A Formal Description of an Algorithm Suitable for Parsing the Language of Mathematics CICM 2025, Brasília, Brasil

Luka Vrečar, Joe Wells, Fairouz Kamareddine

Heriot-Watt University

October 10, 2025

Motivation

- ▶ The language of mathematics is ambiguous and hard to parse
- Our previous work deals with parsing mathematical documents
 - Existing GLR-based libraries proved inadequate

A Formal Description of an Algorithm Suitable for Parsing the Language of Mathematics

-Motivation

Motivation

The language of mathematics is ambiguous and hard to parse

to constitute and dust with parties on athematical
discussions.

Existing CAS hand filterine provid configure

We tried non-GLR Python parsing libraries and parglare, which is a Python GLR implementation. Even parglare proved inadequate for certain grammars.

DynGenPar - a potential solution

Stands for Dynamic Generalized Parsing

- ► The grammar can be updated during parsing dynamic
- Parses exhaustively, with any CFG generalized

Designed to parse the language of mathematics

- Part of the FMathL project at the University of Vienna
- Presented at CICM in 2011 and 2012 (Kofler and Neumaier)

We distinguish two parts of DynGenPar

Abstract definition

A non-deterministic algorithm

- ▶ finds one parse tree for an input sentence
- there is a sequence of non-deterministic choices that lead to a parse tree
- not clear how to implement the described algorithm well

C++ implementation

Deterministic and finds (supposedly) all parse trees for a given input sentence

- concurrency mechanism synchronizing on input tokens ("continuations")
- additional features like parse tree "compression", support for PMCFGs, next token constraints, etc.
- relies on outdated versions of external libraries (Qt)
- under-documented and hard to follow

A Formal Description of an Algorithm Suitable for Parsing the Language of Mathematics

-C++ implementation

C++ implementation

Deterministic and finds (supposedly) all parse trees for a given · concurrency mechanism synchronizing on input tokens

("continuations") additional features like parse tree "compression", support for

PMCFGs, next token constraints, etc.

relies on outdated versions of external libraries (Qt)

under-documented and hard to follow

The algorithm relied on Qt's implementation of data structures like lists, hash maps, etc.

- 1. Continuations represent parsing threads, which suspend when they need more symbols from the input
- 2. Once a new symbol is consumed, the thread resumes
- 3. We call them continuations because they literally continue computation where they suspended
- 4. They allow us to find all parse trees while only going through the input once

In this paper

- Created a new, more rigorous definition based on a simplified version of the implementation
 - Since our CICM submission, we simplified it further
 - ► This is the version we'll present today
 - A new paper will be available soon
- Provided an implementation that matches the definition as closely as possible
- Proved some properties of the newly-defined algorithm

Running example

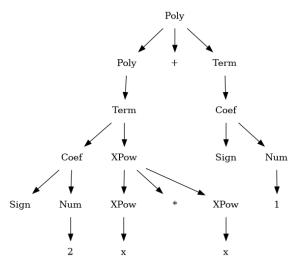
Simple grammar for polynomials

```
\begin{array}{l} \textbf{Poly} \rightarrow \textbf{Poly} + \textbf{Term} \mid \textbf{Poly} - \textbf{Term} \mid \textbf{Term} \\ \textbf{Term} \rightarrow \textbf{Coef XPow} \mid \textbf{Coef} \mid \textbf{XPow} \\ \textbf{Coef} \rightarrow \textbf{Sign Num} \\ \textbf{Sign} \rightarrow \textbf{-} \mid \varepsilon \; (\varepsilon \; \text{represents the empty string}) \\ \textbf{XPow} \rightarrow \times \mid \textbf{XPow} \; \text{* XPow} \\ \textbf{Num} \rightarrow 1 \mid 2 \end{array}
```

- ▶ Input sentence 2x * x + 1
- ▶ **Poly** is our start symbol

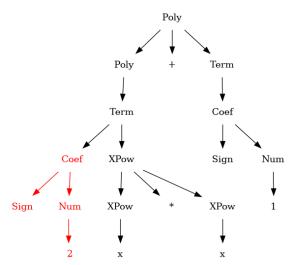
Running example

- \triangleright 2x * x + 1 is unambiguous
- ► Only (parse) tree see below
 - In this talk: an extremely abridged version of finding it



