at all because there is no X display associated with PVS running in batch
mode. The most useful commands to run in batch mode are listed in Table 5.1. In
that table, a filename is a PVS file name without the .pvs extension, a theoryname
is the name of a theory in the current context, and a directory is a Unix pathname.
These must all be given as strings (enclosed in double quotes). The length and
depth arguments are integers, and do not need any special treatment. PVS Emacs
commands are given in Emacs lisp syntax; for example,

(parse "foo")

(set-print-depth 3)

(save-context)

An example of the contents of a batch file is shown in Figure 5.1. This file
consists of three commands. It prints the message “Proving stamps2”, changes
to the ~/pvs/test context, and then reruns all the proofs of the specification file
stamps2.pvs. Note that current-prefix-arg is set to t to ensure that the proofs
are retried. This is equivalent to using C-u interactively. While PVS is running in
batch mode, two possible kinds of error may be encountered. An Emacs error comes
from badly formed batch files or nonexistent functions. These errors will cause the
system to stop immediately, and the error will be displayed if the level number is

5 Running PVS in Batch Mode 67

Command Arguments
parse filename
typecheck filename
typecheck-importchain filename
typecheck-prove filename
typecheck-prove-importchain filename
prove-theory theoryname
prove-pvs-file filename
prove-importchain theoryname
set-print-depth depth
set-print-length length
set-rewrite-depth depth
set-rewrite-length length
alltt-theory theoryname
alltt-pvs-file filename
alltt-importchain theoryname
latex-theory theoryname
latex-pvs-file filename
latex-importchain theoryname
latex-set-linelength length
change-context directory
save-context

pvs-remove-bin-files

pvs-dont-write-bin-files

pvs-do-write-bin-files

status-theory theoryname
status-pvs-file filename
status-importchain theoryname
status-importbychain theoryname
status-proof-theory theoryname
status-proof-pvs-file filename
status-proof-importchain theoryname
status-proofchain-theory theoryname
status-proofchain-pvs-file filename

Table 5.1: Commands available for validation

68 5.1 Validation Runs

(pvs-validate

"stamps2.log"

"~/pvs/test"

(pvs-message "Proving stamps2")

(set-rewrite-depth 0)

(let ((current-prefix-arg t))

(prove-pvs-file "stamps2")))

Figure 5.2: Example Use of pvs-validate

nonzero. A PVS error generates an error message (for a nonzero level number) and
abandons the current command, but allows the system to go on to the next command.

If an emacs error is encountered that reports ’entering debugger’ when run with
verbosity level 3, the full commands of the emacs debugger are available2. A useful
command to discover where your validation script encountered the error is:

e (progn (set-buffer "*Backtrace*")(buffer-string))

Another potential pitfall is that PVS may appear to hang. If this happens, try
running with verbosity level 3 as it is likely that PVS is awaiting user input (usually
a yes/no). You may respond to such prompts from the shell.

5.1 Validation Runs

A validation run is simply a batch run in which the pvs-validate macro is used
in the batch file. Given a log file name, a directory, and a sequence of PVS Emacs
commands, pvs-validate will change context to the specified directory and run the
commands, collecting the output into the log file. It then compares the new results
to the previous ones, and reports whether there were any significant differences. An
example of the use of pvs-validate is shown in Figure 5.2.

Any number of pvs-validate forms may be used, and they may be freely in-
termixed with other Emacs or PVS commands. When the sequence of commands
associated with an invocation of pvs-validate is complete, the log file is compared
to the previous version, if it exists. At this point PVS will report one of three mes-
sages:

• Nothing to compare log to - the log file has not been generated before this
run.

2See the Emacs manual[8] for details.

5.2 Example Validation Run 69

• No significant changes in log - the current run does not differ signifi-
cantly from the last one. A significant difference is one that involves more
than timing differences. For example, the message proved in 27 seconds is
not significantly different from proved in 31 seconds.

• Differences found since last run - differences were found. The following
line indicates the two log files that should be compared to see where they differ.

This is normally all the output provided by PVS while processing a pvs-validate

macro, though you can get more information by including the ‘-v’ option as described
above.

With minor exceptions, the log files contain the same information as obtained with
the ‘-v 3’ option, but only for the commands of the given pvs-validate macro. In
comparing log files, timings are ignored.3

When a difference is reported, you can find out what the differences actually are
by starting up (an interactive) PVS, and bringing up the two files in a split window.4

Then use M-x pvs-compare-validation-windows, which works much like the Emacs
compare-windows command, and will position the cursor at the point where the two
files differ. Again, differences in timing are ignored. After analyzing the difference,
you can move the pointer in each buffer to the next position where they are the same,
and run M-x pvs-compare-validation-windows again to get to the next difference.
In this way you can quickly analyze all the differences since the last validation run.

The log files are maintained under RCS [9], using the Emacs Version Control in-
terface [8]. The first time a validation run is made from a given directory, an RCS sub-
directory is created to keep the directory from being cluttered with RCS files. If this
is the first validation run for a given log file, then the log file is created and registered
to RCS. In subsequent runs, the log file is compared to the previous version, which
will have a name including the version number, for example, stamps2.log.~1.8~. If
the comparison shows no significant differences, then the file is subsequently deleted.

Note that the log files are all kept in the directory from which PVS was run,
and changing context will not affect that. This makes it easy to maintain a single
directory that controls the validation for several different contexts.

5.2 Example Validation Run

Here is an example of a validation run for a very simple specification.

3In the future we may want to compare timings and report those that are significantly different,
but in order for this to work properly we must get CPU times rather than real times, and make sure
that we are keeping track of the machine used for the previous validation run For now we are only
concerned with functional correctness.

4In detail, start up PVS, use C-x C-f to visit the first file, use C-x 2 to split the window vertically,
and then use C-x C-f again to bring in the second file.

