
Towards computer-assisted semantic markup of
mathematical documents

Year 1 progression talk

Luka Vrečar

Heriot-Watt University

June 13, 2023

Introduction

I The language of mathematics (LoM) is the language used
when producing mathematical documents

I Many attempts at computerising it
I Full of ambiguities!
I We usually typeset P × Q using $P \times Q$

I Is this a matrix product or a Cartesian product?
I We can use STEX — a LATEX macro package for semantic

markup — instead
I $\cart{P, Q}$ vs. $\matrixtimes[x]{P, Q}$

I I hope to develop ways of automatically adding STEX
I This can improve learning materials as well

The language of mathematics (LoM)

I The language used in mathematical documents
I In depth analysis by Ganesalingam and Iancu
I I will focus on the symbolic part — it has a clearer structure,

and precise definitions so I’m hoping it will be easier to work
with

Attempts at computerising the language of mathematics

Representations of LoM
I Controlled natural languages (CNLs) — MathNat, ForTheL
I Discourse representation structures (DRS) — used in

Ganesalingam’s work
Software making use of these representations
I Proof assistants — Isabelle, Mizar, Coq, Lean, ...
I Proof checkers — Naproche, Naproche-SAD, ...

Machine learning (ML)

I Could be used for processing text, lots of recent progress in
natural language processing

I There have been attempts at using ML for working with LoM
I Müller and Kaliszyk tried to disambiguate symbolic formulas

and using STEX to represent output
I Pagel and Schubotz tried to infer the meaning of symbols in a

formula using surrounding text
I Hutterer tried generating suggestions for what STEX macros to

use when typesetting formulas
I I lack experience with ML and would need to spend time

learning it
I ML is probability-based so unsuitable on its own (even

educated guesses aren’t enough for mathematical truths)
I Could be useful for generating suggestions for the user

Semantic markup

I Encoding the meaning of objects into the objects themselves
I Recall P × Q — $P \times Q$
I Meaning encoded within the formula — $\cart{P, Q}$

In LATEX we can do this using STEX

STEX — about

I A package for defining semantic macros in LATEX
I First released in 2008, but it was hard to use

I Difficult setup
I Complex internal dependency structure

I Major rework in 2022 to fix these issues
I Includes the Semantic Multilingual Glossary of Mathematics

(SMGloM) — a library of macros for many areas of
mathematics

STEX — usage

Defining new macros
I We can write a × b as $a \times b$, but this can be

ambiguous!
I Instead we can define an STEX macro —

\symdef{realmult}[args=2]{#1 \times #2}
I Now we can write a × b as $\realmult{a}{b}$

However...

STEX — usage

This is not practical!
I What if we wish to write a × b × c × d? Instead of using

many \realmult calls, we use flexary arguments
I Redefine the macro to

\symdef{realmult}[args=a]{\argsep{#1}{\times}}
I Now we can write a × b × c × d as $\realmult{a,b,c,d}$

Other features
I Defining new notations —

\notation{realmult}[dot]{\argsep{#1}{\cdot}}
Using $\realmult[dot]{a,b,c,d}$ produces a · b · c · d

The λ-calculus — introduction

We use it as a testing ground for implementations
I Developed by Alonzo Church in the 1930s
I Turing-complete model of computation
I Relatively simple — only 3 “building blocks”
I This will not be a formal introduction

The λ-calculus — basic definition

I We use x , y , z to range over V ::= v | x ′

I V is countably infinite
I We use A, B, C to range over Λ ::= x | AB | λx .A
I Each term is either a variable, application, or abstraction
I (λx .(xy)), z, and ((xy)z) are all terms
I We use brackets to disambiguate the structure, but that can

be difficult to read

The λ-calculus — notational conventions

Notational conventions
I Parentheses around application can be dropped — (AB) = AB
I Application is left-associative — ((AB)C) = ABC
I The scope of an abstraction extends as far to the right as

possible
I Multiple “nested” abstractions can be written with just one λ

and dot — (λx .(λy .(λz.(A)))) = (λxyz.(A))
The terms xyz and λx .xy as trees

@

z@

yx

λ

@

yx

x

The λ-calculus — operations

We define two operations here (there are more)
I Substitution — A[x := B] replaces all free occurrences of x in

A by B
I Example: (λx .(xy))[y := z] gives (λx .(xz))

I β-reduction — represents “computation”
I (λx .(A))B → A[x := B]

I Example: (λx .(xy))z → (xy)[x := z] which gives (zy)

An STEX module for the λ-calculus

Motivation
I STEX macros for the λ-calculus did not exist before
I Potentially useful for the Foundations 1 course (a course

exclusively about the λ-calculus)
I Learning experience for using STEX

An STEX module for the λ-calculus — implementation

Implementation
I I implemented 3 macros: \app, \abs, \var
I Needed support for notational conventions
I I added 9 notations — some of them are used in tandem

\app[nb]{A}{B} AB
\abs[nb]{x}{A} λx .A
\abs[nob]{x}{A} λx .(A)
\abs[nib]{x}{A} (λx .A)
\abs[nb-nodot]{x}{A} λxA
\abs[nib-nodot]{x}{A} (λxA)
\abs[nested]{x}{A} x .A
\abs[nested-nodot]{x}{A} xA
\abs[full]{x}{A} (λx .(A))

\abs[nb-nodot]{x}{\abs[nested-nodot]{y}{\abs[nested]{z}{A}}}
to typeset λxyz.A

An STEX module for the λ-calculus — redesign

There were issues
I It was impractical — many notations, needed 3 different ones

for typesetting λxyz.A
I \abs[nested-nodot]{x}{y} and \app[nb]{x}{y} look

identical when typeset — could be ambiguous
I started redesigning the macros for better usability
I \abs now uses flexary arguments — \abs{x, y, z}{A}
I Unresolved issues with balanced brackets when using the “full

notation” e.g., (λx .(λy .(λz.(A))))
I Unfinished, but plan to finalize the changes soon

