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A CONSTRUCTION OF SUBSHIFTS AND

A CLASS OF SEMIGROUPS

TOSHIHIRO HAMACHI AND WOLFGANG KRIEGER

Abstract. Subshifts with property (A) are constructed from a class of di-
rected graphs. As special cases the Markov-Dyck shifts are shown to have
property (A). The R-graph semigroups, that are associated to topologically
transitive subshifts with Property (A), are characterized.

1. Introduction

Let Σ be a finite alphabet, and let S be the shift on the shift space ΣZ,

S((xi)i∈Z) = (xi+1)i∈Z, (xi)i∈Z ∈ ΣZ.

An S-invariant closed subset X of ΣZ is called a subshift. For an introduction to
the theory of subshifts see [Ki] or [LM]. In [Kr2] a Property (A) of subshifts was
introduced that is an invariant of topological conjugacy. Also in [Kr2] a semigroup
was constructed that is invariantly attached to a subshift with property (A). Pro-
totypes of subshifts with Property (A) are the Dyck shifts [Kr1]. To recall the
construction of the Dyck shifts, let N > 1, and let α−(n), α+(n), 0 ≤ n < N, be
the generators of the Dyck inverse monoid (the polycyclic monoid [NP]) DN , that
satisfy the relations

α−(n)α+(m) =

{
1, if n = m,

0, if n 6= m.

The Dyck shifts are defined as the subshifts

DN ⊂ ({α−(n) : 0 ≤ n < N} ∪ {α+(n) : 0 ≤ n < N})Z

with the admissible words (σi)1≤i≤I , I ∈ N, of DN , N > 1, given by the condition
∏

1≤i≤I

σi 6= 0.(1)

The Dyck inverse monoid DN is associated to the Dyck shift DN .
We recall from [Kr4] the notion of a partitioned directed graph and of an R-

graph. Let there be given a finite directed graph with vertex set P and edge set E .
Assume also given a partition

E = E− ∪ E+.

With s and t denoting the source and the target vertex of a directed edge we set

E−(q, r) = {e− ∈ E− : s(e−) = q, t(e−) = r},

E+(q, r) = {e− ∈ E+ : s(e+) = r, t(e+) = q}, q, r ∈ P.

We assume that E−(q, r) 6= ∅ if and only if E+(q, r) 6= ∅, q, r ∈ P, and we assume
that the directed graph (P, E−) is strongly connected, or, equivalently, that the
directed graph (P, E+) is strongly connected. We call the structure (P, E−, E+) a
partitioned directed graph. Let there further be given relations

R(q, r) ⊂ E−(q, r)× E+(q, r), q, r ∈ P,
1
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and set
R =

⋃

q,r∈P

R(q, r).

We call he resulting structure, for which we use the notation GR(P, E−, E+). an
R-graph.

We also recall the construction of a semigroup (with zero) SR(P, E−, E+) from
an R-graph GR(P, E−, E+) as described in [Kr4]. The semigroup SR(P, E−, E+)
contains idempotents 1p, p ∈ P, and has E as a generating set. Besides 12

p = 1p, p ∈
P, the defining relations are:

f−g+ = 1q, f− ∈ E−(q, r), g+ ∈ E+(q, r), (f−, g+) ∈ R(q, r), q, r ∈ P,

and

1qe
− = e−1r = e−, e− ∈ E−(q, r),

1re
+ = e+1q = e+, e+ ∈ E+(q, r), q, r ∈ P,

f−g+ =

{
1q, if (f−, g+) ∈ R(q, r),

0, if (f−, g+) /∈ R(q, r), f− ∈ E−(q, r), g+ ∈ E+(q, r), q, r ∈ P,

and
1q1r = 0, q, r ∈ P, q 6= r.

We call SR(P, E−, E+) an R-graph semigroup.
Special cases are the graph inverse semigroups of finite directed graphs G =

(P, E◦) ([AH],[L, Section 10.7.]). With the edge set E−
◦ = {e−◦ : e◦ ∈ E◦} of a copy

of (P, E◦), and with the edge set E+ = {e−◦ : e◦ ∈ E◦} of the reversal of (P, E◦), the
graph inverse semigroup SG of (P, E◦) is the R-graph semigroup of the partitioned
graph (P, E−

◦ , E
+
◦ ) with the relations

R(q, r) = {(e−◦ , e
+
◦ ) : e◦ ∈ E◦, s(e◦) = q, t(e◦) = r}, q, r ∈ P.

For the R-graph semigroups with underlying graph a one-vertex graph see also
[HK, Section 4].

In [HI] a criterion was given for the existence of an embedding of an irreducible
subshift of finite type into a Dyck shift and this result was extended in [HIK] to a
larger class of target shifts with Property (A). These target shifts were constructed
by a method that presents the subshifts by means of a suitably structured irre-
ducible finite labeled directed graph with labels taken from the inverse semigroup
of an irreducible finite directed graph, in which every vertex has at least two incom-
ing edges. This method was extended in [Kr4] by the use of R-graph semigroups.
Following [HIK, Kr4] we describe this construction. Given an R-graph semigroup
SR(P, E−, E+), denote by S−

R(P, E−)(S+
R(P, E+)) the subset of SR(P, E−, E+) that

contains the non-zero elements of the subsemigroup of SR(P, E−, E+) that is gen-
erated by E−(E+). Let there be given a finite strongly connected labeled directed
graph with vertex set V and edge set Σ, and a labeling map λ that assign to every
edge σ ∈ Σ a label

λ(σ) ∈ S−
R(P, E−) ∪ {1p, p ∈ P} ∪ S+

R(P, E+).(G 1)

The label map λ extends to finite paths (σi)1≤i≤I in the graph (V ,Σ) by

λ((σi)1≤i≤I) =
∏

1≤i≤I

λ(σi).

Denoting for p ∈ P by V(p) the set of V ∈ V such that there is a cycle (σi)1≤i≤I , I ∈
N, in the graph (V ,Σ) from V to V such that

λ((σi)1≤i≤I) = 1p,

we require the following conditions (G 2 - 5) to be satisfied:
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V(p) 6= ∅, p ∈ P,(G 2)

(G 3) {V(p) : p ∈ P} is a partition of V ,

(G 4) For V ∈ V(p), p ∈ P, and for all edges σ that leave V,1pλ(σ) 6= 0, and for all
edges σ that enter V, λ(σ)1p 6= 0,

(G 5) For f ∈ SR(P, E−, E+), q, r ∈ P, such that 1qf1r 6= 0, and for U ∈ V(q),W ∈
V(r), there exists a path b in the labeled directed graph (V ,Σ, λ) from U toW such
that λ(b) = f .

A finite labeled directed graph (V ,Σ, λ), that satisfies conditions (G 1 - 5),
gives rise to a subshift X(P,Σ, λ) that has as its language of admissible words
the set of finite paths b in the graph (V ,Σ, λ) such that λ(b) 6= 0. We call
the subshift X(P,Σ, λ) an SR(P, E−, E+)-presentation. Using the identity map
idE−∪E+ on E− ∪E+ ⊂ SR(P, E−, E+) as label map, one obtains particular cases of
SR(P, E−, E+)-presentations that we denote byX(E−∪E+,P, idE−∪E+). In the case
of the inverse semigroups SG of strongly connected finite directed graphs G these
SG-presentations are Markov-Dyck shifts [M]. Also the Markov-Motzkin shifts [KM]
of strongly connected finite directed graphs G are SG-presentations.

Given finite sets E− and E+ and a relation R ⊂ E− × E+, we set

E−(R) = {e− ∈ E− : {e−} × E+ ⊂ R}, E+(R) = {e+ ∈ E+ : E− × {e+} ⊂ R}.

For a partitioned directed graph (P, E−, E+) denote by P(1) the set of vertices
in P that have a single predecessor vertex in E−, or, equivalently, that have a single
successor vertex in E+. For p ∈ P(1) the predecessor vertex of p in E−, which is
identical to the successor vertex of p in E+, will be denoted by η(p). For an R-graph
GR(P, E−, E+) we set

E−
R =

⋃

p∈P(1)

E−(R(η(p), p)), E+
R =

⋃

p∈P(1)

E+(R(η(p), p)),

and

P
(1)
R = {p ∈ P(1) : R(η(p), p) = E−(η(p), p)× E+(η(p), p)}.

We formulate three conditions (I), (II) and (III) on R-graphs GR(P, E−, E+).
Condition (II) comes in two parts (II−) and (II+) that are symmetric to one an-
other:

(I) For p ∈ P(1) \P
(1)
R , E−(R(η(p), p)) = ∅, or E+(R(η(p), p)) = ∅.

(II−) There is no cycle in the directed graph (P, E−) that contains only edges

in E−
R and that contains at least one edge e− ∈ E−

R such that t(e−) ∈ P(1) \P
(1)
R .

(II+) There is no cycle in the directed graph (P, E+) that contains only edges

in E+
R and that contains at least one edge e+ ∈ E+

R such that s(e+) ∈ P(1) \P
(1)
R .

(III) For q, r ∈ P(1) , q 6= r, there does not simultaneously exist a path f− in E−
R

from q to r and a path f+ in E+
R from q to r, such that there is at least one edge

e− in f− such that t(e−) ∈ P(1) \P
(1)
R , or there is at least one edge e+ in f+ such

that s(e+) ∈ P(1) \P
(1)
R .

We show in Section 2 that an SR(P, E−, E+)-presentation has Property (A) if
and only if the R-graph GR(P, E−, E+) satisfies Conditions (I), (II) and (III). In
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particular the SR(P, E−, E+)-presentations X(E− ∪ E+, idS
R(P,E−,E+)

) have Prop-

erty (A) if and only if the R-graph GR(P, E−, E+) satisfies Conditions (I), (II) and
(III). This implies that Markov-Dyck shifts of strongly connected finite directed
graphs have Property (A). Also the Markov-Motzkin shifts of strongly connected
finite directed graphs have Property (A).

In Section 3 we describe how one can obtain from an R-graph GR(P, E−, E+),

that satisfies conditions (I), (II) and (III), an R-graph GR̂(P, Ê−, Ê+) such that the

R-graph semigroup SR̂(P, Ê−, Ê+) is associated to any SR(P, E−, E+)-presentation.
The procedure first produces an intermediate directed graph by identifying edges
in the directed graph GR(P, E−, E+), and then contracts the rooted subtrees of the

intermediate directed graph to their roots. Here SR̂(P, Ê−, Ê+) is a homomorphic
image of SR(P, E−, E+).

In Section 4 we look at examples of R-graphs with two or three vertices, that
give rise to a subshift whose associated semigroup is the semigroup of an R-graph
with one vertex.

In Section 5 we consider the Markov-Dyck shifts of directed graphs with three
vertices whose associated semigroup is the graph inverse semigroup of a directed
graph with two or three vertices. Given finite sets E− and E+ and a relation
R ⊂ E− × E+, we set

Ω+
R(e−) = {e+ ∈ E+ : (e−, e+) ∈ R}, e− ∈ E−,

Ω−
R(e+) = {e− ∈ E− : (e−, e+) ∈ R}, e+ ∈ E+.

In Section 6 we prove that an R-graph semigroup SR(P, E−, E−) is associated
to a topologically transitive subshift with Property (A) if and only if the R-graph
GR(P, E−, E−) satisfies the following conditions (a), (b), (c) and (d). Condition (a)
and (b) come in two symmetric parts parts, (a−) and (a+), and also Condition (b)
comes in two symmetric parts parts, (b−) and (b+):

Ω+
R(q,r)(e

−) 6= Ω+(ẽ−), e−, ẽ− ∈ E−(q, r), e− 6= ẽ−, q, r ∈ P.(a−)

Ω−
R(q,r)(e

+) 6= Ω−(ẽ+), e+, ẽ+ ∈ E+(r, q), e+ 6= ẽ+, q, r ∈ P.(a+)

(b−) There is no non-empty cycle in E−
R .