70 5.2 Example Validation Run

5.2.1 The Specification

The specification is in the file stamps.pvs:

stamps : THEORY

BEGIN

i, n3, n5: VAR nat

stamps: LEMMA (FORALL i: (EXISTS n3, n5: i+8 = 3*n3 + 5*n5))

END stamps

5.2.2 The Validation File

The file stamps.el has the validation commands. In this case we are simply going
to reprove the formulas of the specification file (there is only one):

(pvs-validate

"stamps.log"

"~/pvs-specs/validation"

(pvs-message "Proving stamps")

(let ((current-prefix-arg t))

(prove-pvs-file "stamps")))

5.2.3 The Validation Run

Here is the validation run, with level number 1. This shows the messages that nor-
mally appear in the echo area at the bottom of the Emacs window (these messages
are sent to stdout):

% ./pvs -batch -l stamps.el -v 1

Started initializing ILISP

Finished initializing pvsallegro

Loading compiled patch file /project/pvs/patch2.fasl

Context changed to ~/pvs-specs/validation/

Checking out ~/pvs-specs/validation/stamps.log...

Checking out ~/pvs-specs/validation/stamps.log...done

PVS Version 2.3 (No patches loaded)

Context changed to ~/pvs-specs/validation/

Proving stamps

Parsing stamps

stamps parsed in 0.02 seconds

Typechecking stamps

stamps typechecked in 0.02s: No TCCs generated

Rerunning proof of stamps

Using old decision procedures

5.2 Example Validation Run 71

Proving stamps.stamps.

Proving stamps.stamps..

Proving stamps.stamps...

Proving stamps.stamps....

Proving stamps.stamps.....

Proving stamps.stamps......

Proving stamps.stamps.......

stamps proved in 2.20 real, 0.58 cpu seconds

stamps: 1 proofs attempted, 1 proved in 2.20 real, 0.58 cpu seconds

Checking out ~/pvs-specs/validation/stamps.log.~1.3~...

Checking out ~/pvs-specs/validation/stamps.log.~1.3~...done

No significant changes in stamps.log

Checking in ~/pvs-specs/validation/stamps.log...

Checking in ~/pvs-specs/validation/stamps.log...done

5.2.4 The Log File

The resulting log file stamps.log is shown here. This will be used for comparison to
in subsequent validation runs.

PVS Version 2.3 (No patches loaded)
Context changed to ~/pvs-specs/validation/
Proving stamps
Restoring theories from stamps.bin
Restored file stamps (stamps) in 0.57 seconds
Rerunning proof of stamps
Using old decision procedures

stamps :

|-------
{1} (FORALL i: (EXISTS n3, n5: i + 8 = 3 * n3 + 5 * n5))

Proving stamps.stamps.
Rerunning step: (INDUCT "i")
Proving stamps.stamps..
Inducting on i,
this yields 2 subgoals:
stamps.1 :

|-------
{1} (EXISTS (n3: nat), (n5: nat): 0 + 8 = 3 * n3 + 5 * n5)

Rerunning step: (INST + 1 1)

72 5.2 Example Validation Run

Instantiating the top quantifier in + with the terms:
1, 1,
this simplifies to:
stamps.1 :

|-------
{1} 0 + 8 = 3 * 1 + 5 * 1

Rerunning step: (ASSERT)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.1.

stamps.2 :

|-------
{1} (FORALL (j: nat):

(EXISTS (n3: nat), (n5: nat): j + 8 = 3 * n3 + 5 * n5)
IMPLIES (EXISTS (n3: nat), (n5: nat):

j + 1 + 8 = 3 * n3 + 5 * n5))

Rerunning step: (SKOSIMP*)
Repeatedly Skolemizing and flattening,
this simplifies to:
stamps.2 :

{-1} j!1 + 8 = 3 * n3!1 + 5 * n5!1
|-------

{1} (EXISTS (n3: nat), (n5: nat): j!1 + 1 + 8 = 3 * n3 + 5 * n5)

Rerunning step: (CASE "n5!1 = 0")
Case splitting on
Proving stamps.stamps...

n5!1 = 0,
this yields 2 subgoals:
stamps.2.1 :

{-1} n5!1 = 0
[-2] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------
[1] (EXISTS (n3: nat), (n5: nat): j!1 + 1 + 8 = 3 * n3 + 5 * n5)

Proving stamps.stamps....
Rerunning step: (INST + "n3!1 - 3" 2)
Instantiating the top quantifier in + with the terms:

5.2 Example Validation Run 73

Proving stamps.stamps.....
n3!1 - 3, 2,
this yields 2 subgoals:
stamps.2.1.1 :

[-1] n5!1 = 0
[-2] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------
{1} j!1 + 1 + 8 = 3 * (n3!1 - 3) + 5 * 2

Rerunning step: (ASSERT)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.1.1.

stamps.2.1.2 (TCC):

[-1] n5!1 = 0
[-2] j!1 + 8 = 3 * n3!1 + 5 * n5!1

|-------
{1} n3!1 - 3 >= 0

Rerunning step: (ASSERT)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.1.2.

This completes the proof of stamps.2.1.

stamps.2.2 :

[-1] j!1 + 8 = 3 * n3!1 + 5 * n5!1
|-------

{1} n5!1 = 0
[2] (EXISTS (n3: nat), (n5: nat): j!1 + 1 + 8 = 3 * n3 + 5 * n5)

Proving stamps.stamps......
Rerunning step: (INST + "n3!1 + 2" "n5!1 - 1")
Instantiating the top quantifier in + with the terms:
Proving stamps.stamps.......
n3!1 + 2, n5!1 - 1,
this yields 2 subgoals:
stamps.2.2.1 :

74 5.2 Example Validation Run

[-1] j!1 + 8 = 3 * n3!1 + 5 * n5!1
|-------

[1] n5!1 = 0
{2} j!1 + 1 + 8 = 3 * (n3!1 + 2) + 5 * (n5!1 - 1)

Rerunning step: (ASSERT)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.2.1.

stamps.2.2.2 (TCC):

[-1] j!1 + 8 = 3 * n3!1 + 5 * n5!1
|-------

{1} n5!1 - 1 >= 0
[2] n5!1 = 0

Rerunning step: (ASSERT)
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of stamps.2.2.2.