A motivating example

Suppose you’re writing a document on the λ-calculus
I Automatic removing of brackets, showing steps in

substitutions and β-reductions
I Having it done automatically with macros inside LATEX would

be convenient
Example

\removeBrackets{(λx .(xy))} λx .xy

\betaReduce{(λyz.z(yz))(λx .x)} (λyz.z)(yz)(λx .x) ≡β

λz.z((λx .x)z) ≡β

λz.z(λx .x)z ≡β

λz.zz

I created something similar — lambda-calculus.lua

lambda-calculus.lua — implementation

Implemented in Lua — easy interface with LATEX via macros
Current functionality
I Converting STEX macros to trees

I Operating on trees is easier than on strings of macros
I Performing substitution and β-reduction on the trees

I Substitution returns just the end result of the computation
I β-reductions returns a list of all the steps

I Applying notational conventions
I This always tries to minimize the number of brackets that are

needed and “compresses” nested abstractions
Note: it needs to be updated due to the λ-calculus macro redesign
and STEX updates

lambda-calculus.lua — discussion

I Requires the use of STEX macros
I Showcases advantage of using semantic macros in documents
I Potential application in the Foundations 1 course
I Substitution and notational conventions aren’t applied step by

step (just the end result is returned)
I Upgrades — more β-reduction strategies, de Bruijn indices

A grammar for parsing human-written λ-calculus

Motivation
I STEX is required to use lambda-calculus.lua
I Manual conversion of formulas to STEX macros takes time
I Automated parsing might be a solution

Found pyparsing, a parsing library for Python
I Comes with its own grammar syntax and parser
I I’m profficient in Python — easier to build stuff with

pyparsing

A grammar for parsing human-written λ-calculus

I Created a grammar that can
parse human-written
λ-terms

I Proof of concept, only works
in a controlled environment

I Used it on small documents
— created modified copies
with “STEX-ified” formulas

lexp → app | term
app → term term
term → var | abs | parexp
abs → lam binder . lexp
lam → λ | \lambda
binder → binder var | var

var → [a-z][0-9']∗

parexp → (lexp)

A grammar for parsing human-written λ-calculus

Discussion
I Creating the grammar took a long time
I It didn’t accurately reflect the typesetting of a term, only its

structure
I It only worked in a controlled environment (no subscripts in

variable names, or handling of typesetting-only LATEX code)
Not used in future work, also due to pyparsing drawbacks

Switch from pyparsing

pyparsing proved inadequate for several reasons
I Not exhaustive — not good for ambiguous grammars
I No backtracking — parsing success depends on the order in

which rules are applied
I searched for another Python library so I could reuse some code
I Focus on GLR-based libraries — exhaustive parsing
I Tried GLRParser

I No extensive documentation
I Terminals could not be capitalised (which is needed in

mathematics)
I Found parglare

parglare

I Supports LR and GLR parsing
I Comes with a grammar syntax with potentially useful extra

functionality such as rule priorities and attaching meta-data
I Ignores whitespace in input sentences — like TEX’s math

mode
I Extensive documentation and still updated

Made the switch when working on automatic grammar generation

Automatic grammar generation

Motivation
I Manual creation takes lots of time
I Lots of STEX macros already exist to represent output

Current idea
I Create a grammar from STEX macros
I Parse documents with it, produce STEX equivalents of formulas

Neither of these ideas are final and might change

Automatic grammar generation — implementation

Supporting infrastructure
I Extracting formulas from .tex files

I Currently only $s, will add support for other delimiters in the
future

I Finding macro definitions in an STEX module
I Currently focused on STEX definitions, support for user-defined

macros is planned for the future
I Definition objects to store information

I Used for storing information about definitions extracted from
macros

I Keeps track of the name, any notations, stores the LATEX
source code and the grammar rules generated from it

Automatic grammar generation — implementation

Rule generation
I Each argument placeholder is replaced by arg
I Each \argsep is turned into a separate rule of the form

exlist → ex exlist | ex
Example:
\symdef{abs}[args=ai]{\lambda \argsep{#1}{} . #2}
generates the following rules:

abs → "\lambda" abs1list "." arg
abs1list → abs1 abs1list | abs1

Automatic grammar generation — implementation

Grammar generation and parsing
I Rules are converted to parglare syntax
I A rule is added for arg — each non-terminal can be on the

right side (e.g., arg → abs)
I Rules with just one arg are converted into regular expressions

instead
I Parsing small example sentences and finding all parses

Automatic grammar generation — discussion

Drawbacks
I The grammars overgenerate — xyzw generates 8 parse trees,

but only 1 is correct
I The arg rule is too broad — not everything can be an

argument to everything else
I Regular expressions are temporary and unsuitable for arbitrary

LATEX
I Potentially we could use more information provided by macro

definitions (types, precedence, associativity)
In the future we will likely need to work with a TEX parser to
handle user-defined macros and other math-mode delimiters

Future work

I Finishing the rework of the STEX module for the λ-calculus
I Updating lambda-calculus.lua to work with the new STEX

module
I Creating a demonstration for interested users
I Figuring out improvements for all the mentioned drawbacks

Questions

	Introduction and motivation
	The language of mathematics
	Attempts at computerising mathematics
	
	-calculus
	Work done
	An module for the -calculus
	lambda-calculus.lua
	A grammar made with pyparsing
	An approach to automatic grammar generation

	Future work