(b+) There is no non-empty cycle in E+
R.

(c) For p ∈ P(1) such that η(p) 6= p, E−(R(η(p), p)) = ∅, or E−(R(η(p), p)) = ∅.

(d) For q, r ∈ P(1) , q 6= r, there do not simultaneously exist a path in E−
R from

q to r and a path in E+
R from q to r.

2. SR(P, E−, E+)-presentations

For a semigroup (with zero) S, and for F ∈ S we set

Γ(F ) = {(G−, G+) ∈ S × S : G−FG+ 6= 0},

and we call Γ(F ) the context of F .

Lemma 2.1. Let GR(P, E−, E+) be an R-graph such that

P(1) \P
(1)
R 6= ∅.

Let p ∈ P
(1)
R , and let M ∈ N be the maximal length of a path in E− that ends at p

and that enters only vertices in P
(1)
R . For an m◦ ∈ [1,M ], let h+ be a path in E+

of length m◦ that begins at p, and let h− be a path in E− of length m◦ that ends at
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p. Also let f− be a path in E− that ends at p and f+ be a path in E+ that begins
at p. Then the context of f−f+ is equal to the context of f−h+h−f+.

Proof. The lemma reduces to the case that the paths f− and f+ are empty. What
is to be proved is that the context of h+h− is equal to the context of 1p. Let
pm, 1 ≤ m ≤M, be the vertices that are entered by a path in E+ of length M that
begins at p. The proof is based on the observation that for a path g− in E− of
length m◦ that begins at p, and a path g+ in E+ of length m◦ that ends at p, one
has

g−h+h−g+ = 1pm◦
= g−g+.(2.1)

For a path

g− = (e−m)1≤m≤m(−), m(−) ∈ N,

in E− that ends at p, and a path

g+ = (e+m)1≤m≤m(+), m(+) ∈ N,

in E+ that begins at p, one has, in case that m(−),m(+) > M , that

g−g+ = (
∏

1≤m≤m(−)−M

e−m)(
∏

1≤m≤m(+)

e−m),

and by (2.1)

g−h+h−g+ =

(
∏

1≤m≤m(−)−M

e−m)(
∏

1≤m≤m(+)

e−m)h+h−(
∏

1≤m≤m(−)−M

e−m)(
∏

1≤m≤m(+)

e−m) =

(
∏

1≤m≤m(+)

e−m)1pm◦
(

∏

1≤m≤m(−)−M

e−m) = (
∏

1≤m≤m(−)−M

e−m)(
∏

1≤m≤m(+)

e−m).

Also one finds in the case that m(−) ≤M or m(+) ≤M , that the pair (g−, g+) is
in the context of h+h− and also in the context of 1p. �

Lemma 2.2. Let GR(P, E−, E+) be an R-graph that satisfies conditions (I), (II)
and (III), such that

P(1) \P
(1)
R 6= ∅,(2.2)

and let q, r ∈ P(1), q 6= r. Then at most one of the following cases (A−), (A+) and
(B) can occur

(A+) There exists a path in E+
R from q to r.

(A−) There exists a path in E−
R from q to r.

(B) There exists a vertex p ∈ P together with a path

g+ = (e+i+)1≤i+≤I+ , I+ ∈ N,

in E+
R from q to p, and a path

g− = (e−i+)1≤i+≤I+ , I+ ∈ N,

in E−
R from p to r, such that

s(e+I+) 6= t(e−1 ).(2.3)

In case (B) the vertex p is uniquely determined by the vertices q and r.
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Proof. That (A−) and (A+) cannot occur simultaneously is Condition (III).
We prove that (B) cannot occur simultaneously with (A+). For this we note

first, that, as a consequence of (2.2), there cannot simultaneously exist a path

f− = (e−i−)1≤i−≤I− , I− ∈ N,

in E−
R from q to r such that

t(e−i−) ∈ P
(1)
R , 1 ≤ i− ≤ I−,

and a path

f+ = (e+i+)1≤i+≤I+ , I+ ∈ N,

in E+
R from q to r, such that

s(e+i+) ∈ P
(1)
R , 1 ≤ i+ ≤ I+.

For, in this case one could choose edges ẽ+i− ∈ E+
R(s(e−i−), t(e

−
i−
)), I− ≥ i− ≥ 1, to

obtain a path

f̃+ = (ẽ+i+)I−≥i−≥1,

in E+
R from r to q, in this way producing a cycle in E+

R, all of whose vertices are in

P
(1)
R , contradicting (2.3) by the irreducibility assumption on the partitioned graph

(P, E−, E+).
As a consequence of Condition (II) one can consider the path

h+ = (e+i+)1≤i+≤H+ ,

of maximal length H+ in E+
R(E−) that starts at q and also the path

h− = (e+i−)1≤i−≤H−
,

of maximal length H− in E−
R(E+) that ends at r. The vertex set

{t(e+i+) : 1 ≤ i+ ≤ H+}

is uniquely determined by q and the vertex set

{s(e−i−) : 1 ≤ i− ≤ H−}

is uniquely determined by r. The case (B) occurs if and only if these two vertex
sets intersect. We assume that this is the case and we observe that there is then
a unique vertex p in the intersection such that, with the indices i◦+ ∈ [1, H+] and
i◦− ∈ [1, H−] given by

p = t(e+i◦+
) = s(e+i◦

−

),

one has that

s(e+i◦+
) 6= t(e+i◦

−

).(2.4)

Assume now that there is a path

f+ = (e+i+)1≤i+≤I+ , I+ ∈ N,

in E+
R(E−) from q to r. I+ > i◦+ would violate Condition (III), since the paths

(e+i−)i◦+≤i+≤I+ ,

and

(e−i−)i◦−≤i−≤H−
,

would both start at p and end at r. I+ = i◦+ would violate Condition (II−), and
I+ < i◦ is impossible by (2.4). It follows that (B) cannot occur simultaneously with
(A+). The proof that (B) cannot occur simultaneously with (A−) is symmetric. �
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We introduce notation and terminology for subshifts. Given a subshift X ⊂ ΣZ

we set

x[i,k] = (xj)i≤j≤k, x ∈ X, i, k ∈ Z, i ≤ k,

and

X[i,k] = {x[i,k] : x ∈ X}, i, k ∈ Z, i ≤ k.

πp denotes the period of a periodic point p of X .
We set

Γ(a) =
⋃

n,m∈N

{(b, c) ∈ X[i−n,i] ×X[k,k+m] : (b, a, c) ∈ X[i−n,k+m]},

a ∈ X[i,k], i, k ∈ Z, i ≤ k.

and call Γ(a) the context of a. We set

Γ+
n (a) = {b ∈ X(k,k+n] : (a, b) ∈ X[i,k+n]},

n ∈ N, a ∈ X[i,k], i, k ∈ Z, i ≤ k.

Γ− has the symmetric meaning. We set

ω+(a) =
⋃

n∈N

⋂

n∈N

⋂

c∈Γ−
n (a)

{b ∈ X(k,k+n] : (c, a, b) ∈ X
[i−n,k+m]

},

a ∈ X[i,k], i, k ∈ Z, i ≤ k.

ω− has the symmetric meaning.
Given a subshift X ⊂ ΣZ we define a subshift of finite type (more precicely, an

n-step Markov shift) An(X) by

An(X) =
⋂

i∈Z

({x ∈ X : xi ∈ ω+(x[i−n,i))} ∩ ({x ∈ X : xi ∈ ω−(x(i,i+n])}) n ∈ N,

and we set

A(X) =
⋃

n∈N

An(X).

We denote the set of periodic points in A(X) by P (A(X)). The subshifts X ⊂ ΣZ:
that we consider in this paper are such that P (A(X)) is dense in X . We introduce
a preorder relation & into the set P (A(X)) where for q, r ∈ P (A(X)) means that
there exists a point in A(X) that is left asymptotic to the orbit of q and right
asymptotic to the orbit of r. The equivalence relation on P (A(X)) that results
from the preorder relation & we denote by ≈.

We recall from [Kr2] the definition of Property (A). For n ∈ N a subshift X ⊂ ΣZ,

has property (a, n,H), H ∈ N, if for h, h̃ ≥ 3H and for I−, I+, Ĩ−, Ĩ+ ∈ Z, such that

I+ − I−, Ĩ+ − Ĩ− ≥ 3H,

and for

a ∈ An(X)(I−,I+], ã ∈ An(X)(Ĩ−,Ĩ+],

such that

a(I−,I−+H] = ã(Ĩ−,Ĩ+H], a(I+−H,I+] = ã(Ĩ+−H,Ĩ+],

one has that a and ã have the same context. A subshift X ⊂ ΣZ has property (A)
if there are Hn, n ∈ N, such that X has the properties (a, n,Hn), n ∈ N.

Theorem 2.3. For a R-graph GR(P, E−, E+), SR(P, E−, E+)-presentations have
property (A) if and only if GR(P, E−, E+) satisfies Conditions (I), (II) and (III).
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Proof. Assume that the R-graph GR(P , E−, E+) does not satisfy Condition (I).
Then let

p ∈ P(1) \P
(1)
R ,(2.5)

and let

e− ∈ E−(p), e+ ∈ E+(p).(2.6)

Choose vertices U ∈ V(p),W ∈ V(η(p)) and choose a cycle b in the directed graph
(V ,Σ) from U to U such that λ(b) = 1p. It is

b2m ∈ L(An(X(Σ, λ))), n ≥ ℓ(b), m ∈ N.(2.7)

Also choose a path b− in the directed graph (V ,Σ) from U to W such that λ(b−) =
e− and also a path b+ from U to W such that λ(b+) = e+. By (2.6) and (2.7)

bmb−b+bm ∈ L(An(X(Σ, λ))), n ≥ ℓ(b), ℓ(b−), ℓ(b+), m ∈ N.(2.8)

By (2.5) there are

ẽ− ∈ E−(η(p), p), ẽ+ ∈ E+(η(p), p),

such that

ẽ−ẽ+ = 0.(2.9)

Choose a path b̃− in the directed graph (V ,Σ) from U to W such that λ(̃b−) = ẽ−

and a path b̃+ from V to U such that λ(̃b+) = ẽ+. By (2.6) and (2.9)

λ(̃b−bmb−b+b
mb̃+) = 1η(p), λ(̃b−b2mb̃+) = 0, m ∈ N,

which means that

Γ(bmb−b+b
m) 6= Γ(b2m), m ∈ N,

and in view of (2.6) and (2.8) it follows that the subshift X(P,Σ, λ) does not have
Property (A).

Assume that the R-graph GR(P , E−, E+) does not satisfy Condition (II−), and
let (e−k )k∈Z/KZ,K ∈ N, be a cycle in E−, where

e−k ∈ E−
R , k ∈ Z/KZ.(2.10)

Set

pk = t(e−k ), k ∈ Z/KZ.

We note that due to the irreducibility assumption on the partitioned directed graph
(P, E−, E+), one has that P = {pk : k ∈ Z/KZ}. Also let

p0 ∈ P(1) \P
(1)
R .(2.11)

Choose vertices

Vk ∈ V(pk), k ∈ Z/KZ.

