
Towards computer-assisted semantic markup of
mathematical documents

CICM 2023 - Doctoral Programme

Luka Vrečar

Supervisors: Joe Wells, Fairouz Kamareddine

Heriot-Watt University

September 5, 2023

General research aims

I Trying to make computer representations of mathematical
documents for human readers less ambiguous using semantic
markup.
I Textbooks, research papers, lecture notes, slides, etc.
I Humans can disambiguate them well “on the fly”, but

computers cannot.
I This could improve, e.g., screen readers for mathematics for

the blind, interfacing with computer systems for mathematics,
and teaching (through applications built on top of the
semantic markup).

I We need to do this with LATEX!
I It is used by most authors to typeset mathematics.
I Alternatives like MS Word or LibreOffice are not suitable.
I HTML is a possible alternative, but not in the near future. If

we want something now, it needs to be in LATEX.

STEX: a possible solution

Suppose we are trying to typeset the ambiguous P × Q
I In plain LATEX, this is achieved using $P \times Q$
I The × is overloaded. It can stand for matrix multiplication,

the Cartesian product, etc.
I STEX allows us to use specific macros to semantically mark up

the formula using, e.g., $\matrixtimes[x]{P, Q}$ or
$\cart{P, Q}$

The new STEX 3 provides a possible way to remove some ambiguity
from mathematical documents, with relative ease. However, there
is limited support for the creation of new documents, and none for
converting the millions of existing ones. Our aim is to help
facilitate the semantic markup of new and existing mathematical
documents.

Implementing basic STEX macros

In STEX 3, defining new macros is very straightforward:
I We use \symdef to define the macros:

\symdef{mult}[name=multiplication, args=2]{#1
\cdot #2}. Typing $\mult{p}{q}$ yields p · q
I We use \notation to define different notations:

\notation{mult}[x]{#1 \times #2}. Typing
$\mult[x]{p}{q}$ yields p × q

I We use \argsep for flexary arguments:
\symdef{mult}[name=multiplication, args=a]
{\argsep{#1}{\cdot}}
Typing $\mult{p,q,r}$ yields p · q · r
I Note that this \symdef overrides the definition above!

Starting out with STEX

After hearing about the new and improved STEX 3, I wanted to try
it. I hoped to improve the course materials for the Foundations 1
course at Heriot-Watt, a course about the λ-calculus.
A quick aside on the λ-calculus:
I Each term is either a variable (x , y , z), an application of 2

terms (AB), or an abstraction over a variable (λx .A)
I The three main operations we perform on terms are

α-conversion, substitution, and β-reduction
I We don’t represent terms as α-equivalence classes (and it’s

not obvious how to do that using STEX). More specifically, we
use variable names and not de Bruijn indices.

I Parentheses are used to disambiguate terms:
(λx .A)B 6= λx .(AB) = (λx .(AB))

STEX macros for the λ-calculus
We can define 3 macros and use them to semantically mark up
λ-terms as follows:
I \symdef{app}[name=application, args=2]{(#1 #2)}
I \symdef{abs}[name=abstraction, args=Bi]

{(\comp{\lambda}\argsep{#1}{ }\comp{.}(#2))}
I \symdef{var}[name=variable, args=1]{#1}

We can also define notations that give us precise control over what
pairs of parentheses appear:
I \notation{app}[nb]{#1 #2}, typeset as AB
I \notation{abs}[nob]{\argsep{#1}{}.(#2)}, typeset as

λxyz.(A)
I \notation{abs}[nib]{(\argsep{#1}{}.#2)}, typeset as

(λxyz.A)
I \notation{abs}[nb]{\argsep{#1}{}.#2}, typeset as

λxyz.A

Using the macros
The macros and notations we have just defined allow us to typeset
terms like λxyz.(xz(yz)). Examining the source code shows how it
resembles the abstract syntax tree of the term:

\abs[nb]
{x,y,z}
{\app[nb]

{\app[nb]{x}{z}}
{\app{y}{z}}

}

λ

λ

λ

@

@

zy

@

zx

z

y

x

What semantic markup can facilitate
In the case of the λ-calculus one could, for example
I Perform substitution or β-reduction on λ-terms within

documents at compilation time. This can be done with, e.g.,
Lua.

I A way to display the tree structure of λ-terms on hover. This
can be done with, e.g., JavaScript in PDF/HTML.

These are just examples, the tip of the iceberg of possible
applications.
I Performing manipulations of terms directly inside LATEX

documents could enable easy generation of multiple worked
examples for lecture notes, authors’ work could be checked for
soundness “on the fly” (the STEX IDE already has some
support for checking type correctness), etc.

I If we use a standardised way of semantic markup (such as
STEX), we can develop standardised interfaces with screen
readers, CAS, automated theorem provers, etc.

How do we get there?

I Apart from adapting document authoring workflows to use
STEX, we need to add semantic markup to the millions of
existing mathematical documents.

I Initially I tried manually constructing a context-free grammar
to parse λ-terms written in LATEX, and representing their
abstract syntax tree using STEX macros.
I This was time consuming and as such would not scale to other

areas of mathematics easily
I I started exploring the idea of somehow converting existing

STEX macros into CFG rules, and parsing documents with
those.

Automatic grammar generation: idea

Example: from
\symdef{abs}[args=ai]{\lambda \argsep{#1}{} . #2} the
following rules are generated:

abs → "\lambda" abs1list "." arg
abs1list → abs1 abs1list | abs1

Rule generation
I Each argument placeholder is replaced by arg
I Each \argsep{FOO}{sep} is turned into a separate rule of

the form FOOlist → FOO sep FOOlist | FOO

Automatic grammar generation: supporting infrastructure

I am implementing it in Python making use of parglare, a GLR
parsing library. To work, the grammar generation needs some
“supporting infrastructure”. This was all done as quick mockups
rather than general solutions.
I Formula extraction, for extracting text between math mode

delimiters (currently only $s) from LATEX documents.
I This does not handle LATEX code in math mode for typesetting

purposes, e.g., $\textcolor{red}{x} + y$ to typeset x + y ,
or laying formulas out using tables

I Macro extraction, for finding STEX macro definitions (regular
expressions matching the \symdef and \notation keywords).

I Python objects for storing information about encountered
macros and generated grammar rules.

Automatic grammar generation: where am I right now?

The approach is still in initial development. So far, I only tested it
on my macros for the λ-calculus.
I The grammars overgenerate.

I The λ-term ABCD has 8 valid parses according to the
grammar (only 1 correct since application is left-associative).

I They could possibly be restricted using other features of STEX
macros, such as types, precedence, and associativity

I It is hard to determine what STEX modules we would need to
create a grammar for parsing a given document.
I Maybe ML can be used to generate a list of suggestions for the

user.

What I need to do

Issues with the grammar generation need to be addressed.
Some form of user interface is needed for the parsing and
disambiguation.
I First we need to figure out what the most suitable interface is

(web application, IDE extension, standalone program, ...)
I Then we need to develop, test, and release it
I We should work closely with working mathematicians to suit

their use cases best
Apart from semantically marking up existing documents, we can
also explore ways of making authoring new semantically marked up
documents easier. We can possibly use some of the techniques we
use for marking up existing documents.
Then, we can turn our attention to developing other applications
that make use of semantic markup such as screen readers, those
we mentioned earlier, etc.

Questions