This completes the proof of stamps.2.2.

This completes the proof of stamps.2.

Q.E.D.
stamps proved in 19 seconds
stamps: 1 proofs attempted, 1 proved in 19 seconds

Proof summary for theory stamps
stamps..proved - complete
Theory totals: 1 formulas, 1 attempted, 1 succeeded.

Grand Totals: 1 proofs, 1 attempted, 1 succeeded.

Appendix A

Introduction to Emacs

The PVS system uses the GNU Emacs system as its user interface. To make effective
use of PVS, you must become familiar with at least the basic Emacs commands. This
section provides an introduction to Emacs that should allow you to get started in PVS
right away. This Appendix introduces enough of the basic ideas and commands of
Emacs to use PVS, but to become effective you really should consult the GNU Emacs
Manual [8]. It is also quite helpful to run through the online tutorial. To do this,
start up PVS or Emacs, type C-h t, and follow the instructions.

Emacs provides the primary interface to the PVS system. We chose Emacs as
our interface for a number of reasons. First, it is freely available, and runs on a
large number of different platforms. It is also quite popular; on Unix systems the vi

editor is probably the only editor that is used more than Emacs, but it is too limited
to use as a general-purpose interface. In particular, it has no support for running
subprocesses.

Emacs is an extremely flexible editor, and includes a built in programming lan-
guage (Emacs Lisp) which makes it easy to increase its functionality. There is a cost
associated with this. First, Emacs is rather large, and takes longer to start up than
smaller editors such as vi. Emacs is also quite complex, with a large number of
commands and associated key bindings that are not easy to learn.

Emacs is significantly different than other editors. In most editors, you start the
editor, get a file, make some changes, save the file, and exit. There is a tendency
to think in terms of “leaving” the current file in order to go to the next. To handle
multiple files in a single session usually requires extra care and some specialized
commands. For example, vi can only focus on one file at a time, with one alternate.

In Emacs multiple buffers may be open at once, and as many can be made visible
as your screen allows. Unlike other editors, buffers are not all associated with files. It
is not unusual to have over a hundred buffers associated with a single Emacs session.
It is also quite normal to have the same Emacs session up for weeks at a time.1 When

1Some people have even been known to use Emacs as their shell.

75

76 A Introduction to Emacs

you are done editing and saving a given file, you do not exit from that buffer, you
simply go on to the next one.

Unlike vi, there is no command mode. By default an Emacs buffer is in insert
mode, and most keys on the keyboard simply insert themselves. Emacs has a large
number of interactive commands, any of which may be bound to a key or key se-
quence.2 Any interactive command may be invoked by typing M-x followed by the
command. Recall that M-x is gotten by holding down the Meta- key and typing an
x. If you don’t have a key labeled Meta-, then look for and try the Alt or 3 keys.
If you really don’t have a Meta- key, then the Esc key will do, but in this case you
must release the Esc key before typing the x.

Commands may be bound to key sequences, in order to make typing easier. For
example, to page down repeatedly by typing M-x scroll-up over and over would
get quite tedious, so the key sequence C-v was bound to this command. This and
most of the key bindings of Emacs are not particularly mnemonic, but once learned
they are extremely effective. With a little practice you will find that you don’t think
about what key sequence is needed to get a particular effect—your hands just do it
automatically.

Each buffer in Emacs has an associated major mode, and any number of minor
modes. The major mode indicates what kind of a buffer it is, and generally defines
the key bindings and functions associated with the buffer. This is usually determined
from the file extension, so for example the file foo.pvs is in pvs-mode, while a file
foo.c would normally be in c-mode. Minor modes modify the major mode. Examples
include auto-fill-mode and overwrite-mode.

When you start up PVS, you will see the PVS Welcome buffer, which takes up
most of the window. Toward the bottom of the window you will see a line in inverse
video; this is the mode line. The last line of the window is the minibuffer. If you are
running Emacs version 19 (or later) under X windows, then you will see a menu line
at the top of the window, and a scroll bar to the right. If you display more than one
buffer in the window, then the bottom of each buffer will have a mode line displaying
information for that buffer. There will still be only one minibuffer, however.3

The mode line provides information relating to the buffer above it. The first
five characters indicate whether the buffer is read-only, and whether the buffer has
changed relative to the file. If you see ---%%-, then the file is read-only, and you
will not be allowed to modify it. Sometimes this is set when you have copied a file
from somewhere else, and you think you should be able to make modifications. In
that case, use the toggle-read-only command, make your changes, and save the
file. Emacs may still ask whether it should try to save the file anyway, go ahead and
answer yes in this case.

2It turns out that typing a letter key actually invokes the command self-insert-command.
3In Emacs 19 (and later versions), it is possible to have multiple windows, called frames, associated

with a single Emacs session. In this case, each frame by default has its own copy of the minibuffer.
See the Emacs manual for more details.

A.1 Leaving Emacs 77

If the mode line is 5 dashes (-----), then the file can be modified but has not yet
been changed. Once modified, the mode line changes to --**-. If you did not intend
to modify the file, then use the undo commands described below to undo your change.
If there are a few changes, you may need to repeat the undo command until they are
all backed out. If there are a lot of changes, then M-x revert-buffer may be used
to restore the buffer from the original file. The other information in the mode line
is the buffer name, possibly the time, the mode of the buffer in parentheses, and the
amount of the buffer currently displayed. Like everything else in Emacs, the mode
line is customizable; see the Emacs manual for details.

