
Towards computer-assisted semantic markup of
mathematical documents

Year 2 progression talk

Luka Vrečar

Heriot-Watt University

June 20, 2024

Introduction

I Documents written in LATEX often contain ambiguous formulas
(e.g., $P \times Q$).

I We can disambiguate them with STEX (e.g., $\cart{P}{Q}$).

I Other advantages - interaction with computer algebra systems,
interactive theorem provers, screen readers, etc.

I Semantic markup via STEX (“STEX-ification”) is more involved,
so I hope to somewhat automate the process.

Proposed approach

For a given document we wish to STEX-ify:
1. Identify which macros are needed and define any missing ones.
2. Generate a context-free grammar.
3. Parse all the formulas in the document with the grammar

from step 2.
4. Disambiguate any ambiguous parses with a graphical user

interface (GUI).
5. Create a copy of the original document, with formulas

replaced by their STEX counterparts.

New macros for λ-terms

I I designed some macros for λ-terms in Year 1.
I They have been improved using STEX features like type and

precedence
I There are now fewer notations, which makes them easier to

use
\symdef{var}[name=variable, args=1,

type=\varSet]{#1}↪→

\symdef{abs}[name=abstraction, args=ai,
prec=51;\infprec x\infprec,
type=\funspace{\varSet,
\setOfLambdas}{\setOfLambdas}]{\maincomp{ c

\lambda}\argsep{#1}{}\comp{.}#2}

↪→

↪→

↪→

↪→

\symdef{app}[name=application, args=2,
prec=50;50x49, type=\funspace{\setOfLambdas,
\setOfLambdas}{\setOfLambdas}]{#1 #2}

↪→

↪→

Grammar generation - initial approach

1. Find STEX macro definitions and replace argument
placeholders with a special nonterminal, arg.

2. Create a main rule, with arg on the LHS and all other
nonterminals on the RHS.

3. Add a simple text-recognizing regex if all else fails
Macro definition Grammar rule
\symdef{var c

}[args=1]{#1}
var → arg

\symdef{app c

}[args=2]{#1 #2}
app → arg arg

\symdef{abs c

}[args=2]{ c

\lambda#1.#2}

abs → “\lambda′′ arg “dot′′ arg

Main rule arg → var | app | abs | [a-z]+?

Grammar generation - issues with the initial approach

I The grammars would over-generate, i.e., they produced many
non-sensical trees

I Assuming anything can be an argument to any macro does
not make sense mathematically

I For abstraction for example, the first argument should only be
a variable

Grammar generation - general improvements

There are some improvements I made to the initial approach
I Information is extracted from semantic macros more reliably

using latexwalker, a Python library for parsing LATEX
snippets

I The generation of rules is more systematic
I Each semantic macro has its own “main” rule, which expands

into all the individual notation rules (which then have
argument placeholders replaced with arg)

Grammar generation - adding types
I Some macro definitions also contain types
I \symdef{natplus}[args=2, type=\funspace{\Nat,

\Nat}{\Nat}]{#1 + #2}
I This macro has type N× N → N - it takes in two natural

numbers (input types) and returns a natural number (output
type)

I We can restrict grammar rules by matching output types with
arguments of the correct input type for each notation rule

natplus → natArg1 + natArg2
natArg1 → natType
natArg2 → natType
natType → natplus | . . .

Grammar generation - adding types

I Not a lot of macros actually provide types, so we need a
different solution

I Possibly, we can create an interface for editing grammars
where users can select which macros can be arguments to
other macros

I In this way we add types to macros in a more “loose” sense

Grammar generation - adding precedence

I We can add precedence to macros for things like automated
bracketing

I We can use them as precedences during parsing, but they
must be remapped first

I STEX precedences go from −232 (highest precedence) to 232

(lowest precedence) with a default of 0
I parglare precedences are non-negative integers with a

default of 10

Grammar generation - issues and improvements

I Grammars sometimes contain cycles, which parglare cannot
work with
I We can address this with a different parser, like DynGenPar

I There is currently no way to generate a grammar from more
than one STEX archive at a time - addressed in future work

I Grammars must sometimes be manually edited
I Improving the code might solve this to some extent
I Developing an interface for creating/merging/editing

grammars will also help

A GUI for disambiguation during parsing - motivation

I Formulas may parse ambiguously, and comparing terminal
printouts is not easy

I We can visualise all parses side by side in a nicer way
I This tool can then evolve into a program for all steps of

STEX-ification, from grammar generation to producing the
actual STEX-ified documents

A GUI for disambiguation during parsing - design

1
2

3

4

5

6

7

8

A GUI for disambiguation during parsing - tree visualisation

abs
varlist

var
x

var
y

app
var

x
var

y

abs
varlist

var
x

var
y

app
var

x
var

y

A GUI for disambiguation during parsing - example

I will now show the GUI in practice on a small example file

A GUI for disambiguation during parsing - improvements

I Currently, it is hard to use it with large complex formulas
I Adding more compact visualisations
I Joining parse trees as much as possible

I “α-equivalent” formulas must be disambiguated separately
(e.g., λx .xy and λy .yz)

I Context is important, but the GUI just shows formulas
I Show a PDF with highlighted ambiguous formulas that users

can click on to show parse trees

DynGenPar - introduction

I Developed by Kevin Kofler as part of the FMathL project
I Studied it for my BSc

I The C++ implementation is very different from the description
in Kofler’s PhD thesis

I The description was for a non-deterministic algorithm that
made random choices during parsing

I The implementation used continuation-passing style to
concurrently explore all possible parses

I I extracted a minimal core and produced a more formal
description of the implementation

I It could be useful for cyclic grammars, so I translated it fom
C++ to Python

DynGenPar - comparison to GLR

I Similar to GLR, but replaces parsing tables with an initial
graph

I The graph connects symbols of a grammar based on whether
a rule connects them

S → Task Expr
Task → min | max
Expr → Expr + Term | Term
Term → Term * Factor | Factor
Factor → x

DynGenPar - translation into Python

I Needed a translation from C++ to Python
I It interfaces easier with my other code
I My understanding of the algorithm has improved
I Possible formalisation in the future?

I It was not trivial
I Started with the minimal implementation
I I removed some more things that were not necessary (a parent

StackItem class, for example)
I Had to replace GOTOs by restructuring some parts of the code
I Python does not have pointers, so I had issues with memory

sharing, which I solved with deep copies
I This affects performance, but not noticeably enough for a

program which requires human interaction

DynGenPar - improvements

I The parser is missing some features that parglare has, like
precedences and parse actions

I I want to add more ways to provide tokens to the parser, and
a tokenizer (for our particular use case, this could be done
with latexwalker)