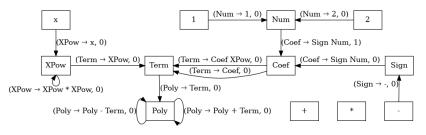
Nullable nonterminals

- lacktriangle Nullable nonterminals can parse the empty string (arepsilon)
- For our grammar, we have exactly one **Sign**



Initial graph

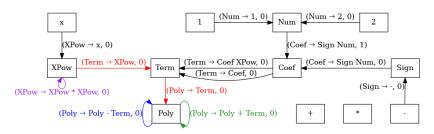
- \triangleright Symbols are nodes, edges are directed, labelled with (rule, n)
- ► Edge from, e.g., **Num** and **Coef** means we can use a tree with root **Num**, to build a tree with root **Coef**
 - Must find parse trees for all symbols on RHS of the rule
 - \blacktriangleright n tells us how many nullable nonterminals need trees that parse ε



Neighborhoods

We explore the initial graph using Kofler's notion of neighborhood

- There can be infinitely many paths between two symbols (e.g., XPow, Poly)
 - Considering complete paths is unfeasible
- Take one step along all outgoing edges, check if we can reach Poly
- Once we complete a parse tree for the first rule, consider the new neighborhood

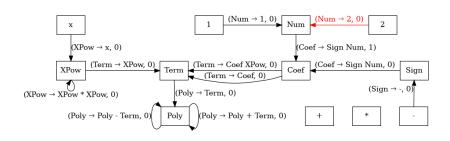


Running example - initial setup

- ▶ Start with continuation C =done Poly
- ► Main loop
 - Consume a symbol from the input, process each continuation with it
 - 2. This gives us new continuations and parse trees
 - 3. Return trees if no more input, otherwise discard them
- ▶ In the end, we have all the parse trees for the input sentence with root Poly
 - For our example, this would be just 1 tree

neighborhood(2, Poly)

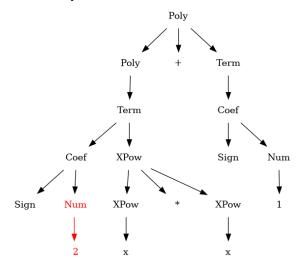
2 is the first symbol in the input, we want to build a tree with root **Poly**



Only one rule - $\mathbf{Num} \rightarrow 2$

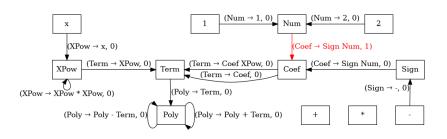
Processing 2, continued

Immediately build subtree for the rule $Num \rightarrow 2$



The subtree doesn't have root **Poly**, so turn to the initial graph again

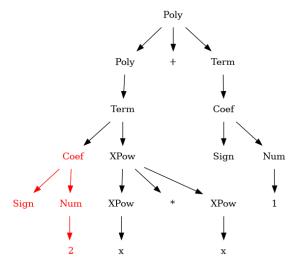
neighborhood(Num, Poly)



- ► Only one rule **Coef** → **Sign Num**
- ▶ The 1 indicates we need a parse tree for the empty string with root **Sign** (possible via the rule **Sign** $\rightarrow \varepsilon$)

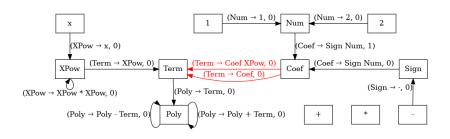
Running example - starting off

We get the following subtree



We haven't reached **Poly**, so consider *neighborhood*(**Coef**, **Poly**).