The minibuffer is used to display messages, echo longer commands as they are
typed in, and prompt for arguments. Many of these arguments support completion,
which means that you can type the start of an argument and type a TAB to have it
automatically filled in. Emacs will fill in as much as is unique, and then wait for
more input. If it is ambiguous already, Emacs will pop up a buffer with the possible
completions in it. You can force it to show all possible completions by typing a ?.
Not all arguments support completion, but it is usually worthwhile to try typing a
TAB after typing the start of an argument to see if completion is supported; if it is
then you will either get a pop up buffer or a (partial) completion of what you typed.
Otherwise you will simply get a TAB inserted.

Each buffer has associated with it a current region, which is defined by two different
locations within the buffer, called point and mark. Point is normally the cursor
position, so any of the cursor motion commands automatically move point. Mark
is not directly displayed; it is set by command, and does not move until another
mark setting command is issued. There are a large number of Emacs commands that
work on regions, though by far the most common usage is for cutting and pasting
operations.

A.1 Leaving Emacs

Command Aliases Function
save-buffers-kill-emacs C-x C-c Kill Emacs

This command exits Emacs, after first prompting whether to save each modified
file.

78 A.3 Files

A.2 Getting Help

Command Aliases Function
info C-h i Read Emacs documentation
help-with-tutorial C-h t Display the Emacs tutorial
command-apropos C-h a Show commands matching a string
describe-key C-h k Display name and documentation a key runs
describe-function C-h f Display documentation for function
describe-bindings C-h b Display a table of key bindings

These commands provide help. When you type the C-h prefix key, you are
prompted for the next key, and can type ? to find out all the possibilities—only
a few are described here.

The info command brings up a buffer containing the Emacs online documenta-
tion. Type m followed by a topic name to view the info page for that topic, or click
mouse button 2 over the highlighted name.

The help-with-tutorial command brings up an Emacs tutorial. This tutorial
is interactive, inviting you to try out the commands as it describes them. If you are
new to Emacs, you should try to go through this at least once.

The command-apropos command displays a list of those commands whose names
contain a specified substring. This is helpful if you know only part of a command
name, or suspect there is some command available for performing some task, but
do not know what it might be named. For example, you might do an C-h a on
mail to find out what mail commands are available. If you know the beginning of
a command, it is usually better to simply start typing the command and use the
completion mechanism.

The describe-key and describe-function commands provide the same infor-
mation, but one prompts for a key and the other for a command (with completion).
The key is not necessarily a single keystroke, as some keystrokes are defined to be
prefix keys. In this case the key typed so far will be displayed in the minibuffer, and
the function description will not be given until a completed key sequence has been
typed.

The describe-bindings command displays the key bindings in effect in a separate
buffer. Many of these key bindings are specific to the buffer mode, so issuing this
command from different buffers will generally lead to different results.

A.3 Files

Command Aliases Function
find-file C-x C-f Read a file into Emacs
save-buffer C-x C-s Save a file to disk

The file commands are needed to read a file into Emacs and save the changes.
The find-file creates a new buffer with the same name as the file and reads the file

A.4 Buffers 79

contents into it. Completion is available on the file name, including the directory. If
the file does not exist, then an empty buffer is created. Note that the buffer is not
the same as the file, and changes made to the buffer are not reflected in the file until
the file is saved.

The save-buffer command saves the current buffer to file. If the current buffer
is not associated with a file, you are prompted to give a file name.

A.4 Buffers

Command Aliases Function
switch-to-buffer C-x b Select another buffer
list-buffers C-x C-b List all buffers
kill-buffer C-x k Kill a buffer

The switch-to-buffer command is used to switch control from one buffer to
another. When you type the command, you will be prompted for a new buffer to
switch to, and a default will be given. If the default is the right one, simply type
the return key. Otherwise type in the name of the buffer you desire. Completion is
available. If the buffer specified does not already exist, then it is created.

The kill-buffer command is used to remove a buffer. Completion is available.
Note that some buffers have processes associated with them, and killing that buffer
also kills the associated process. In particular, the *pvs* buffer is associated with
the PVS process.

The list-buffers command lists all the buffers currently available, along with
an indication of whether the buffer has changed, its size, its major mode, and its
associated file, if any.

A.5 Cursor Motion commands

Command Aliases Function
forward-char C-f Move forward one character
backward-char C-b Move backward one character
forward-word C-f Move forward one word
backward-word C-b Move backward one word
next-line C-n Move down one line vertically
previous-line C-p Move up one line vertically
beginning-of-line C-a Move to the beginning of the line
end-of-line C-e Move to the end of the line
beginning-of-buffer M-< Move to the beginning of the buffer
end-of-buffer M-< Move to the end of the buffer

80 A.7 Search commands

These are largely self explanatory; the best way to get used to what they do is
to simply try them out. Note that, depending on your Emacs environment, you may
have appropriate key bindings for the arrow, Home, PageUp, etc. keys.4

A.6 Error Recovery

Command Aliases Function
keyboard-quit C-g Abort partially typed or executing command
undo C-x u, C- Undo one batch of changes
revert-buffer Revert the buffer to the file contents
recenter C-l Redraw garbaged screen

C-g is used if you start to type a command and change your mind, or a command
is running and you want to abort it. Sometimes it takes two or three invocations
before it has the desired effect. For example if you started an incremental search,
the first C-g erases some of the input and the second actually quits the incremental
search.

The undo command is the normal way to undo changes made to the current buffer.
If you undo twice in a row, then the last two changes are undone. In this manner
you can eventually undo all the changes made to a buffer. Once you type something
other than an undo, all the previous undo commands are treated as changes that
themselves can be undone.

If you made a large number of changes to a file buffer and simply want to go back
to the original file contents, use M-x revert-buffer. Note that if you have changed
the file and saved it, then reverting will bring back the saved version, not the earlier
one.