Choose a cycle b in the directed graph (V ,Σ) from V0 to V0 such that λ(b) = 1p0 .
One has

b2m ∈ L(An(X(Σ, λ))), n ≥ ℓ(b) m ∈ N.(2.12)

Choose paths bk in the directed graph (V ,Σ) from Vk−1(modK) to Vk, k ∈ Z/KZ,
such that

λ(bk) = e−k , k ∈ Z/KZ,

One has by (2.10) that

(2.13) bm((bk)0≤k<K)bm ∈ L(An(X(Σ, λ))), n ≥ ℓ(bk), k ∈ Z/KZ,

n ≥ ℓ(b) m ∈ N.
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By (2.11) there are

ẽ− ∈ E−(R(p−1(modK), p0)), ẽ+ ∈ E+(R(p−1(modK), p0)),

such that

ẽ−ẽ+ = 0.(2.14)

Choose a path b̃− in the directed graph (V ,Σ) from V−1(modK) to V0 such that

λ(̃b−) = ẽ−,

and choose also a path b̃+ from V0 to V−1(modK) such that

λ(̃b+) = ẽ+.

Then by (2.8) and (2.14)

λ(̃b−b
m((bk)0≤k<K)bmb̃+) = 1p−1(mod K)

, λ(̃b−b
2mb̃+) = 0, m ∈ N,

which means that

Γ(bm((bk)0≤k<K)bm) 6= Γ(b2m), m ∈ N,

and in view of (2.12) and (2.14) it follows that the subshift X(P,Σ, λ) does not
have Property (A).

The proof, that the subshift X(P,Σ, λ) does not have Property (A), if the R-
graph GR(P, E−, E+) does not satisfy Condition (II+), is symmetric.

Assume that the R-graph GR(P, E−, E+) does not satisfy Condition (III), and
let there be given q, r ∈ P(1), q 6= r, and a path (e−k−

)1≤k−≤K−
,K− ∈ N, in E− from

q to r, where

e−k−
∈ E−

R, 1 ≤ k− ≤ K−,(2.15)

and assume for a k◦− ∈ [1,K−] that

pk◦

−
∈ P(1) \P

(1)
R .(2.16)

Let there also be given a path (e+k+
)1≤k+≤K+ ,K+ ∈ N, in E+ from q to r, where

e+k+
∈ E+

R, 1 ≤ k+ ≤ K+.(2.17)

Set
p−0 = p+0 = q, p−K−

= p+K+
= r,

and
p−k−

= t(e−k−
), 1 ≤ k− < K−,

p+k+
= t(e+k+

), 1 ≤ k+ < K+.

We choose ẽ+k−
∈ E+(p−k−−1, p

−
k−

), 1 ≤ k− ≤ K−, such that

e−k−
ẽ+k−

= 1k−−1, 1 ≤ k− ≤ K−,

and ẽ−k+
∈ E−(p+k+

, p+k+−1), 1 ≤ k+ ≤ K+. such that

ẽ−k+
e+k+

= 1k+ , 1 ≤ k+ ≤ K+.

By (2.16) there are e− ∈ E−(p−k◦

−
−1, p

−
k◦

−

), e+ ∈ E+(p−k◦

−
−1, p

−
k◦

−

) such that

e−e+ = 0.(2.18)

Choose vertices
Vq ∈ V(q), Vr ∈ V(r),

and vertices
Vp−

k
−

−

∈ V(p−k−
), 1 ≤ k− < K−,
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and

Vp+
k+

∈ V(p+k+
), 1 ≤ k+ < K+.

Choose a cycle bq in the directed graph (V ,Σ) from Vq to Vq such that λ(bq) =
1q, and also a cycle bq from Vq to Vq such that λ(bq) = 1q, Also choose paths
b−k−

, 1 ≤ k− ≤ K−, in the directed graph (V ,Σ) from Vp−

k−−1
to Vp−

k−

such that

λ(b−k−
) = e−k−

, 1 ≤ k− ≤ K−,

and also paths b+k+
, 1 ≤ k+ ≤ K+, from Vp+

k+−1
to Vp+

k+

such that

λ(b+k+
) = e+k+

, 1 ≤ k+ ≤ K+

As a consequence of (2.15) and (2.17) one has

bmq ((b−k−
)1≤k−≤K−

)bmr ∈ L(An(X(Σ, λ))), n ≥ ℓ(b−k−
), 1 ≤ k− ≤ K−(2.19)

bmq ((b+k+
)1≤k+≤K+)b

m
r ∈ L(An(X(Σ, λ))), n ≥ ℓ(b+k+

), 1 ≤ k+ ≤ K+(2.20)

n ≥ ℓ(bq), ℓ(br), m ∈ N.

Choose paths b̃+k−
, 1 ≤ k− ≤ K−, in the directed graph (V ,Σ) from Vpk−

to

Vpk−−1
such that

λ(̃b+k−
) = ẽ+k−

, 1 ≤ k− ≤ K−,

and also paths b̃−k+
, 1 ≤ k+ ≤ K+, from Vp+

k+

to Vp+
k+−1

such that

λ(̃b−k+
) = ẽ−k+

, 1 ≤ k+ ≤ K+.

One has

λ(b−((b−k−
)k◦

k−
<k−≤K−

)((̃b−k+
)K+≥k+≥1)

bmq ((b−k−
)1≤k−≤K−

)bmr

((̃b+k−
)K−≥k−≥k◦

−
), b+) =

e−(
∏

k◦

k−
<k−≤K−

e−k−
))(

∏

K+≥k+≥1

ẽ−k+
))(

∏

1≤k−≤k◦

−

e−k−
)), m ∈ N.

By (2.18)

λ(b−((b−k−
)k◦

k−
<k−≤K−

)((̃b−k+
)K+≥k+≥1)

bmq (b+k+
)1≤k+≤K+b

m
r

((̃b+k−
)K−≥k−≥k◦

−
)b+) = 0, m ∈ N.

One sees from this that

Γ(bmq ((b−k−
)1≤k−≤K−

)bmr ) 6= Γ(bmq (b+k+
)1≤k+≤K+b

m
r ), m ∈ N,

and in view of (2.19) and (2.20) it follows that the subshift X(P,Σ, λ) does not
have Property (A).

The proof, that the subshift X(P,Σ, λ) does not have Property (A), if, with a
k◦+ ∈ [1,K+], the assumption (12) is replaced by

p+k◦

+
∈ P(1) \P

(1)
R ,

is symmetric.
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For the converse consider an R-graph GR(P, E−, E+) that satisfies conditions
(I) and (III) and that has no cycle in E+

R nor in E−
R. For a given SR(P , E−, E+)-

presentation X(P,Σ, λ) we determine for n ∈ N and Q−, Q
+ ∈ Z, Q+ −Q− > 2n,

the blocks
(σq)Q−<q≤Q+ ∈ X(Σ, λ)(Q−,Q+]

such that

(σq)Q−+n<q≤Q+ ∈ ω+((σq)Q−<q≤Q−+n),(2.19)

and

(σq)Q−<q≤Q+−n ∈ ω−((σq)Q−−n<q≤Q+).(2.20)

One has p(−), p(+) ∈ P, J−(−), J+(−), J−(+), J+(+) ∈ N, and

e+j+(−)(−) ∈ E+, J+(−) ≥ j+(−) > 0,

e−j−(−)(−) ∈ E−, 0 < j−(−) ≤ J−(−),

e+j+(+)(+) ∈ E+, J+(+) ≥ j+(+) > 0,

e−j−(+)(+) ∈ E−, 0 < j−(+) ≤ J−(+),

such that

λ((σq)Q−<q≤Q−+n) = (
∏

J+(−)≥j+(−)>0

e+j+(−))1p(−)(
∏

0<j−(−)≤J−(−)

e−j−(−)),

λ((σq)Q+−n<q≤Q+) = (
∏

J+(+)≥j+(+)>0

e+j+(+))1p(+)(
∏

0<j−(+)≤J−(+)

e−j−(+)),

and one also has p ∈ P, J−, J+ ∈ N, and

e+j+ ∈ E+, J+ ≥ j+ > 0,

e−j− ∈ E−, 0 < j− ≤ J−,

such that

λ((σq)Q+<q≤Q+) = (
∏

J+(−)≥j+(−)>0

e+j+(−))1p(−)

(
∏

J+≥j+>0

e+j+)1p(
∏

0<j−≤J−

e−j−)

1p(+)(
∏

0<j−(+)≤J−(+)

e−j−(+)).

As a consequence of (2.19)

p(−) ∈ P(1),

and
e+j+ ∈ E+

R, J+ ≥ j+ > 0,

and a s a consequence of (2.20)

p(+) ∈ P(1),

and
e−j− ∈ E−

R, 0 < j− ≤ J−,

There are the following cases (A), (B) and (C)
(A) J− = 0, J+ > 0
(B)J− > 0, J+ = 0
(C), J− = J+ = 0 or J− > 0, J+ = 0.
Given that the R-graph GR(P, E−, E+) satisfies Conditions (I), (II) and (III),

we see from Lemma (2.2) that p(−) and p(+) determine which one of these cases
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occurs, and from Lemma (2.1) one sees that the context of (σq)Q−<q≤Q+ is always
determined by the pair

((
∏

J+(−)≥j+(−)>0

e+j+(−))1p(−),1p(+)(
∏

0<j−(+)≤J−(+)

e−j−(+))),

which means that this context is determined by the segments (σq)Q−<q≤Q−+n

and (σq)Q−−n<q≤Q+ . We have shown that the subshift X(P,Σ, λ) has Property
(a, n, n).

To conclude the proof, observe that in the case that the R- graph GR(P, E−, E+)

is such that P = P
(1)
R , the subshift X(P,Σ, λ) is the edge shift of the directed graph

(V ,Σ), and as a topological Markov shift it has Property (A). �

3. The R-graph semigroup associated to an

SR(P , E−, E+)-presentation

Following the terminology that was introduced in [HI] we say for an R-graph
and an SR(P, E+, E−)-presentation X(P,Σ, λ) that a periodic point in A(X(Σ, λ))
is neutral if there exist I ∈ Z and p ∈ P such that λ(p[I,I+πp)) = 1p. and we say
that a periodic point in A(X(Σ, λ)) has negative (positive) multiplier if there exist
I ∈ Z and p ∈ P such that λ(p[I,I+πp)) ∈ S−

R(P, E+, E−)(S+
R(P, E+, E−)).

Lemma 3.1. Let GR(P, E−, E+) be an R-graph, that satisfies Conditions (II) and
such that

P \P
(1)
R 6= ∅,(3.1)

and let X(P,Σ, λ) be an SR(P, E−, E+)-presentation. Then a periodic point of
X(P,Σ, λ) is in A(X(P,Σ, λ)) if and only if it is neutral.

Proof. Let

p ∈ A(X(P,Σ, λ)).(3.2)

and let I ∈ Z be such that

λ(p[I,I+πp)) ∈ S+
R(P, E−, E+) ∪ {1p : p ∈ P} ∪ S−

R(P, E−, E+).

If here

λ(p[I,I+πp)) ∈ S+
R(P, E−, E+),

then it follows from (3.2) that λ(p[I,I+πp)) is given by a cycle in the directed graph

E− that goes from p to in p, all of whose edges are in E−
R, contradicting Condition

(II-) and (3.1). For the case that

λ(p[I,I+πp)) ∈ S+
R(P, E−, E+),

one has the symmetric argument.
For the converse, note that λ(p[I,I+πp)) = 1p, implies p ∈ Aπp

(X(Σ, λ)). �

Given finite sets E− and E− and a relation R ⊂ E−×E+, we introduce an equiv-
alence relation ∼ (R,−) into E−, where e− ∼ (R,−)ẽ− if and only if Ω+

R(e−) =

Ω+
R(ẽ−), e−, ẽ− ∈ E−. An equivalence relation ∼ (R,+) on E+ is defined symmet-

rically.