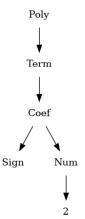
neighborhood(Coef, Poly)



- ightharpoonup Two rules: **Term** ightharpoonup **Coef** and **Term** ightharpoonup **Coef XPow**
- Computation splits to consider them both

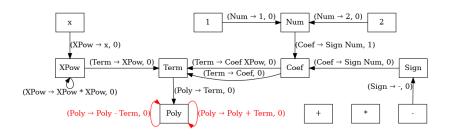
Processing 2 - considering **Term** \rightarrow **Coef**

We get the following subtree via $\textbf{Term} \to \textbf{Coef}$ and $\textbf{Poly} \to \textbf{Term}$ (it gets returned)



To account for left-recursive rules for **Poly**, consider *neighborhood*(**Poly**, **Poly**)

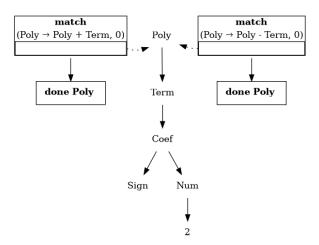
neighborhood(Poly, Poly)



Both rules require additional symbols, so parsing is suspended and new continuations are created

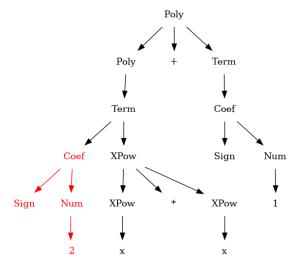
Processing 2 - considering **Term** \rightarrow **Coef**

The continuations, visualized



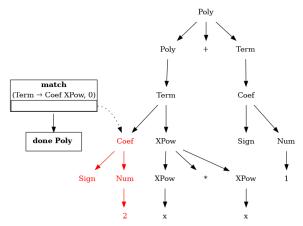
Processing 2 - considering rule **Term** → **Coef XPow**

Recall the subtree with root Coef that has already been built



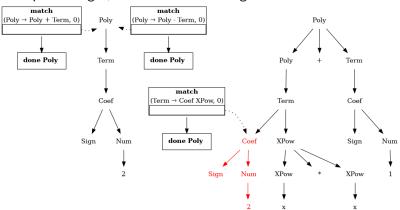
Processing 2 - considering rule **Term** → **Coef XPow**

Additional symbols are needed, so create a continuation

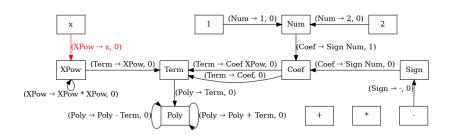


Processing 2 completed

After processing 2, we have the following



neighborhood(x, XPow)



There is one rule - **XPow** $\rightarrow x$

Processing x, continued

We have a subtree with root **XPow**

XPow

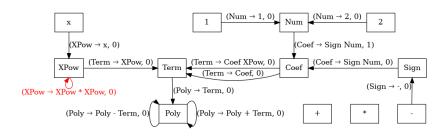
 \mathbf{x}

Two things to do with this subtree

- ightharpoonup Complete a tree for the rule **Term** ightharpoonup **Coef XPow**
 - ► This will fail, like the subtree we built when processing 2
- Consider neighborhood(XPow, XPow) to account for left recursion

Processing x - considering left recursion at **XPow**

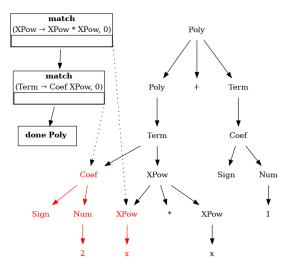
Consider neighborhood(XPow, XPow)



We get one rule - $XPow \rightarrow XPow * XPow$

Processing x - considering left recursion at **XPow**

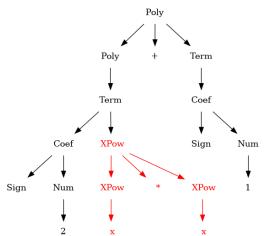
More symbols needed, create a new continuation



Completing the subtree for the rule

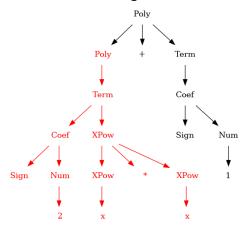
$XPow \rightarrow XPow * XPow$

Consuming more symbols, attach leaf tree for * and another tree with root \mathbf{XPow} to complete the tree



