
Higher-Order Types and
Lambda-Expressions

1



Orders of a logical system

• Predicates that speak about domain objects are of 1-st order.

• Predicates that speak about objects of at most i-th order, are

by themselves of (i + 1)-th order.

• Functions that take and return domain objects are of 1-st order.

• Functions that take and return objects of at most i-th order,

are by themselves of (i + 1)-th order.

2



Examples of constructs involving higher-order are:

induction: ∀P P (0) ∧ ∀n:Nat P (n) → P (n + 1) → ∀n:Nat P (n).

Differentiation: (x.y)′ = x′ · y + x · y′.

Statements involving functions: Every function that is 1-time

differentiable in the complex plane is infinitely often differentiable.

Abstract Mathematical Structures Interpretations, number fields,

lattices, groups.

3



λ-notation

In usual mathematical notation, there is no good way for

representing functions, as a consequence functions and formulas are

confused.

The expression x · y2 can represent infinitely many functions of

type Real → Real.

Differentation is a function of type (Real → Real) → (Real → Real).

Mathematicians, however speak of differentiating a blue formula

after a variable.

Differentiation of x · y2 after x results in y2. Differentation of x · y2

after y results in 2xy. Differentation of x · y2 after z results in 0.

4



Identifying functions and formulas causes problems. Does for

example, the rule (x · y)′ = x′ · y + x · y′ also holds for functions that

are not represented by formulas? What if you change notation?

As a consequence, some notation for functions is needed: For this

purpose, the λ-notation is used. λx:Xt[x] is the function that for

every n ∈ X, has the value t[n]. If t[x] has type Y on the

assumption that x has type X, then λx:Xt[x] has type X → Y.

5



Using λ-notation, it can be seen that there is only one

differentiation operator of type (Real → Real) → (Real → Real).

The different derivatives are obtained by different λ-abstractions:

(λx:Real x · y2)′ = λx:Real y2,

(λy:Real x · y2)′ = λy:Real x,

(λz:Real x · y2)′ = λx:Real 0.

6



The differentiation rule can now be formulated as

∀x, y:Real → Real (x · y)′ = x′ · y + x · y′.

In this expression, the + and the · are not the usual operators on

numbers of type [Real, Real] → Real, instead they are of type

[Real → Real, Real → Real] → Real.

For example, + is defined as

λf1, f2:Real → Real λx:Real f1(x) + f2(x).

7



β-Conversion 1

By definition, λx:Xt[x] is the function that, for every n ∈ X,

assumes the value t[n]. Therefore

(λx:Xt[x]) · n = t[n].

This equivalence is called β-equivalence. Applying the equality

from left to right is called β-reduction.

8



β-Conversion 2
Nothing goes without β-reduction. If one instantiates

∀x, y:Real → Real (x · y)′ = x′ · y + x · y′

by

λx:Real x, and λx:Real x2,

the result equals

((λx:Real x) · (λx:Real x2))′ =

(λx:Real x)′ · (λx:Real x2) + (λx:Real x) · (λx:Real x2)′.

β-normalization (and applying the definitions of + and ·) results in

(λx:Real x3)′ = (λx:Real x)′·(λx:Real x2)+(λx:Real x)·(λx:Real x2)′.

9



β-Conversion 3
Similarly, β-reduction is needed when applying induction.

If one instantiates in the induction axiom

∀P P (0) ∧ ∀n:Nat P (n) → P (n + 1) → ∀n:Nat P (n),

the formula

λn:Nat (λx:Real xn+1)′ = (λx:Real (n + 1).xn),

the result equals

(λn:Nat (λx:Real xn+1)′ = (λx:Real (n + 1).xn))(0)∧

∀n:Nat λn:Nat (λx:Real xn+1)′ = (λx:Real (n + 1).xn)(n) →

λn:Nat (λx:Real xn+1)′ = (λx:Real (n + 1).xn)(n + 1)

→

∀n:Natλn:Nat (λx:Real xn+1)′ = (λx:Real (n + 1).xn)(n).

10



After β-reduction, this monster equals

(λx:Real x)′ = (λx:Real 1)∧

∀n:Nat (λx:Real xn+1)′ = (λx:Real(n + 1) · xn) →

(λx:Real xn+2)′ = (λx:Real(n + 2) · xn+2) →

∀n:Nat (λx:Real xn+1)′ = (λx:Real(n + 1) · xn

One can guess why the λ-notation never got popular. Fortunately,

computers are good at making such replacements.

11



Free and Bound Variables

In the λ-term

λx:X t,

we call x the bound variable, X the type, and t the body of the

term.

The λ binds all the occurrences of x in its body. (Not in its type!)

A variable, occurring somewhere in a λ-term is bound if there is a

λ that binds it. Otherwise it is free.

12



α-Variants

Informally, two terms t1 and t2 are α-variants, if they have the

same meaning. Two λ-terms t1 and t2 are α-variants if the

following are true:

1. If somewhere in t1 there is a subterm built by ·, then at the

corresponding position in t2, there is also a subterm built by ·.