A.7 Search commands

Command Aliases Function
isearch-forward C-s Incremental search forward
isearch-backward C-r Incremental search backward

These search through the text for a specified string. The search is incremental in
that it starts searching as soon as a character is typed in, finding the first occurrence
of the string typed in so far. If the string can’t be found, the minibuffer changes its
prompt from I-search: to Failing I-search:. If it finds the string, but you wish
to go on to the next (previous) occurrence, type another C-s (C-r). To terminate
the search, type the Enter key, or any other Emacs command. Consult the Emacs
manual for other useful options available for search.

4As described above, you can find out what these are bound to by typing C-h k followed by the
key.

A.8 Killing and Deleting 81

A.8 Killing and Deleting

Command Aliases Function
delete-next-character C-d Delete next character
delete-backward-char DEL Delete previous character
kill-word M-d Kill word
backward-kill-word M-DEL Kill word backwards
kill-line C-k Kill rest of line
kill-region C-w Kill region
copy-region-as-kill M-w Save region a killed text without killing

These commands delete or kill the specified entities. The difference between killing
and deleting is that a killed entity is copied to the kill ring, and can be yanked later,
while deleted entities are not. The kill ring is a stack of blocks of text that have been
killed, with the most recent kills at the top. The kill ring is not associated with any
specific buffer, and in this respect acts much like a clipboard found in most window
systems.

The delete-backward-char command is frequently mapped onto the Backspace

key instead; you may need to experiment with this. If you want it mapped to the
Backspace key, it is usually easier to map it outside of Emacs, for example using the
xmodmap command. This is because by default the Backspace key and the C-h key
are indistinguishable by Emacs, and the C-h key is used for accessing various Emacs
help functions.

The kill-line command kills from the current cursor location to the end of the
line, unless it is already at the end of the line, in which case it kills the newline, thus
merging the current line with the following one.

The copy-region-as-kill command is similar to the kill-region command,
but does not actually kill any text. This is useful when trying to copy text from a
file for which you do not have write access, since Emacs will not let you modify such
a buffer without first changing its read-only status.

A.9 Yanking

Command Aliases Function
yank C-y Yank last killed test
yank-pop M-y Replace last yank with previous kill

The yank command puts the text of the most recent kill command into the buffer
at the current cursor position. Note that the usual way to move text from one place
to another in Emacs is to kill it, move the cursor to the new location, and yank it.
Because the kill ring is globally used, this works across buffers as well.

The yank-pop command may only be used after the yank command, and has the
effect of replacing the yanked text with earlier killed text from the kill ring.

82 A.10 Marking

A.10 Marking

Command Aliases Function
set-mark-command C-@, C-SPC Set mark here
exchange-point-and-mark C-x C-x Exchange point and mark

The set-mark command sets the mark to the current cursor position. Since point
is also at the current cursor position, this defines an empty region initially. As the
cursor is moved away from the mark position, the region grows. Note that the relative
positions of mark and point do not matter; the region is defined as the text between
these two positions.

C-x C-x is used to exchange the point and mark positions, moving the cursor to
where mark was last set, and setting mark to the old cursor position. Doing this
again puts mark and point back where they started. This is useful for checking that
the region is as desired, before doing any destructive operations.

Bibliography

[1] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley Pub-
lishing Company, Reading, MA, 2 edition, 1994. 1, 47

[2] John K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series.
Addison-Wesley, 1994. 48

[3] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Menlo Park, CA,
November 2001. 1, 2, 21, 23, 54

[4] Sam Owre and Natarajan Shankar. Abstract datatypes in PVS. Technical Report
SRI-CSL-93-9R, Computer Science Laboratory, SRI International, Menlo Park,
CA, December 1993. Extensively revised June 1997; Also available as NASA
Contractor Report CR-97-206264. 1

[5] John Rushby and David W. J. Stringer-Calvert. A less elementary tutorial for
the PVS specification and verification system. Technical Report SRI-CSL-95-10,
Computer Science Laboratory, SRI International, Menlo Park, CA, June 1995.
Revised, July 1996. Available, with specification files, at http://www.csl.sri.

com/csl-95-10.html. 1

[6] N. Shankar and S. Owre. The Formal Semantics of PVS. Computer Science
Laboratory, SRI International, Menlo Park, CA, August 1997. 1

[7] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, Novem-
ber 2001. 1, 11, 12, 23, 32, 33, 34, 58

[8] Richard M. Stallman. GNU Emacs Manual. Free Software Foundation, 675 Mas-
sachusetts Ave., Cambridge, MA, 13th edition, July 1997. 1, 17, 65, 68, 69,
75

[9] Walter F. Tichy. RCS—A System for Version Control. Department of Computer
Sciences, Purdue University, West Lafayette, IN, July 1985. 69

83

http://www.csl.sri.com/csl-95-10.html
http://www.csl.sri.com/csl-95-10.html

84 BIBLIOGRAPHY

Index

Auto-Rewrites buffer, 34
Proof buffer, 33
mail buffer, 43
pvs buffer, 24, 25, 38, 58
-batch command line argument, 60
-decision-procedures command line argu-

ment, 60
-emacs command line argument, 60
-force-decision-procedures command line

argument, 60
-help command line argument, 59
-lisp command line argument, 59
-nobg command line argument, 60
-nw command line argument, 60
-patchlevel command line argument, 60
-q command line argument, 60
-raw command line argument, 60
-redhat command line argument, 59
-runtime command line argument, 59
-timeout command line argument, 60
-v command line argument, 60
.bin, 53
.emacs, 61
.ppe buffer, 24, 29, 30, 40
.pvs buffer, 29, 30, 57
.pvsemacs, 51, 53, 61
.tccs buffer, 24, 29, 30, 40
3 key, 7
`, 48

Add Declaration buffer, 35
add-declaration, 34
alf, 45
ali, 45
alltt-importchain, 45
alltt-proof, 45
alltt-pvs-file, 45
alltt-theory, 45
alp, 45
alt, 45