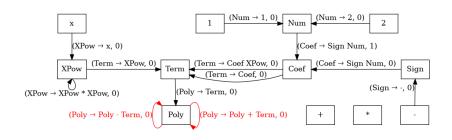
Processing the second x - building a tree for **Poly**

We build the following subtree



Account for left recursion at **Poly**, so consider neighborhood(**Poly**, **Poly**)

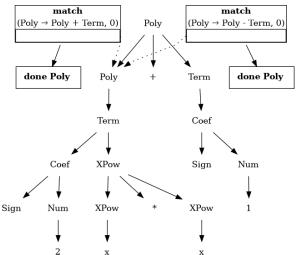
neighborhood(Poly, Poly) - a reminder



We have two rules for which we create continuations

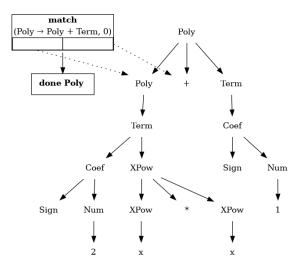
Processing the second x - finishing up

We have two continuations, the right one will get discarded



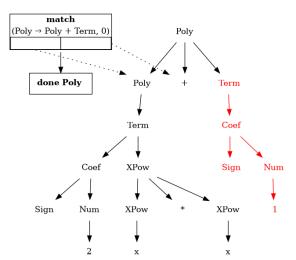
Processing +

Consume + from the input, attach its leaf tree to the continuation



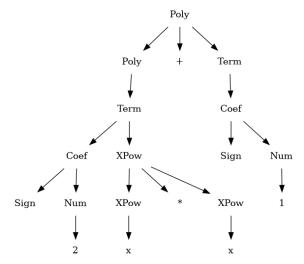
Completing the parse tree

We consume 1 from the input, and build a subtree with root **Term** (via **Num** \to 1, **Coef** \to **Sign Num**, and **Term** \to **Coef**)



The full parse tree for 2x * x + 1

We have completed the parse tree!



A Formal Description of an Algorithm Suitable for Parsing the Language of Mathematics

The full parse tree for 2x * x + 1

The full parse tree for 2x * x + 1We have completed the passe tree!

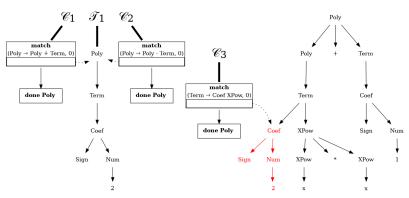
Note: The particular part

So is this!

Why we know the algorithm works

- ▶ Let C be a continuation that has been createad by processing k input symbols
- ▶ Let T_k be the set of all trees described by C
- ▶ Processing C with the k + 1-th symbol gives us new continuations and trees
- \triangleright Continuations and trees partition T_k
- For every completed parse tree there is a unique sequence of continuations that produces it

Recall the tree and continuations we obtained by processing 2



Set of all parse trees with root Poly

Image is not to scale.

Set of all parse trees with root Poly

(ot	otained by	processing	g done Po	oly with 2	2)	

Image is not to scale.

Set of all parse trees with root **Poly**

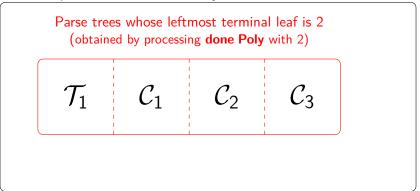


Image is not to scale.

A new implementation

- ▶ Needs only the Python standard library
- Optional detailed logging capabilities
 - helped us develop the proofs
- Matches the definition as closely as possible
 - Some changes were made for efficiency
- Freely available with some examples and utilities
 - https://github.com/LVrecar/dyngenpar

Future work

- Formalization of the algorithm with a proof assistant
- ► Add parse tree/continuation compression (for improved efficiency with ambiguous input)
- Explore the time and space complexity of the algorithm
- Other extensions included in Kofler's original implementations should be considered (e.g., PMCFGs)