2. If somewhere in t1 there is a subterm built by λ, then at the

corresponding position in t2, there is also a subterm built by λ.

3. If a variable occurring somewhere in t1 is free in t1, then at the

corresponding position in t2 occurs the same variable, and it is

also free in t2.

4. If a variable x occurring somewhere in t1 is not free, then at the

corresponding position in t2, there is also a variable, which is

also not free, and both are bound by λ’s at the same positions.

13



Substitution

Substitution is the essentially the replacement of all occurrences of

a free variable x of a term t by some term u.

BUT Free variable of u may get caught by λ’s inside t.

THEREFORE First replace t by an α-variant, where this will

not happen. Such a variant always exists, when you have infinitely

many variables.

The notation is

t[x := u].

14



Examples of Substitution

λn:Nat (+ n m)[m := 1] equals λn:Nat (+ n 1),

λn:Nat (+ n m)[m := (+ m 1)] equals λn:Nat (+ n (+ m 1)),

λn:Nat (+ n m)[m := (+ n 1)] equals λz:Nat (+ z (+ n 1)).

The term

λn:Nat (+ n (+ n 1)).

would be a totally different function.

15



Equivalences

Based on the intended meanings of the λ-terms, a couple of

equivalence relations can be defined. They are usually called α, β, δ,

and η-equivalence. (Nobody seems to worry about the missing

γ-equivalence)

One of them we defined already, namely α-equivalence:

t1 ≡α t2

if t1 can be obtained from t2 by renaming bound variables.

16



β and η-equivalence

Another type of equivalence is β-equivalence, which is defined as

follows:

t1 ≡β t2,

if t2 can be obtained from t1 by replacing a subterm of the form

(λx:X f) · t

by

f [x := t].

η-equivalence is defined as follows:

t1 ≡η t2 if t2 is obtained from t1 by replacing a subterm of the form

(λx:X (f x))

by f. It must be the case that x is not free in f.

17



δ-equivalence

The last equivalence is δ-equivalence. It is based on expansion of

definitions. Because of this, contrary to the other equivalences, it

depends on a context C.

If context C contains a definition x := y:Y , then

t1 ≡δ t1[x := y].

If x is defined as y, then it is allowed to replace x by y.

18



α, β, δ, η-equivalence

We write

C ` t1 ≡α,β,δ,η t2

if t1 can be obtained from t2 by finitely often applying the α, β, δ, η

-replacement rules, in either direction, and on every subterm.

19



Typing Rules

We assume that the following types are given:

Form : The type of formulae.

Type : The type of types.

Kind : The type of Form and Type, needed for technical reasons.

The objects Form, Type, Kind are called sorts. We write S for the

set of sorts, that is S = {Form, Type, Kind}.

We now need the following:

1. Rules for determining the type of a λ-term if there exists one.

2. Rules for determining whether or not a context is well-formed.

20



Rules for well-formedness of Contexts

The empty context is well-formed.

DECL: If C is well-formed, x is a variable, not occurring in C,

C ` X:T , where T is a sort, then

C, x:X

is well-formed.

DEF: If C is well-formed,

C ` y:Y , and

x is a variable, not occurring in C, then

C, x := y:Y

is well-formed.

21



Rules for determining the type of a λ-term

In the rules, we implicitly assume that all contexts are well-formed.

SORT: For every context C, we have

C ` Type:Kind and

C ` Form:Kind.

AXIOM: C, x:X ` x:X.

C, x := y:Y ` x:Y .

WEAKENING: If C ` x:X, then C, D ` x:X, for every

definition or declaration D.

22



APPL: If C ` t:X, and

C ` f:Πx:X Y , then C ` (f · t): (Y [x := t]).

LAMBDA: If C, x:X ` y:Y , then

C ` (λx:X y): (Πx:X Y ).

Note that C, x:X has to be well-formed.

23



PI: If C, x:X ` Y :T , where T is a sort, then C ` (Πx:X Y ):T .

(Remember that C, x:X must be well-formed)

EQUIV: If C ` x:X1,

C ` X1 ≡αβδη X2, and

C ` X2:T , with T a sort, then C ` x:X2.

24



Sequent Calculus for Higher-Order Logic

Sequents have form Γ `C ∆, where C is a well-formed context, such

that

• C contains declarations →:Form ⇒ Form

∀:ΠX:Type (X ⇒ Form) ⇒ Form

• Each element of Γ, ∆ has type Form in C.

Formulae can be freely replaced by formulae that are

α, β, δ, η-equivalent.

25



Axioms:

(axiom)
A `C A

on the condition that C ` A:Form.

Structural Rules:

(weakening left)
Γ `C ∆

Γ, A `C ∆
(weakening right)

Γ `C ∆

Γ `C ∆, A

(contraction left)
Γ, A, A `C ∆

Γ, A `C ∆
(contraction right)

Γ `C ∆, A, A

Γ `C ∆, A

26



Rules for →:

(→ -left )
Γ `C ∆, A Γ, B `C ∆

Γ, A → B `C ∆

(→ -right )
Γ, A `C ∆, B

Γ `C ∆, A → B

27



Rules for ∀:

(∀-left)
Γ, F [x := t] `C ∆

Γ, ∀x:X F `C ∆

It must be the case that C ` t:X.