Alt key, 7
ancestry, 33
Ancestry buffer, 34
antecedent, 11

Backspace, 81
backward-char, 79
backward-kill-word, 81
backward-theory, 19
backward-word, 79
beginning-of-buffer, 79
beginning-of-line, 79
browsing, 4
buffers

Auto-Rewrites, 34
Proof, 33
mail, 43
pvs, 24, 25, 38, 58
.ppe, 24, 29, 30, 40
.pvs, 29, 30, 57
.tccs, 24, 29, 30, 40
Add Declaration, 35
Ancestry, 34
Expanded Sequent, 34
Hidden, 34
Language Help, 19
Modify Declaration, 35
Orphaned Proofs, 31
PVS Error, 20
PVS Help, 18
PVS Log, 57
PVS Release Notes, 19
PVS Status, 55–57
PVS Welcome, 53
Proof Display, 33, 34
Proofs File, 31
Proof, 25, 29–31, 38
Prover Emacs Help, 19
Prover Help, 19
Show Proofs, 31

85

86 INDEX

Siblings, 34
View Proof, 31

C-., 54
C-@, 82
C-c ;, 19
C-c], 19
C-c C-a f, 45
C-c C-a i, 45
C-c C-a p, 45
C-c C-a t, 45
C-c C-c, 24, 35, 43, 57, 58
C-c C-f, 8, 40
C-c C-h b, 18
C-c C-h c, 18
C-c C-h e, 18
C-c C-h l, 18
C-c C-h p, 18
C-c C-h r, 18
C-c C-h s, 18
C-c C-i, 29, 31
C-c C-l f, 46
C-c C-l i, 46
C-c C-l P, 46
C-c C-l p, 46
C-c C-l s, 46
C-c C-l t, 46
C-c C-l v, 46
C-c C-p f, 26
C-c C-p i, 26
C-c C-p n, 24
C-c C-p p, 26
C-c C-p r, 24
C-c C-p s, 24
C-c C-p t, 26
C-c C-p U, 26
C-c C-p u, 26
C-c C-p X, 24
C-c C-p x, 24
C-c C-q d, 39
C-c C-q e, 39
C-c C-q f, 39
C-c C-q r, 39
C-c C-q s, 10, 39
C-c C-q t, 39
C-c C-s b, 55
C-c C-s f, 55
C-c C-s i, 55
C-c C-s t, 55
C-c C-t, 10, 21, 44
C-c h, 18

C-c p, 11, 24
C-c s, 29
C-c s p, 56
C-c x, 29
C-g, 58, 80
C-h a, 78
C-h b, 78
C-h d, 36
C-h f, 78
C-h i, 78
C-h k, 78
C-h t, 78
C-M-;, 54
C-M-\, 39
C-M-q, 39
C-SPC, 82
C-x C-c, 7, 18
C-x C-f, 8
C-x C-s, 42
C-x C-x, 82
C-x C-z, 18
C-x k, 58
C-y, 81
C-z C-g, 57
cc, 51
change-context, 51
command-apropos, 78
command-line arguments, 59
comment-region, 19
Common Lisp, 1
consequent, 11
context-path, 51
Conversion, 23
copy-region-as-kill, 81
cp, 51
current branch, 11
current context, 2
current sequent, 11
customization, 59

datatypes, 2
delete-backward-char, 81
delete-next-character, 81
delete-pvs-file, 42
delete-theory, 42
describe-bindings, 78
describe-function, 78
describe-key, 78
df, 42
DISPLAY, 48
dt, 42

INDEX 87

dump-pvs-files, 44
dump-sequents, 29

edit-proof, 29, 30
edit-pvs-dump-file, 44
Emacs, 61
emacs-version, 61
end-of-buffer, 79
end-of-line, 79
environment, see PVS environment
environment variables, 60

DISPLAY, 48
PVSEMACS, 60
PVSLISP, 60
PVSXINIT, 60, 62

exchange-point-and-mark, 82
exit-pvs, 18
Expanded Sequent buffer, 34
explain-tcc, 33

ff, 40
find-declaration, 54, 55
find-file, 78
find-pvs-file, 40
find-theory, 40
find-unbalanced-pvs, 19
forward-char, 79
forward-theory, 19
forward-word, 79
ft, 40

Gnu Emacs, 1
go-pvs.el, 61
goto-declaration, 54

help-pvs, 18
help-pvs-bnf, 18
help-pvs-language, 18
help-pvs-prover, 18
help-pvs-prover-command, 18, 37
help-pvs-prover-emacs, 18
help-pvs-prover-strategy, 18
help-with-tutorial, 78
Hidden buffer, 34
hide-body, 44

icon name, 62
ILISP, 61
imf, 42
import chain, 26
import chain subtree, 26
import-pvs-file, 42

import-theory, 42
imt, 42
info, 78
install-and-step-proof, 29
install-and-x-step-proof, 29
install-proof, 29
install-pvs-proof-file, 29
installing PVS, 1
invoking PVS, 59
isearch-backward, 80
isearch-forward, 80

judgements, 22

keyboard-quit, 80
kill-buffer, 58, 79
kill-line, 81
kill-region, 81
kill-word, 81

Language Help buffer, 19
LATEX, 15
LATEX, 1
latex-importchain, 46
latex-proof, 46
latex-proof-view, 46
latex-pvs-file, 46
latex-set-linelength, 46
latex-theory, 46
latex-theory-view, 15, 46
lf, 51
libraries, 3
list-buffers, 79
list-declarations, 54
list-pvs-files, 51
list-theories, 51
load-prelude-library, 53
load-pvs-strategies, 29
lpv, 46
lt, 51
ltf, 46
lti, 46
ltp, 46
lts, 46
ltt, 46
ltv, 15, 46