From an R-graph GR(P, E−, E+) we derive an R-graph GR̂(P, Ê−
R, Ê

+
R), by iden-

tifying edges that are (R,−)-equivalent, that is, by setting

Ê−
R(q, r) = [E−(q, r)]∼(R,−), q, r ∈ P,

Ê−
R =

⋃

q,r∈P

Ê−
R(q, r),
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and by identifying edges that are ∼ (R,+)-equivalent, that is, by setting

Ê+
R(q, r) = [E+(q, r)]∼(R,+), q, r ∈ P,

Ê+
R =

⋃

q,r∈P

Ê+
R(q, r),

setting

s([e−]∼(R,−)) = s(e−), t([e−]∼(R,−)) = t(e−), e− ∈ E−,

s([e+]∼(R,+)) = s(e+), t([e−]∼(R,+)) = t(e−), e+ ∈ E+,

R̂ = {([e−]∼(R,−), [e
+]∼(R,+)) : (e

−, e+) ∈ R}.

We note that P
(1)
R is the set of vertices in P that have a single incoming edge in

Ê+
R, or, equivalently, that have a single outgoing edge in Ê+

R, and we set

Ê−
R(1) = {ê− ∈ Ê−

R : t(ê−) ∈ P
(1)
R }, Ê+

R(1) = {ê+ ∈ Ê+
R : s(ê+) ∈ P

(1)
R }.

For an R-graph GR(P, E+, E−) such that P \P
(1)
R 6= ∅ we denote for p ∈ P \P

(1)
R

by Pp the set of target vertices of the paths (including the empty path) in Ê−
R(1),

that have p as source vertex (Symmetrically, Pp can be defined as the set of source

vertices of the paths (including the empty path) in Ê+
R(1), that have p as target

vertex). {Pp : p ∈ P \ P
(1)
R } is a partition of P. We note that the set P \ P

(1)
R

is the set of roots of the subtrees (degenerate and non-degenerate) of the (possibly

degenerate) directed graphs (P, Ê+
R(1)) and (P, Ê−

R(1)), that are reversals of one
another, and that are the union of their sub-trees (degenerate and non-degenerate).

Theorem 3.2. Let GR(P, E−, E+) be an R-graph, that satisfies conditions (I). (II)
and (III) and let

P \P
(1)
R 6= ∅.

Let X(P,Σ, λ) be an SR(P, E−, E+)-presentation, let q, r be neutral periodic points
of X(P,Σ, λ), and let q, r ∈ P, and I(q), I(r) ∈ Z be such that

p(I(q),I(q)+π(q)] = 1q, p(I(r),I(r)+π(r)] = 1r.

Then it is q ≈ r if and only if q and r are in the same element of the partition

{Pp : p ∈ P \P
(1)
R }.

Proof. Assume that p ≈ q. Let N ∈ N and

x(q,r), x(r,q) ∈ AN (X(Σ, λ)),(3.3)

and let
I−(q, r), I+(q, r), I−(r, q), I+(r, q) ∈ Z,

I−(q, r) < I+(q, r), I−(r, q) < I+(r, q),

be such that

x
(q,r)
(−∞,I−(q,r)] = q(−∞,I(q)], x

(q,r)
(I+(q,r),∞) = r(I(r),∞),

x
(r,q)
(−∞,I−(r,q)] = r(−∞,I(r)], x

(r,q)
(I+(r,q),∞) = q(I(q),∞).

By (3.3)

(x
(q,r)
(−∞,I+(q,r)], r(I(r),I(r)+Nπ(r)], x

(r,q)
(I−(q,r),∞)) ∈ X(Σ, λ),(3.4)

and

(x
(r,q)
(−∞,I+(r,q)], q(I(q),I(q)+Nπ(q)], x

(q,r)
(I−(r,q),∞)) ∈ X(Σ, λ).(3.5)

As a consequence of (3.3) there are also

p(q, r) ∈ P, J−(q, r), J+(q, r) ∈ N,
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and

e+j+(q,r)(q, r) ∈ E+
R, J+(q, r) ≥ j+(q, r) > 0,

e−j−(q,r)(q, r) ∈ E−
R, 0 < j−(q, r) ≤ J−(q, r),

such that

(3.6) λ(x
(q,r)
(I−(q.r),I+(q,r)]) =

1q(
∏

J+(q,r)≥j+(q,r)>0

e+j+(q, r))1p(q,r) (
∏

0<j−(q,r)≤J−(q,r)

e−j−(q,r)(q, r))1r,

and there are also

p(r, q) ∈ P, J−(r, q), J+(r, q) ∈ N,

and

e+j+(r,q)(q, r) ∈ E+
R, J+(r, q) ≥ j+(r, q) > 0,

e−j−(r,q)(q, r) ∈ E−
R, 0 < j−(r, q) ≤ J−(r, q),

such that

(3.7) λ(x
(r.q)
(J−(r.q),J+(r.q)]) =

1r(
∏

J+(r,q)≥j+(r,q)>0

e+j+(r, q))1p(r,q)(
∏

0<j−(r,q)≤J−(r,q)

e−j−(r,q)(r, q))1q.

By (3.4), and in case that J+(q, r) ≥ J+(r, q)

1q(
∏

J+(q,r)≥j+(q,r)>0

e+j+(q, r))1p(q,r) (
∏

0<j−(q,r)≤J−(q,r)

e−j−(q,r)(q, r))1r

1r(
∏

J+(r,q)≥j+(r,q)>0

e+j+(r, q))1p(r,q)(
∏

0<j−(r,q)≤J−(r,q)

e−j−(r,q)(r, q))1q =

1q(
∏

J+(q,r)≥j+(q,r)>0

e+j+(q, r))1p(q,r)

(
∏

0<j−(q,r)≤J−(q,r)−J+(r,q)

e−j−(q,r)(q, r))1p(r,q) (
∏

0<j−(r,q)≤J−(r,q)

e−j−(r,q)(r, q))1q 6= 0.

From this it follows by Condition (I) that

(ê+j+(q, r))J+(q,r)≥j+(q,r)>0

is a path in Ê+(1) from q to p(q,r), and

((ê−)0<j−(q,r)≤J−(q,r)−J+(r,q)), (ê
−)0<j−(r,q)≤J−(r,q)))

is a path in Ê−(1) from p(q,r) to r that passes through p(r,q) and one sees that

p(q,r), p(r,q) and q are in the same element of the partition {Pp : p ∈ P \ P
(1)
R }.

By the same argument for the case that J+(q, r) ≤ J+(q, r), and by the symmetric
argument that uses (3.7), one sees that in fact p(q,r), p(r,q) and q and r are in the

same element of the partition {Pp : p ∈ P \P
(1)
R }.

For the proof of the converse let p ∈ P \ P
(1)
R and let q, r ∈ Pp. There is a

path (ê+j+(q))J+(q)≥j+(q)>0 in Ê+(1) from q to p, a path (ê−j−(r))0<j−(r)≤J−(r) in

Ê−(1) from p to r, a path (ê+j+(r))J+(r)≥j+(r)>0 in Ê+(1) from r to p, and a path

(ê−j−(q))0<j−(r)≤J−(q) in Ê−(1) from p to q. Choose a vertex V (p) ∈ V(p) and choose

e+j+(q) ∈ ê+j+(q), J+(q) ≥ j+(q) > 0
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and choose a path b+(q) in the directed graph (V ,Σ) from the target vertex of
q(−∞,I(q)] to V (p), such that

λ(b+(q)) =
∏

J+(q)≥j+(q)>0

e+j+(q),

and choose

e+j−(r) ∈ ê+j−(r), 0 < j−(r) ≤ J−(r)

and also a path b−(r) from V (p) to the source vertex of q(I(r),∞), such that

λ(b−(r)) =
∏

0<j−(r)≤J−(r)

e−j−(r),

choose

e+j+(r) ∈ ê+j+(r), J+(q) ≥ j+(r) > 0

and choose a path b+(q) in the directed graph (V ,Σ) from the target vertex of
q(−∞,I(q)] to V (p), such that

λ(b+(r)) =
∏

J+(r)≥j+(r)>0

e+j+(r),

and choose

e−j−(q) ∈ ê−j−(q), 0 < j−(q) ≤ J−(q)

and also a path b−(q) from V (p) to the source vertex of q(I(q),∞), such that

λ(b−(q)) =
∏

0<j−(q)≤J−(q)

e−j−(q),

Then

(q(−∞,I(q)], b
+(q), b−(r), r(I(r),∞)) ∈ A(X(Σ, λ)),

(r(−∞,I(r)], b
+(r), b−(q), q(I(q),∞)) ∈ A(X(Σ, λ)). �

We recall at this point the construction of the associated semigroup. For a
property (A) subshift X ⊂ ΣZ we denote by Y (X) the set of points in X that
are left asymptotic to a point in P (A(X)) and also right-asymptotic to a point in
P (A(X)) . Let y, ỹ ∈ Y (X), let y be left asymptotic to q ∈ P (A(X)) and right
asymptotic to r ∈ P (A(X)), and let ỹ be left asymptotic to q̃ ∈ P (A(X)) and right
asymptotic to r̃ ∈ P (A(X)). Given that X has the properties (a, n,Hn), n ∈ N, we
say that y and ỹ are equivalent, y ≈ ỹ, if q ≈ q̃ and r ≈ r̃, and if for n ∈ N such
that q, r, q̃, r̃ ∈ P (An(X)) and for I, J, Ĩ, J̃ ∈ Z, I < J, Ĩ < J̃, such that

y(−∞,I] = q(−∞,0], y(J,∞) = r(0,∞),

ỹ(−∞,Ĩ] = q̃(−∞,0], ỹ(J̃,∞) = r̃(0,∞),

one has for h ≥ 3Hn and for

a ∈ X(I−h,J+h], ã ∈ X(Ĩ−h,J̃+h],

such that

a(I−Hn,J+Hn] = y(I−Hn,J+Hn], ã(Ĩ−Hn,J̃+Hn]
= ỹ(Ĩ−Hn,J̃+Hn]

,

a(I−h,I−h+Hn) = ã(Ĩ−h,Ĩ−h+Hn)
,

a(J+h−Hn,J+h] = ã(J̃+h−Hn,J̃+h],

and such that

a(I−h,I] ∈ An(X)(I−h,I], ã(J̃−h,Ĩ] ∈ An(X)(J̃−h,Ĩ] ,
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a(J,J+h] ∈ An(X)(J,J+h], ã(J̃,J̃+h] ∈ An(X)(J̃,J̃+h],

that a and ã have the same context. To give [Y (X)]≈ the structure of a semigroup,
let u, v ∈ Y (X), let u be right asymptotic to q ∈ P (A(X)) and let v be left
asymptotic to r ∈ P (A(X)). If here q & r, then [u]≈[v]≈ is set equal to [y]≈ where

y is any point in Y such that there are n ∈ N, I, J, Î, Ĵ ∈ Z, I < J, Î < Ĵ, such that
q, r ∈ An(X), and such that

u(I,∞) = q(I,∞), v(−∞,J] = r(−∞,J],

y(−∞,Î+Hn]
= u(−∞,I+Hn], y(Ĵ−Hn,∞) = v(J−Hn,∞),

and

y(Î,Ĵ] ∈ An(X)(Î,Ĵ],

provided that such a point y exists. If such a point y does not exist, [u]≈[v]≈ is set
equal to zero. Also, in the case that one does not have q & r, [u]≈[v]≈ is set equal
to zero.