(∀-right)
Γ `C′ ∆, F [x := y]

Γ `C ∆, ∀x:X F

The y must be a variable that is not free in Γ, ∆, ∀x:X F.

C ′ has form C, y:X.

28



Natural Deduction for Higher-Order Logic

In natural deduction for HOL, the context and the assumptions are

mixed. As was the case with sequent calculus, formulae can be

freely replaced by formulae that are α, β, δ, η-equivalent.

→-introduction:

A

· · ·

B

A → B

29



→-elimination:

A

· · ·

A → B

· · ·

B

30



∀-introduction:

y:X

· · ·

F [x := y]

∀x:X F.

∀-elimination:

∀x:X F

· · ·

F [x := t]

Term t must have type X at the point where F [x := t] is

introduced.

31



Intuitionistic vs. Classical

The situation is the same as with first order logic:

• Natural Deduction defines intuitionistic Higher Order Logic.

One can obtain classical Higher Order Logic from this by

adding the law of excluded middle.

• Sequent Calculus defines classical Higher Order Logic.

Intuitionistic Higher Order Logic can be obtained by forbidding

sequents with more than one formula on the right.

32



Definition of Logical Operators in HOL

Both calculi contain only rules for ∀ and → . Other logical

operators can be defined or declared when they are needed.

The following distinction is often made:

Meta Logic The logic used for checking the proofs. Nearly always

HOL.

Object Logic The logic that the user is really interested in for

doing his proofs, expressing his theorems.

So usually, the object logic is defined in HOL, after that the theory

is defined in the object logic.

33



Embedding of FOL into HOL

First order logic can be defined in two ways:

By declaration One declares the logical operators and gives

axioms that describe their behaviour.

By definition One defines the logical operators by terms that

behave in the way the operators should.

34



Declaration of Logical Operators

⊥:Form

>:Form

¬:Form ⇒ Form

∨:Form ⇒ Form ⇒ Form

∧:Form ⇒ Form ⇒ Form

↔:Form ⇒ Form ⇒ Form

∃ :ΠD:Set P:D ⇒ Form (P ⇒ Form) ⇒ Form

≈:ΠD:Set D ⇒ D ⇒ Form

35



Axioms for Logical Operators (1)

∀P:Form ⊥ → P

>

∀P:Form (P → ⊥) → ¬P

∀P:Form P → (¬P ) → ⊥

36



Axioms for Logical Operators (2)

∀P, Q:Form P → Q → P ∧ Q

∀P, Q:Form P ∧ Q → P

∀P, Q:Form P ∧ Q → Q

∀P, Q:Form P → P ∨ Q

∀P, Q:Form Q → P ∨ Q

∀P, Q:Form P ∨ Q → ∀C:Form (P → C) → (Q → C) → C

∀P, Q:Form (P → Q) → (Q → P ) → (P ↔ Q)

∀P, Q:Form (P ↔ Q) → (P → Q)

∀P, Q:Form (P ↔ Q) → (Q → P )

37



Axioms for Logical Operators (3)

∀D:Type ∀P:D ⇒ Form ∀d:D (P d) → (∃ D P )

∀D:Type ∀P:D ⇒ Form

(∃ D P ) → ∀C:Form (∀d:D (P d) → C) → C

∀D:Type (≈ D d d)

∀D:Type ∀d1, d2:D ⇒ Form

(≈ D d1 d2) → ∀P:D ⇒ Form (P d1) → (P d2)

38



Definitions of Logical Operators

Defining the Logical Operators has the advantage that the logical

operators are invisible, because definitions can be expanded

without additional proof steps. This makes the proofs usually

shorter. Unfortunately proofs also become harder to understand.

⊥ := ΠP:Form:Form

¬ := λP: Form (P → ⊥): Form ⇒ Form

∨ := λP, Q:Form

∀R:Form (P → R) → (Q → R) → R:Form ⇒ Form ⇒ Form

∧ := λP, Q:Form

∀R:Form (P → Q → R) → R:Form ⇒ Form ⇒ Form

↔:= λP, Q:Form (P → Q) ∧ (Q → P ):Form ⇒ Form ⇒ Form

39



∃ := λD:Type λP:D → Form

∀Q:Form (∀d:D (P d) → Q) → Q

:ΠD:Type ΠP:D ⇒ Form (P ⇒ Form) ⇒ Form

≈:= λD:Type λd1, d2:D

∀P:D ⇒ Form (P d1) → (P d2):ΠD:Type D ⇒ D ⇒ Form

An alternative definition is the following:

≈:= λD:Type λd1, d2:D

∀P:D ⇒ D ⇒ Form ∀d:D (P d d) → (P d1 d2):

ΠD:TypeD ⇒ D ⇒ Form

40