M-’, 54
M-,, 54
M-., 54
M-:, 54
M-;, 54

88 INDEX

M-{, 19
M-}, 19
M-n, 12, 36
M-p, 12, 36
M-s, 12, 36
M-w, 81
M-y, 81
Meta key, 7
Modify Declaration buffer, 35
modify-declaration, 34

new-decision-procedures, 28
new-pvs-file, 41
new-theory, 41
next-line, 79
nf, 41
nt, 41

obtaining PVS, 1
old-decision-procedures, 28
orphaned proofs, 31, 42
Orphaned Proofs buffer, 31

pa, 20
parse, 10, 20
parser, 3
ppd, 39
ppe, 39
ppf, 39
ppr, 39
ppt, 39
pr, 11, 24
prelude, 2, 40
prettyprint-declaration, 39
prettyprint-expanded, 39
prettyprint-pvs-file, 39
prettyprint-region, 39
prettyprint-theory, 39
prettyprinter, 3
previous-line, 79
prf, 26
prff, 26
prfi, 26
prfs, 26
prft, 26
pri, 26
print-importchain, 45
print-pvs-file, 45
print-theory, 45
pris, 26
prnext, 24

Proof buffer, 25, 29–31, 38
proof chain, 26
proof chain analysis, 5
Proof Display buffer, 33, 34
proof obligations, 10
proof status commands, 27
proof stepper, 38
proof tree, 11
Proofs File buffer, 31
Prototype Verification System (PVS), 1
prove, 11, 24
prove-formulas-importchain, 26
prove-formulas-importchain-subtree, 26
prove-formulas-pvs-file, 26
prove-formulas-theory, 26
prove-importchain, 26
prove-importchain-subtree, 26
prove-importchain-subtree-using-default-dp,

28
prove-importchain-using-default-dp, 28
prove-next-unproved-formula, 24
prove-proofchain, 26
prove-proofchain-using-default-dp, 28
prove-pvs-file, 26
prove-pvs-file-using-default-dp, 28
prove-tccs-importchain, 26
prove-tccs-importchain-subtree, 26
prove-tccs-pvs-file, 26
prove-tccs-theory, 26
prove-theories, 26
prove-theories-using-default-dp, 28
prove-theory, 26
prove-theory-using-default-dp, 28
prove-untried-importchain, 26
prove-untried-importchain-subtree, 26
prove-untried-pvs-file, 26
prove-untried-theory, 26
prover, 23
prover commands

assert, 12
expand, 12
flatten, 12
induct, 11
postpone, 11
skolem!, 12

Prover Emacs Help buffer, 19
Prover Help buffer, 19
proving, 5
prp, 26
prr, 24
prs, 24

INDEX 89

prt, 26
pruf, 26
prui, 26
prus, 26
prut, 26
ptf, 45
pti, 45
ptt, 45
PVS

command-line arguments, 59
environment variables, 60
icon name, 62
libraries, 3
lisp image, 62
prelude, 2
resource name, 62
window name, 62

pvs, 7
pvs, 57, 58
PVS context, 2
PVS customization, 59
PVS environment, 1
PVS Error buffer, 20
PVS Help buffer, 18
PVS language, 2
PVS Log buffer, 57
PVS Release Notes buffer, 19
PVS shell script, 59
PVS Status buffer, 55–57
PVS Welcome buffer, 53
pvs-abbreviations.el, 61
pvs-do-write-bin-files, 51
pvs-dont-write-bin-files, 51
pvs-help, 8, 18
pvs-help-bnf, 18
pvs-help-language, 18
pvs-help-prover, 18
pvs-help-prover-command, 18
pvs-help-prover-emacs, 18
pvs-help-prover-strategy, 18
pvs-interrupt-subjob, 57
pvs-load-patches, 57
pvs-log, 57
pvs-mode, 57
pvs-print-buffer, 44
pvs-print-region, 44
pvs-prover-any-command, 36
pvs-prover-apply-extensionality, 37
pvs-prover-assert, 37
pvs-prover-auto-rewrite, 37
pvs-prover-auto-rewrite-theory, 37

pvs-prover-bddsimp, 37
pvs-prover-beta, 37
pvs-prover-case, 37
pvs-prover-case-replace, 37
pvs-prover-decompose-equality, 37
pvs-prover-delete, 37
pvs-prover-do-rewrite, 37
pvs-prover-expand, 37
pvs-prover-extensionality, 37
pvs-prover-flatten, 37
pvs-prover-grind, 37
pvs-prover-ground, 37
pvs-prover-hide, 37
pvs-prover-iff, 37
pvs-prover-induct, 37
pvs-prover-induct-and-simplify, 37
pvs-prover-inst, 37
pvs-prover-inst-question, 37
pvs-prover-lemma, 37
pvs-prover-lift-if, 37
pvs-prover-many-proof-steps, 38
pvs-prover-model-check, 37
pvs-prover-musimp, 37
pvs-prover-name, 37
pvs-prover-one-proof-step, 38
pvs-prover-postpone, 37
pvs-prover-prop, 37
pvs-prover-quit, 37
pvs-prover-quotes, 36
pvs-prover-replace, 37
pvs-prover-replace-eta, 37
pvs-prover-rewrite, 37
pvs-prover-skip-one-proof-step, 38
pvs-prover-skolem-bang, 37
pvs-prover-skosimp, 37
pvs-prover-skosimp-star, 37
pvs-prover-split, 37
pvs-prover-tcc, 37
pvs-prover-then, 37
pvs-prover-typepred, 37
pvs-prover-undo, 37
pvs-prover-undo-many-proof-steps, 38
pvs-prover-undo-one-proof-step, 38
pvs-prover-wrap-with-parens, 36
pvs-release-notes, 18
pvs-remove-bin-files, 51
pvs-set-linelength, 39
pvs-set-proof-parens, 33
pvs-status, 57
pvs-strategies file, 27, 32
pvs-version, 57