From an R-graph GR(P, E+, E−) such that P \PR(1) 6= ∅, setting

P̃ = P \PR(1), Ẽ− = Ê− \ Ê−
R(1), Ẽ+ = Ê+ \ Ê+

R(1),

and

R̃ = R̂ ↾ (Ê− \ Ê−
R(1))× (Ê− \ Ê−

R(1)),

one obtains a R-graph GR̃(P̃, Ẽ−, Ẽ+) with source and target maps

s̃ : Ẽ− ∪ Ẽ+ → P̃, t̃ : Ẽ− ∪ Ẽ+ → P̃,

given by

s̃(ê−) = p, ê− ∈ Ẽ−, p ∈ P̃, s(ê−) ∈ Pp,

s̃(ê+) = p, ê+ ∈ Ẽ+, p ∈ P̃, s(ê+) ∈ Pp,

t̃(ê−) = p, ê− ∈ Ẽ−, p ∈ P̃, t(ê−) ∈ Pp,

t̃(ê+) = p, ê+ ∈ Ẽ+, p ∈ P̃, t(ê+) ∈ Pp.

Theorem 3.3. Let GR(P, E+, E−) be an R-graph, such that

P \P
(1)
R 6= ∅.

that satisfies conditions (I), (II) and (III), and let X(P,Σ, λ) be an SR(P, E−, E+)-

presentation. Then the semigroup SR̃(P̃, Ẽ−, Ẽ+) is associated to X(P,Σ, λ), and

X(P,Σ, λ) has an SR̃(P̃, Ẽ−, Ẽ+)-presentation.

Proof. There is a homomorphism Ψ of SR(P, E−, E+) onto SR̃(P̃, Ẽ−, Ẽ+) that is
given by setting

Φ(1p′) = 1p, p′ ∈ P, p ∈ P̃,

Ψ(e−) = 1p, e− ∈ E−, {s(e−), t(e−)} ⊂ P(p), p ∈ P̃,

Ψ(e+) = 1p, e+ ∈ E+, {s(e+), t(e+)} ⊂ P(p), p ∈ P̃,

Ψ(e−) = ê−, e− ∈ E−, ê− ∈ Ẽ−,

Ψ(e+) = ê+, e+ ∈ E+, ê+ ∈ Ẽ+,

An application of Theorem 2.3 and of Lemma 3.1 and Theorem 3.2 yields that there

is an isomorphism ψ of [YX(Σ,λ)]≈ onto SR̃(P̃, Ẽ−, Ẽ+) such that for a y ∈ YX(Σ,λ)

that is left asymptotic to a periodic point q ∈ A(X(Σ, λ)) and right asymptptic to
a periodic point r ∈ A(X(Σ, λ)), and such that more precisely, with I, J ∈ Z, I < J,
such that

y(−∞,I] = q(−∞,I], λ(q[I,I+πq ]) = 1q,
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y(J,∞) = r(J,∞), λ(r[J,J+πq ]) = 1r,

one has

ψ([y]≈) = Ψ(λ(y[I,J))).

An SR̃(P̃, Ẽ−, Ẽ+)-presentation of X(Σ, λ) is given by X(P,Σ,Ψ ◦ λ). �

4. Examples I

We introduce notation for relations. Given finite non-empty sets E− and E− and
a relation R ⊂ E− × E+, we set

D−(R) = gcd {card([e−]∼(R,−)) : e
− ∈ E−},

D+(R) = gcd {card([e+]∼(R,+)) : e
+ ∈ E−}.

We denote by ρ△(E−, E+) the set of relations R ⊂ E− × E+ such that

gcd{card([e−]∼(R,−)), card([ẽ
−]∼(R,−))} = D−(R),

e−, ẽ− ∈ E−, [e−]∼(R,−) 6= [ẽ−]∼(R,−),

gcd{card([e+]∼(R,+)), card([ẽ
+]∼(R,+))} = D+(R),

e+, ẽ+ ∈ E+, [e+]∼(R,+) 6= [ẽ+]∼(R,+),

and by ρ©(E−, E+) the set of relations R ⊂ E− × E+ such that

E−(R) = E+(R) = ∅,

and we set

ρ▽(E−, E+) = {R ∈ ρ△(E−, E+) : D−(R) = D+(R) = 1},

and

ρ©▽(E−, E+) = ρ©(E−, E+) ∩ ρ△(E−, E+).

Given disjoint finite sets E− and E+, subsets E−
◦ ⊂ E−, E+

◦ ⊂ E+, and a relation
R ⊂ E− × E+, we speak of a subrelation R∩ (E−

◦ × E+
◦ ) of R, provided that

⋃

e−∈E−

◦

Ω+
R(e−) ⊂ E+

◦ ,
⋃

e+∈E+
◦

Ω−
R(e+) ⊂ E−

◦ .

We say that a relation is irreducible if it does not possess a proper subrelation. For
a subrelation

R◦ = R∩ (E−
◦ × E+

◦ )

of the relation R ⊂ E− × E+ we define its complementary relation R⊖R◦ by

R⊖R◦ = R∩ ((E− \ E−
◦ )× (E+ \ E+

◦ )).

Given a finite index set I and disjoint finite sets E−
i , E

+
i , i ∈ I, together with

relations Ri ⊂ E−
i × E+

i , i ∈ I, we say that the relation
⊕

i∈I

Ri =
⋃

i∈I

Ri ⊂ (
⋃

i∈I

E−
i )× (

⋃

i∈I

E+
i )

is the Kronecker sum of the relations Ri, i ∈ I. Every relation is the Kronecker
sum of its irreducible subrelations, which are uniquely determined by it.

For finite sets E−, E+ and Ẽ−, Ẽ+ and relations R ⊂ E− ×E+ and R̃ ⊂ Ẽ− × Ẽ+

their Kronecker product

R⊗ R̃ ⊂ (E− × Ẽ−)× (E+ × Ẽ+)

is given by

R ⊗ R̃ = {((e−, ẽ−), (e+, ẽ+)) : (e−, e+) ∈ R, (ẽ−, ẽ+) ∈ R̃}.
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For finite sets E−, E+ and a relation R ⊂ E−×E+ we define for n ∈ N a relation
R〈n〉 ⊂ (E−)Z/nZ × (E+)Z/nZ by setting

R〈n〉 =
⋃

k∈Z/nZ

⋂

i∈Z/nZ

{((e−i )i∈Z/nZ, (e
+
i )i∈Z/nZ) ∈ (E−)Z/nZ×(E+)Z/nZ : (e−i , e

+
i+k) ∈ R}.

For finite sets E−, E+ and Ẽ−, Ẽ+ we say that a relation R ⊂ E−×E+ is isomor-

phic to a relation R̃ ⊂ Ẽ− × Ẽ+ if there exist bijections

ψ− : E− → Ẽ−, ψ+ : E+ → Ẽ+,

such that

R̃ = (ψ− × ψ+)(R).

The isomorphism class of a relation R determines the isomorphism class of the
relation R〈n〉, n ∈ Z.

Let Ξ denote a system of representatives of the isomorphism classes irreducible
relations on finite sets. We describe the isomorphism type of a relationR ⊂ E−×E+

by a vector (µR◦
(R))R◦∈Ξ, where µR◦

(R) is the multiplicity of the irreducible
subrelations of R that are isomorphic to R◦.

We note, that for the set of (isomorphism classes of) relations, the (class of the)
empty relation acts as the zero element.

For a subshift X denote its set of orbits of length n by On(X), n ∈ N. To a

subshift X ⊂ ΣZ there are invariantly attached the sets O
(−)
n (X) of O ∈ On(X)

such that for all O′ ∈ ∪n∈NOn(X) there is a point on X that is left asymptotic to

O′ and right asymptotic to O, n ∈ N. Invariantly attached sets O
(+)
n (X), n ∈ N,

are defined symmetrically. We set

O−
n (X) = O(−)

n (X) \ (O(−)
n (X) ∩ O(+)

n (X)),

O+
n (X) = O(+)

n (X) \ (O(−)
n (X) ∩ O(+)

n (X)), n ∈ N,

and

O−(X) =
⋃

n∈N

O−
n (X), O+(X) =

⋃

n∈N

O+
n (X).

For k, l ∈ N we denote by O−
k,l(X)(O+

k,l(X)) the set of O− ∈ O−
k (X) (O+ ∈ O+

l (X))

such that X has a point that is left (right) asymptotic to O−(O+) and right(left)
asymptotic to a point in O+

l (X)( O−
k (X)). One has the relations

Rk,l(X) ⊂ O−
k (X)×O+

l (X)

where O− ∈ O−
k (X) and O+ ∈ O+

l (X) are related if X has a point that is left
asymptotic to O− and right asymptotic to O+. (For Rn,n we write Rn.)

One has for SR-presentations X(Σ,P, λ) of R-graphs the set O−(X(Σ,P, λ))
(O+(X(Σ,P, λ))) coincides with the set of periodic orbits of X that have have
negative (positive) multiplier precisely if there is no cycle in E−

R(E+
R). In this case

therefore the set of neutral periodic orbits, and the set of orbits with positive
multiplier, and, symmetrically, with negative multiplier, are invariantly attached
to the SR-presentations X(Σ,P, λ) (compare [HIK, Section 4]). We denote the
number of orbits of length n with a negative multiplier by I−n , and the number of
neutral orbits of length n by I0n, n ∈ N.

In the way of examples we look now at certain special types of R-graphs with
one, two or three vertices, that satisfy conditions (I), (II) and (III). A one-vertex
R-graph GR({p}, E−, E+) such that

R(p, p) ∈ ρ©(E−, E+),
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we denote by G[p], setting

X(G[p]) = X(E− ∪ E+, {p}, idE−∪E+).

The relation R(p, p) is isomorphic to the relation R1(X(G[p]), and its isomor-
phism class is therefore an invariant of the subshifts X(G[p]).

We note that

I−2 (X(G[p])) = I−1 (X(G[p]))(I−1 (X(G[p]))− 1),(4.1)

I02 (X(G[p])) = card(R1(X(G[p])).(4.2)

The semigroup that is associated to the subshift X(G[p]) is isomorphic to the
R-graph semigroup of a one-vertex R-graph with a relation that is isomorphic to

R̂(p, p).
By G[p, q] we denote an R-graph GR({p, q}, E−, E+) such that

E−(q, q) = ∅,

and

E−(p, q) 6= ∅, R(p, q) = E−(p, q)× E+(p, q),(4.3)

and such that

E−(q, p) 6= ∅,

and, in case that E−(p, p) 6= ∅,

R(q, p) ∈ ρ▽(E−(q, p), E+(q, p)),(4.4.a)

and, in case that E−(p, p) = ∅,

R(q, p) ∈ ρ©▽(E−(q, p), E+(q, p),(4.4.b)

setting

X(G[p, q]) = X(E− ∪ E+, {p, q}, idE−∪E+).

The relation R(p, p) is isomorphic to the relation R1(X(G[p, q]), and its iso-
morphism class is therefore an invariant of the sushifts X(G[p, q]). For an R-
graph G[p, q] denote by O−

2 (G[p, q])(O
+
2 (G[p, q])) the set of O− ∈ O−

2 (X(G[p, q]))
(O+ ∈ O+

2 (X(G[p, q]))) that contain the points that carry a bi-infinite concatena-
tion of a word in E−(p, q)E−(q, p) (E+(q, p)E+(p, q)), and consider the relation

Q(G[p, q]) = R2(X(G[p, q])) ∩ (O−
2 (G[p, q])×O+

2 (G[p, q]).

It is

µ(R2(X(G[p, q]))⊖Q2(G[p, q])) =
1
2µ(R1(X(G[p, q]))〈2〉),

which implies that the isomorphism class of the relation Q2(G[p, q])) is an invariant
of X(G[p, q]). By (4.3 ) and (4.4.a - b)

Q2(G[p, q])) ∈ ρ△(E−(G[p, q]), E+(G[p, q])),

and therefore it follows that

card(E−(p, q)) = D−(Q2(G[p, q])), card(E+(p, q)) = D+(Q2(G[p, q])),

and

µ(R(q, p)) =
µ(Q2(G[p, q])

D−(Q2(G[p, q]))D+(Q2(G[p, q]))
,

and it is seen that card(E−(p, q)) and card(E+(p, q)) as well as the isomorphism
class of the relation R(q, p) are invariants of the subshifts X(G[p, q]).

We note that

I−2 (X(G[p, q])) > I−1 (X(G[p, q]))(I−1 (X(G[p, q]))− 1),(4.5)
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(4.6) I02 (X(G[p, q])) = card(R1(X(G[p, q])))+

card(Q(X(G[p, q])))

D−(Q2(X(G[p, q])))D+(Q2(X(G[p, q])))
+

D−(Q(X(G[p, q])))D+(Q2(X(G[p, q]))),

Q(X(G[p, q])) ∈ ρ△(O−
2 (G[p, q]), O

+
2 (G[p, q])).(4.7)

The semigroup that is associated to the subshift X(G[p, q]) is isomorphic to the
R-graph semigroup of a one-vertex R-graph with a relation that is isomorphic to

R̂(p, p)⊕ R̂(q, p).
By G+[p, q, r] we denote an R-graph GR({p, q, r}, E−, E+) such that

E−(q, q) = ∅, E−(r, r) = ∅, E−(p, r) = ∅, E−(r, q) = ∅,

and

E−(p, q) 6= ∅, R(p, q) = E−(p, q)× E+(p, q),(4.8)

E−(q, r) 6= ∅, R(q, r) = E−(q, r)× E+(q, r),(4.9)

and

R(q, p) ∈ ρ▽(E−(q, p), E+(q, p)),(4.10)

R(r, p) ∈ ρ▽(E−(r, p), E+(r, p)),(4.11)

setting

X(G+[p, q, r]) = X(E− ∪ E+, {p, q, r}, idE−∪E+).

The relation R(p, p) is isomorphic to the relation R1(X(G[p, q, r]), and therefore
its isomorphism class is an invariant of the subshifts X(G+[p, q, r]). For an R-graph
G+[p, q, r] denote byO

−
2 (G+[p, q, r])(O

+
2 (G+[p, q, r])) the set ofO

−∈O−
2 (X(G+[p, q, r]))

(O+ ∈ O+
2 (X(G+[p, q, r]))) that contain the points that carry a bi-infinite concate-

nation of a word in E−(p, q)E−(q, p) (E+(q, p)E+(p, q)), and consider the relation

Q2(G+[p, q, r]) = R2(X(G+[p, q, r])) ∩ (O−
2 (G+[p, q, r])×O+

2 (G+[p, q, r]).

It is

µ(R2(X(G+[p, q, r]))⊖Q2(G+[p, q, r]) =
1
2µ(R1(X(G+[p, q, r]))

〈2〉),

which implies that the isomorphism class of the relation Q2(G+[p, q, r])) is an in-
variant of the subshifts X(G[p, q]). By (4.8) and (4.10)

Q2(G+[p, q, r])) ∈ ρ△(E−(G[p, q]), E+(G+[p, q, r])).

and it follows therefore that

card(E−(p, q)) = D−(Q2(G+[p, q, r])), card(E+(p, q)) = D+(Q2(G+[p, q, r])),

and

µ(R(q, p)) =
µ(Q2(G+[p, q, r])

D−(Q2(G+[p, q, r]))D+(Q2(G+[p, q, r]))
,

and it is seen that card(E−(p, q)) and card(E−(p, q)) as well as the isomorphism
class of R(q, p) are invariants of the subshifts X(G+[p, q, r]).

For an R-graph G+[p, q, r] denote also by O−
3 (G+[p, q, r])(O

+
3 (G[p, q, r])) the set

of O− ∈ O−
3 (X(G+[p, q, r])) (O+ ∈ O+

3 (X(G+[p, q, r]))) that contain the points
that carry a bi-infinite concatenation of a word in E−(p, q)E−(q, r)E−(r, p)(E+(r, p)
E+(q, r)E+(p, q)), and consider the relation

Q3(G+[p, q, r]) = R3(X(G+[p, q, r])) ∩ (O−
3 (G[p, q, r])×O+

3 (G+[p, q, r]).
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It is

µ(R3(X(G+[p, q, r]))⊖Q3(G+[p, q, r])) =

1
3µ((R1(X(G[p, q, r]))〈3〉)+

card(E−(p, q))card(E+(p, q))µ(R1(X(G+[p, q, r]))+

µ(Q2(G+[p, q, r])⊗R1(X(G+[p, q, r]))),

which implies that the isomorphism class of the relation Q3(G+[p, q, r])) is an in-
variant of the subshifts X(G[p, q, r]). By (4.9) and (4.11)

Q3(G+[p, q, r])) ∈ ρ△(E−(G[p, q]), E+(G+[p, q, r])).

and it follows therefore that

card(E−(p, q))card(E−(q, r)) = D−(Q3(G+[p, q, r])),

card(E+(p, q))card(E+(q, r)) = D+(Q3(G+[p, q, r])),

and

µ(R(q, p)) =
µ(Q3(G+[p, q, r])

D−(Q3(G+[p, q, r]))D+(Q3(G+[p, q, r]))
,

and it is seen that card(E−(q, r)) and card(E−(q, r)) as well as the isomorphism
class of R(q, p) are invariants of the subshifts X(G+[p, q, r]).

We note that

I−2 (X(G+[p, q, r])) > I−1 (X(G+[p, q, r]))(I
−
1 (X(G+[p, q, r]))− 1),(4.12)

(4.13) I02 (X(G+[p, q, r])) > card(R1(X(G+[p, q, r])))+

card(Q2(X(G[p, q, r])))

D−(Q2(X(G+[p, q, r])))D+(Q2(X(G+[p, q, r])))
+

D−(Q2(X(G+[p, q, r])))D
+(Q2(X(G+[p, q, r]))),

Q2(X(G+[p, q, r]))) ∈ ρ△(O−
2 (G+[p, q, r])),O

+
2 (G+[p, q, r])).(4.14)

The semigroup that is associated to the subshift X(G+[p, q, r]) is isomorphic to
the R-graph semigroup of a one-vertex R-graph with a relation that is isomorphic

to R̂(p, p)⊕ R̂(q, p)⊕ R̂(r, p).
By G0[p, q, r] we denote an R-graph GR({p, q, r}, E−, E+) such that

E−(q, q) = ∅, E−(r, r) = ∅, E−(p, r) = ∅, E−(r, q) = ∅, E−(q, p) = ∅,

and

E−(p, q) 6= ∅, R(p, q) = E−(p, q)× E+(p, q),(4.15)

E−(q, r) 6= ∅, R(q, r) = E−(q, r)× E+(q, r),(4.16)

and
E−(r, p) 6= ∅,

and such that, in case that E−(p, p) = ∅,

R(r, p) ∈ ρ©▽(E−(r, p), E+(r, p),(4.17.a)

and in case that E−(p, p) 6= ∅,

R(r, p) ∈ ρ▽(E−(r, p), E+(q, p)),(4.17.b)

setting
X(G0[p, q, r]) = X(E− ∪ E+, {p, q, r}, idE−∪E+).
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Proposition 4.1. Let there be given R-graphs

G0[p, q, r] = GR({p, q, r}, E−, E+)

and
G̃0[p̃, q̃, r̃])) = GR̃({p̃, q̃, r̃}, Ẽ−, Ẽ+).

For the subshifts X(G0[p, q, r]))) and X(G̃0[p̃, q̃, r̃]))) to be topologically conjugate,

it is necessary and sufficient that the relations R(p, p) and R̃(p̃, p̃) are isomorphic,

that the relations R(r, p) and R̃(̃r, p̃) are isomorphic, and that

card(E−(p, q))card(E−(q, r)) = card(Ẽ−(p̃, q̃))card(Ẽ−(q̃, r̃)),(4.18)

card(E+(q, r))card(E+(p, q)) = card(Ẽ+(q̃, r̃))card(Ẽ+(p̃, q̃)),(4.19)

card(E−(p, q))card(E+(p, q)) = card(Ẽ−(p̃, q̃))card(Ẽ+(p̃, q̃)).(4.20)

Proof. Note that in the statement of the proposition (4.19) can be replaced by

card(E−(q, r))card(E+(q, r)) = card(Ẽ−(q̃, r̃))card(Ẽ+(q̃, r̃)).(4.21)

Set
X = X(G0[p, q, r]).

The relation R(p, p) is isomorphic to the relation R1(X) and therefore its iso-
morphism class is an invariant of the subshift X .

Also set
A−

p,q = card(E−(p, q)), A−
q,r = card(E−(q, r)),

A+
q,r = card(E+(q, r)), A+

p,q = card(E+(p, q)),

We divide the proof of necessity into two cases. We consider first the case that X
has fixed points.

The set O−
3,1(X) contains precisely the orbits in O ∈ O−

3 (X) whose points carry

a bi-infinite concatenation of a word in E−(p, p)E−(p, q)E+(p, q). It is

card(O−
3,1(X)) = card(E−(p, p))A−

p,qA
+
p,q,

and it follows that A−
p,qA

+
p,q is an invariant of the subshift X .

For the R-graph G0[p, q, r] denote by O−
3 (G0[p, q, r])(O

+
3 (G0[p, q, r])) the set of

O− ∈ O−
3 (X) (O+ ∈ O+

3 (X)) that contain the points that carry a bi-infinite
concatenation of a word in E−(p, q)E−(q, r)E−(r, p) (E+(r, p)E+(q, r)E+(p, q)), and
consider the relation

Q3(G0[p, q, r) = R3(X) ∩ (O−
3 (G0[p, q, r])×O+

3 (G0[p, q, r])).

It is

µ(R3(X)⊖Q3(G+0[p, q, r])) =
1
3µ(R1(X)〈3〉) +A−

p,qA
+
p,qµ(R1(X)),

and it follows that the isomorphism class of the relation Q3(G0[p, q, r])) is an invari-
ant of the subshift X . By (4.15 - 16) and (17.a)

Q3(G0[p, q, r])) ∈ ρ△(O−
3 (G0[p, q, r]),O

+
3 (G0[p, q, r])).

and it follows therefore that

A−
p,qA

−
q,r = D−(Q3(G0[p, q, r])), A+

q,rA
+
p,q = D+(Q3(G0[p, q, r])),

and it is seen that A−
p,qA

−
q,r and A+

q,rA
+
p,q are invariants of the subshift X . Also

µ(R(r, p)) =
µ(Q3(G0[p, q, r]))

A−
p,qA

−
q,rA

+
q,rA

+
p,q

,

and it is seen that the isomorphism class of the relation R(r, p) is an invariant of
X .
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Consider the case that X has no fixed points. In this case by (4.16) and (4.17.b)

R3(X) ∈ ρ△(O−
3 (X),O+

3 (X)),

and

A−
p,qA

−
q,r = D−(R3(X)), A+

q,rA
+
p,q = D+(R3(X)),

and

µ(R(r, p)) =
µ(R3(X))

A−
p,qA

−
q,rA

+
q,rA

+
p,q

,

and it is seen that A−
p,qA

−
q,r and A+

q,rA
+
p,q as well as the isomorphism class of the

relation R(r, p)) are invariants of the subshift X , It is

A−
p,qA

+
p,q +A+

q,rA
−
q,r = I02 (X)− card(R(r, p)),

which implies that A−
p,qA

+
p,q +A+

q,rA
−
q,r, is an invariant of X . Also

I06 (X) =1
3{A

−
p,qA

+
p,q(A

−
p,qA

+
p,q − 1)(A−

p,qA
+
p,q − 2)}+A−

p,qA
+
p,q(A

−
p,qA

+
p,q − 1)+

1
3{A

−
q,r A

+
q,r(A

−
q,rA

+
q,r − 1)(A−

q,rA
+
q,r − 2)}+A−

q,r A
+
q,r(A

−
q,rA

+
q,r − 1)+

A−
p,qA

−
q,rA

+
q,rA

+
p,q(A

−
p,qA

+
p,q +A+

q,rA
−
q,r)+

1
3card(R(r, p))(card(R(r, p)) − 1)(card(R(r, p))− 2)+

card(R(r, p))2(A−
p,qA

+
p,q +A+

q,rA
−
q,r) + 2 card(R(r, p))A−

p,qA
−
q,rA

+
q,rA

+
p,q+

card(R(r, p))A−
p,qA

+
p,q,

and it follows from the invariance of A−
p,qA

−
q,r, A

+
q,rA

+
p,q and of A−

p,qA
+
p,q +A+

q,rA
−
q,r

that also A−
p,qA

+
p,q is an invariant of the subshift X . This proves necessity.