90 INDEX

pvs-x-show-proofs, 51
PVSEMACS, 60
PVSLISP, 60
PVSXINIT, 60, 62

recenter, 80
redo-proof, 24
remove-prelude-library, 53
remove-proof, 29
reset-pvs, 57
resource name, 62
revert-buffer, 80
revert-proof, 29
rmail-pvs-files, 43

save-buffer, 78
save-buffers-kill-emacs, 77
save-context, 18, 51
save-pvs-buffer, 42
save-pvs-file, 42
save-some-pvs-files, 42
sc, 51
sequent, 11
set-mark-command, 82
set-print-depth, 29
set-print-length, 29
set-print-lines, 29
set-proof-backup-number, 33
set-rewrite-depth, 29
set-rewrite-length, 29
Show Proofs buffer, 31
show-auto-rewrites, 33
show-current-proof, 31, 33
show-declaration, 54
show-expanded-form, 54
show-expanded-sequent, 33
show-hidden-formulas, 33
show-last-proof, 14, 33
show-orphaned-proofs, 29
show-proof, 29
show-proof-backup-number, 33
show-proof-file, 29
show-proofs-importchain, 29
show-proofs-pvs-file, 29
show-proofs-theory, 29
show-pvs-file-messages, 22
show-pvs-file-warnings, 22
show-skolem-constants, 33
show-tccs, 10, 39
show-theory-messages, 22
show-theory-warnings, 22

siblings, 33
Siblings buffer, 34
smail-pvs-files, 43
sp, 56
spc, 56
spcf, 56
spci, 56
spct, 56
specifications, 2
spf, 56
spi, 56
spt, 15, 56
ssf, 42
starting PVS, 59
status, 5
status-display, 57
status-importbychain, 55
status-importchain, 55
status-proof, 56
status-proof-importchain, 56
status-proof-pvs-file, 56
status-proof-theory, 15, 56
status-proofchain, 15, 56
status-proofchain-importchain, 56
status-proofchain-pvs-file, 56
status-proofchain-theory, 56
status-pvs-file, 55
status-theory, 55
stb, 55
step-proof, 24
stf, 55
sti, 55
stt, 55
suspend-pvs, 18
switch-to-buffer, 79

TAB ’, 36
TAB *, 37
TAB 1, 38
TAB 8, 37
TAB =, 37
TAB ?, 37
TAB #, 38
TAB !, 37
TAB @, 38
TAB A, 37
TAB a, 37
TAB B, 37
TAB b, 37
TAB C, 37
TAB c, 37

INDEX 91

TAB C-a, 37
TAB C-h, 37
TAB C-j, 36
TAB C-q, 37
TAB C-s, 37
TAB C-t, 37
TAB C-u, 38
TAB D, 37
TAB d, 37
TAB E, 37
TAB e, 37
TAB F, 37
TAB f, 37
TAB G, 37
TAB g, 37
TAB H, 37
TAB I, 37
TAB i, 37
TAB L, 37
TAB l, 37
TAB M, 37
TAB m, 37
TAB n, 37
TAB P, 37
TAB p, 37
TAB R, 37
TAB r, 37
TAB S, 37
TAB s, 37
TAB T, 37
TAB t, 37
TAB TAB, 36
TAB U, 38
TAB u, 37
TAB x, 37
tc, 10, 21
tcc strategy, 27
TCCs, 10–11
tccs, 10, 39
tci, 21
Tcl/Tk, 48
tcp, 21
tcpi, 21
theories, 2
toggle-proof-prettyprinting, 29
type-correctness condition (TCC), 4
typecheck, 10–11
typecheck, 10, 21
typecheck-importchain, 21
typecheck-prove, 21
typecheck-prove-importchain, 21

typechecker messages, 23
typechecker warnings, 23
typechecking, 4

undo, 80
undump-pvs-files, 44
usedby-proofs, 33
user interface, 3

View Proof buffer, 31
view-library-file, 40
view-library-theory, 40
view-prelude-file, 40
view-prelude-theory, 40
vlf, 40
vlt, 40
vpf, 40
vpt, 40

welcome screen, 7
whereis-declaration-used, 54
whereis-identifier-used, 54
whereis-pvs, 57
window name, 62
write-file, 43

X windows, 62
x-prove, 24
x-prover-commands, 18, 19
x-show-current-proof, 48
x-show-proof, 48
x-step-proof, 24
x-theory-hierarchy, 48
xdvi, 15
XEmacs, 1
xpr, 24
xsp, 24

yank, 81
yank-pop, 81

	Contents
	Introduction
	A Brief Tour of PVS
	Creating the Specification
	Parsing and Typechecking
	Proving
	Status
	Generating LaTeX

	PVS Commands
	Exiting PVS
	Getting Help
	Editing PVS Files
	Parsing and Typechecking
	Parsing
	Typechecking
	Typechecking Information

	Proving
	Proving a Single Formula
	Proving Sets of Formulas
	Selecting Decision Procedures
	Editing and Viewing Proofs
	Displaying Proof Information
	Adding and Modifying Declarations
	Prover Emacs Commands
	General Commands
	Prover Commands
	Proof Stepper Commands

	Prettyprinting
	Viewing TCCs
	PVS Files and Theories
	Finding Files and Theories
	Creating New Files and Theories
	Importing Files and Theories
	Deleting Files and Theories
	Saving Files
	Mailing PVS Files
	Dumping Files

	PVS Output
	Printing Buffers and Regions
	Printing Files and Theories
	Generating alltt Output
	Generating LaTeX Output

	Display Commands
	Context Commands
	Library Commands
	Browsing
	Theory Status
	Proof Status
	Environment Commands
	Interrupting PVS

	Customizing PVS
	Invoking PVS
	Emacs
	The PVS Image
	Window Systems

	Running PVS in Batch Mode
	Validation Runs
	Example Validation Run
	The Specification
	The Validation File
	The Validation Run
	The Log File

	Introduction to Emacs
	Leaving Emacs
	Getting Help
	Files
	Buffers
	Cursor Motion commands
	Error Recovery
	Search commands
	Killing and Deleting
	Yanking
	Marking

	Bibliography
	Index