To prove sufficiency it is enough to consider the case that

p = p̃, q = q̃, r = r̃,

and that

E−(p, p) = Ẽ−(p, p), E+(p, p) = Ẽ+(p, p), R(p, p) = R̃(p, p).

E−(q, r) = Ẽ−(q, r), E+(q, r) = Ẽ+(q, r), R(q, r) = R̃(q, r).

By (4.18 - 21) we can choose bijections

ηr,q,r : E
+(q, r)E−(q, r) → Ẽ+(q, r)Ẽ−(q, r),

ηr,q,p : E+(q, r)E+(p, q) → Ẽ+(q, r)Ẽ+(p, q),

ηp,q,p : E−(p, q)E+(p, q) → Ẽ−(p, q)Ẽ+(p, q),

ηp,q,r : E
−(p, q)E−(q, r) → Ẽ−(p, q)Ẽ−(q, r).

A topological conjugacy of X(G0[p, q, r)]) onto X(G̃0[p̃, q̃, r̃]) is given by the map-
ping that replaces in the points of X(G0[p, q]) a word in E+(q, r)E−(q, r) by its
image under ηr,q,r, a word in E+(q, r)E+(p, q) by its image under ηr,q,p, a word in
E−(p, q)E+(p, q) by its image under ηp,q,p, and a word in E−(p, q)E−(q, r) by its
image under ηp,q,r. �

We note that

I−2 (X(G0[p, q, r])) = I−1 (X(G0[p, q, r]))(I
−
1 (X(G0[p, q, r]))− 1),(4.22)

I02 (X(G0[p, q, r])) > card(R1(X(G0[p, q, r]))).(4.23)

The semigroup that is associated to the subshift X(G0[p, q, r]) is isomorphic to
the R-graph semigroup of a one-vertex R-graph with a relation that is isomorphic

to R̂(p, p)⊕ R̂(r, p).
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By G+[p, q0, q1] we denote an R-graph GR({p, q0, q1}, E−, E+) such that

E−(q0, q1) = ∅, E−(q1, q0) = ∅

and

R(p, q0) = E−(p, q0)× E+(p, q0), R(p, q1) = E−(p, q1)× E+(p, q1),(4.24)

R(q0, p) ∈ ρ▽(E−(q0, p), E
+(q0, p)), R(q1, p) ∈ ρ▽(E−(q1, p), E

+(q1, p)),(4.25)

such that
E−(p, q0) 6= ∅, E−(p, q1)) 6= ∅,

and such that the pair

(card(E−(p, q0)), card(E
−(p, q1)))

is lexicographically larger than the pair

(card(E+(p, q0)), card(E
+(p, q1))),

setting
X(G+[p, q0, q1]) = X(E− ∪ E+, {p, q0, q1}, idE−∪E+).

The relationR1(X(G+[p, q0, q1])) is isomorphic to the relationR(p, p), and there-
fore its isomorphism class is an invariant of the subshifts X(G+[p, q0, q1]). For an
R-graph G+[p, q0, q1] denote by O−

(0)(G+[p, q0, q1]) (O−
(1)(G+[p, q0, q1]))) the set of

O− ∈ O−
2 (X(G+[p, q0, q1])) that contain the points that carry a bi-infinite concate-

nation of a word in E−(p, q0) E−(q0, p) (E−(p, q1)E−(q1, p)), and set

Q
(0)
2 (G+[p, q0, q1])) =

R2(X(G+[p, q0, q1])) ∩ (O−
(0)(G+[p, q0, q1])) ×O+

(0)(G+[p, q0, q1]))),

Q
(1)
2 (G+[p, q0, q1])) =

R2(X(G+[p, q0, q1])) ∩ (O−
(1)(G+[p, q0, q1])) ×O+

(1)(G+[p, q0, q1]))),

and
Q2(G+[p, q0, q1])) = Q

(0)
2 (G+[p, q0, q1])) ∪ Q

(1)
2 (G+[p, q0, q1])).

It is

µ(R2(X(G+[p, q0, q1])⊖Q2(G+[p, q0, q1]))) =
1
2µ(R1(X(G+[p, q0, q1]))

〈2〉),

which implies that the isomorphism class of Q2(G+[p, q0, q1])) is an invariant of
X(G+[p, q0, q1])). Also observe that by (4.25) the sets

O−
(0)(G+[p, q0, q1]),O

+
(0)(G+[p, q0, q1]),

and
O−

(1)(G+[p, q0, q1]),O
+
(1)(G+[p, q0, q1]),

are uniquely determined as the sets O−
(0),O

+
(0), and O−

(1),O
+
(1), such that

O−
(0) ∪ O−

(1) = O−
(0)(G+[p, q0, q1]) ∪ O−

(1)(G+[p, q0, q1]),

O+
(0) ∪ O+

(1) = O+
(0)(G+[p, q0, q1]) ∪ O+

(1)(G+[p, q0, q1]),

and
(O−

(0) ×O+
(0)) ∩ Q(G+[p, q0, q1])) ∈ ρ△(O−

(0), O
+
(0)),

(O−
(1) ×O+

(1)) ∩ Q(G+[p, q0, q1])) ∈ ρ△(O−
(1),O

+
(1)),

and it follows that also the isomorphism classes of the relation Q
(0)
2 (G+[p, q0, q1]))

and of the relation Q(1)(G+[p, q0, q1])) are invariants of X(G+[p, q0, q1])). By (4.24)

card(E−(p, q0)) = D−(Q
(0)
2 (G+[p, q0, q1]))),
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card(E+(p, q0)) = D+(Q
(0)
2 (G+[p, q0, q1]))),

card(E−(p, q1)) = D−(Q
(1)
2 (G+[p, q0, q1]))),

card(E+(p, q1)) = D+(Q
(1)
2 (G+[p, q0, q1]))),

and

µ(R(q0, p)) =
µ(Q

(0)
2 (G+[p, q0, q1])))

D−(Q
(0)
2 (G+[p, q0, q1])))D+(Q

(0)
2 (G+[p, q0, q1])))

,

µ(R(q1, p)) =
µ(Q

(1)
2 (G+[p, q0, q1])))

D−(Q
(1)
2 (G+[p, q0, q1])))D+(Q

(1)
2 (G+[p, q0, q1])))

,

and therefore also the isomorphism classes of the relations R(q0, p) and R(q1, p)
are invariants of X(G+[p, q0, q1])).

We note that

I−2 (X(G+[p, q0, q1])) > I−1 (X(G+[p, q0, q1]))(I
−
1 (X(G+[p, q0, q1])− 1),(4.27)

Q2(X(G+[p, q0, q1]))) 6∈ ρ△(O−
2 (G+[p, q0, q1])),O

+
2 (G+[p, q0, q1])).(4.28)

The semigroup that is associated to the subshift X(G+[p, q0, q1]) is isomorphic to
the R-graph semigroup of a one-vertex R-graph with a relation that is isomorphic

to R̂(p, p)⊕ R̂(q0, p)⊕ R̂(q1, p).
By G0[p, q0, q1] we denote an R-graph GR({p, q0, q1}, E−, E+) such that

E−(q0, q1) = ∅, E−(q1, q0) = ∅,

and

E−(p, q0) 6= ∅, E−(p, q1) 6= ∅,

R(p, q0) = E−(p, q0)× E+(p, q0), R(p, q1) = E−(p, q1)× E+(p, q1),(4.29)

R(q0, p) ∈ ρ▽(E−(q0, p), E
+(q0, p)), R(q1, p) ∈ ρ▽(E−(q1, p), E

+(q1, p)),(4.30)

and such that

card(E−(p, q0)) = card(E−(p, q1)), card(E+(p, q0)) = card(E+(p, q1)),

setting

X(G0({p, q0, q1}) = X(E− ∪ E+, {p, q0, q1}, idE−∪E+).

Proposition 4.2. Let there be given R-graphs

G0[p, q0, q1] = GR({p, q0, q1}, E
−, E+)

and

G̃0[p̃, q̃0, q̃1] = GR̃({p̃, q̃0, q̃1}, Ẽ
−, Ẽ+).

For the subshifts X(G0[p̃, q̃0, q̃1]) and X(G̃0[p̃, q̃0, q̃1]) to be topologically conjugate
it is necessary and sufficient that the relation R(p, p) is isomorphic to the relation

R̃(p̃, p̃) and that

µ(R(q0, p)) + µ(R(q1, p)) = µ(R(q̃0, p̃)) + µ(R(q̃1, p̃)).

Proof. We prove necessity. We denote the common value of card(E−(p, q0)) and
card(E−(p, q1)) (card(E+(p, q0)) and card(E+(p, q1))) by A−(A+ ). The relation
R1(X(G0[p, q0, q1])) is isomorphic to the relation R(p, p), and therefore its iso-
morphism class is an invariant of the subshifts X(G+[p, q0, q1]). For an R-graph
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G0[p, q0, q1] denote by O−
(0) (O−

(1)) the set of O− ∈ O−
2 (X(G+[p, q0, q1])) that con-

tain the points that carry a bi-infinite concatenation of a word in E−(p, q0)E−(q0, p)
(E−(p, q1)E

−(q1, p)), and set

Q2(G0[p, q0, q1])) =

(R2(X(G0[p, q0, q1])) ∩ (O−
(0) ×O+

(0)) ∪ (R2(X(G0[p, q0, q1])) ∩ (O−
(1) ×O+

(1)).

It is

µ(R2(X(G0[p, q0, q1])⊖Q2(G0[p, q0, q1]))) =
1
2µ(R1(X(G0[p, q0, q1]))

〈2〉),

which implies that the isomorphism class of Q2(G0[p, q0, q1]) is an invariant of the
subshifts X(G+[p, q0, q1]). By (4.29 - 30)

Q2(G0[p, q0, q1])) ∈ ρ△(O−
(0) ∪ O−

(1),O
+
(0) ∪O+

(1)),

and therefore

A− = D−(Q2(G0[p, q0, q1])), A+ = D+(Q2(G0[p, q0, q1])),

and

µ(R(q0, p) ∪R(q1, p)) =
µ(Q2(G0[p, q0, q1])

A−A+
,

and it is seen that the isomorphism class of the relation R(q0, p) ⊕ R(q0, p) is an
invariant of the subshifts X(G+[p, q0, q1]).

For the proof of sufficiency choose any R◦
◦ ∈ Ξ such that

µR◦
◦
(R(q0, p)) + µR◦

◦
(R(q1, p)) > 0.

Without loss of generality one can assume that µR◦
◦
(R(q0, p)) > 0. Let E−

◦ ⊂
E−(q0, p)), E+

◦ ⊂ E+(q0, p)) be such that R(q0, p)∩ (E−
◦ × E+

◦ ) is isomorphic to R◦
◦.

We prove that the subshift X(G0[p, q0, q1]) is topologically conjugate to a subshift

X(Ĝ0[p, q0, q1]), where

Ĝ0[p, q0, q1] = GR̂({p, q0, q1}, Ê
−, Ê+)

is an R-graph such that R̂(q0, p) is isomorphic to R◦
◦, and such that

µR◦
◦
(R̂(q1, p)) = µR◦

◦
(R(q0, p)) + µR◦

◦
(R(q1, p))− 1,

and

µR◦
(R̂(q1, p)) = µR◦

(R(q0, p)) + µR◦
(R(q1, p)), R◦ 6= R◦

◦.

It is possible to set

Ê−(q0, p) = E−
◦ , Ê−(q1, p) = E−(q1, p) ∪ (E−(q0, p) \ E

−
◦ ),

Ê+(q0, p) = E+
◦ , Ê+(q1, p) = E+(q1, p) ∪ (E+(q0, p) \ E

+
◦ ),

and

R̂(q1, p) = R(q0, p) ∩ ((E−(q0, p) \ E
−
◦ )× (E+(q0, p) \ E

+
◦ ))⊕R(q1, p).

We choose bijections

ψ− : E−(p, q0) → E−(p, q1), ψ+ : E+(p, q0) → E+(p, q1).

A topological conjugacy of X(G0[p, q0, q1]) ontoX(Ĝ0[p, q0, q1]) is given by the map-
ping that replaces in the points of X(G0[p, q0, q1]) every symbol e− ∈ E−(p, q0) that
is followed by a symbol in E−(q0, p) by ψ

−(e−), and every symbol e+ ∈ E+(p, q0)
that is preceded by a symbol in E+(q0, p) by ψ

+(e+). �
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We note that

I−2 (X(G0[p, q0, q1])) > I−1 (X(G0[p, q0, q1]))(I
−
1 (X(G0[p, q0, q1]]))− 1),(4.31)

(4.32) I02 (X(G0[p, q0, q1])) = card(R1(X(G0[p, q0, q1])))+

card(Q(X(G0[p, q0, q1])))

D−(Q2(X(G0[p, q0, q1])))D+(Q2(X(G0[p, q0, q1])))
+

2D−(Q(X(G0[p, q0, q1])))D
+(Q2(X(G0[p, q0, q1]))),

Q2(G0[p, q0, q1])) ∈ ρ△(O−
2 (G0[p, q0, q1]),O

+
2 (G0[p, q0, q1]).(4.33)

The semigroup that is associated to the subshift X(G0[p, q0, q1]) can be described
just like the semigroup that is associated to the subshift X(G+[p, q0, q1]), as the R-
graph semigroup of a one-vertex R-graph with a relation that is isomorphic to

R̂(p, p)⊕ R̂(q0, p)⊕ R̂(q1, p).

Denote by G
(+)
+ [p, q, r](G

(0)
+ [p, q, r]) an R-graph of type G+[p, q, r]) such that

E−(p, p) 6= ∅(E−(p, p) = ∅), and denote by G
(+)
0 [p, q0, q1] (G0

0 [p, q0, q1]) an R-graph
of type G0[p, q0, q1] such that E−(p, p) 6= ∅ (E−(p, p) = ∅). We note that

card(O3,1(X(G
(+)
+ [p, q, r])) = card(E−(p, q))card(E+(p, q)),(4.34)

card(O3,1(X(G
(+)
0 [p, q0, q1])) = 2 card(E−(p, q0))card(E

+(p, q0)),(4.35)

I−3 (X(G0
+[p, q, r])) > 0,(4.36)

I−3 (X(G0
0 [p, q0, q1])) = 0,(4.37)

I−3 (X(G
(+)
+ [p, q, r])) >(4.38)

(I−2 (X(G
(+)
+ [p, q, r]))− (I−1 (X(G

(+)
+ [p, q, r])− 1)2)I−1 (X(G

(+)
+ [p, q, r]))+

card(E−(p, q))card(E+(p, q))I−1 (X(G
(+)
+ [p, q, r]))+

1
3I

−
1 (X(G

(+)
+ [p, q, r]))(I−1 (X(G

(+)
+ [p, q, r]))− 1)(I−1 (X(G

(+)
+ [p, q, r]))− 2),

I−3 (X(G+
0 [p, q0, q1])) >(4.39)

(I−2 (X(G+
0 [p, q0, q1]))− (I−1 (X(G+

0 [p, q0, q1])− 1)2)I−1 (X(G+
0 [p, q0, q1]))+

2 card(E−(p, q))card(E+(p, q))I−1 (X(G+
0 [p, q0, q1]))+

1
3I

−
1 (X(G+

0 [p, q0, q1]))(I
−
1 (X(G+

0 [p, q0, q1]))− 1)(I−1 (X(G+
0 [p, q0, q1]))− 2).

Taking into account, that the isomorphism class of the relation Q2 is determined
by the isomorphism class of the relations R1 and R2 by

µ(Q2) = µ(R2)−
1
2µ(R

〈2〉
1 ),

it is seen from (4.1 - 2), (4.5 - 7), (4.12 - 14), (4.22 - 23), (4.27 - 28), and (4.31−39)
that the invariants I−1 , I

−
2 , I

−
3 , I

0
2 , and card(O3,1) distinguish between the subshifts

of the various types of R-graphs G[p], G[p, q] and G+[p, q, r],G0[p, q, r] and also
G+[p, q0, q1], G0[p, q0, q1]. Also observe, that the family of R-graphs with up to
three vertices, that we have considered, appears naturally as a sub-family of a fam-
ily R-graphs, that are unions of R graphs that have a ladder structure with gaps,
and that have a common base point.
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5. Examples II

We describe now the strongly connected directed graphs with three vertices, with
one of the vertices having a single incoming edge, that have Markov-Dyck shifts
with an associated semigroup, that is the inverse semigroup of a strongly connected
directed graph with two vertices, the vertex set of this two-vertex graph to be

denoted by {α, β}, its edge set by F and its adjacency matrix by T =
(

Tαα Tαβ

Tβα Tββ

)
,

such that

Tαα + Tβα > 1, Tαβ + Tββ > 1,

where we can assume that T is normalized such that Tαα > Tββ or Tαα = Tββ, Tαβ ≥
Tβα. We will specify the directed graphs by their adjacency matrices A, denoting
the graph by G(A), and its Markov-Dyck shift by MD(G(A)). The graphs come in
two sets. A first set contains the graphs with vertices pα(0), pα(1), and pβ, and with

an adjacency matrix A(α)(T,∆(α),∆α) that is given by

(5.1)



A(α)(pα(0), pα(0)) A(α)(pα(0), pα(1)) A(α)(pα(0), pβ)

A(α)(pα(1), pα(0)) Aα)(pα(1), pα(1)) A(α)(pα(1), pβ)

A(α)(pβ , pα(0)) A(α)(pβ , pα(1)) A(α)(pβ, pβ)


 =



Tαα −∆(α) 1 ∆α

∆(α) 0 Tαβ −∆α

Tβα 0 Tββ


 ,

0 ≤ ∆(α) ≤ Tαα, 0 ≤ ∆α ≤ Tαβ , ∆
(α) + Tαβ −∆α > 0.

The second set contains the graphs with vertices pβ(0), pβ(1), and pα, and with an
adjacency matrix

A(β)(T,∆(β),∆β)), 0 ≤ ∆(β) ≤ Tββ, 0 ≤ ∆β ≤ Tαβ,∆
(β) + Tβα −∆β > 0,

that is obtained from (5.1) by interchanging alpha with beta. By Theorem (2.3)
MD(G(A(α)(T,∆(α),∆α))) and MD(G(A(β)(T,∆(β),∆β))) have Property (A) and
their associated semigroup is by Theorem (3.3) the inverse semigroup of the directed
graph with adjacency matrix T .

One has

I−1 (MD(G(A(α)(T,∆(α),∆α))) = Tαα + Tββ −∆(α),(α1)

I−1 (MD(G(A(β)(T,∆(β),∆β))) = Tββ + Tαα −∆(β),(β1)

(α2) I−2 (MD(G(A(α)(T,∆(α),∆α))) =

Tαα(Tαα − 1) + Tββ(Tββ − 1) + ∆(α) +∆αTβα,

(β2) I−2 (MD(G(A(β)(T,∆(β),∆β))) =

Tββ(Tββ − 1) + Tαα(Tαα − 1) + ∆(β) + Tαβ∆β .

It follows from (α1) that for

0 ≤ ∆(α), ∆̃(α) ≤ Tαα, 0 ≤ ∆α, ∆̃α ≤ Tαβ,∆
(α) 6= ∆̃(α),

the subshiftsMD(G(A(α)(T,∆(α),∆α)) andMD(G(A(α)(T, ∆̃(α), ∆̃α)) are not topo-
logically conjugate, and it follows from (α2) that for

0 ≤ ∆(α) ≤ Tαα, 0 ≤ ∆α, ∆̃α ≤ Tαβ ,∆α 6= ∆̃α,
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the subshiftsMD(G(A(α)(T,∆(α),∆α)) andMD(G(A(α)(T,∆(α), ∆̃α)) are not topo-
logically conjugate. The symmetric argument that uses (β1) and (β2), gives the
same result.

Denote for k ∈ N by I−k (α)(I−k (β)) the number of orbits of length k with negative
multiplier in {f ∈ F : s(f) = t(f) = α}({f ∈ F : s(f) = t(f) = β}). One has

I−1 (α)(MD(G(A(α)(T,∆(α),∆α))) = Tαα −∆(α),(1αα)

I−1 (α)(MD(G(A(β)(T,∆(β),∆β))) = Tαα,(1αβ)

I−1 (β)(MD(G(A(α)(T,∆(α),∆α))) = Tββ,(1βα)

I−1 (β)(MD(G(A(β)(T,∆(β),∆β))) = Tββ −∆(β),(1ββ)

I−3 (α)(MD(G(A(α)(T, 0,∆α))) = Tαα(Tαα + 1 +∆α),(3αα)

I−3 (α)(MD(G(A(β)(T, 0,∆β))) = Tαα(Tαα + Tαβ),(3αβ)

I−3 (β)(MD(G(A(α)(T, 0,∆α))) = Tββ(Tββ + Tβα),(3βα)

I−3 (β)(MD(G(A(β)(T, 0,∆β))) = Tββ(Tββ + 1 +∆β),(3ββ)

(5αα) I−5 (α)(MD(G(A(α)(T, 0,∆α))) =

Tαα
(
(Tαα + 1 +∆α)

2 + Tαα(Tαα + 1 +∆α) + Tαβ −∆α +∆α(Tββ + Tβα)
)
,

(5αβ) I−5 (α)(MD(G(A(β)(T, 0,∆β))) =

Tαα
(
(Tαα + Tαβ)

2 + Tαα(Tαα + Tαβ) + Tαβ(Tββ +∆β)
)
,

(5βα) I−5 (β)(MD(G(A(α)(T, 0,∆α))) =

Tββ
(
(Tββ + Tβα)

2 + Tββ(Tββ + Tβα) + Tβα(Tαα +∆α)
)
,

(5ββ) I−5 (β)(MD(G(A(β)(T, 0,∆β))) =

Tββ
(
(Tββ + 1 +∆β)

2 + Tββ(Tββ + 1 +∆β) + Tβα −∆β +∆β(Tαα + Tαβ)
)
.

In the case that Tαα = Tββ, Tαβ = Tβα, and ∆(α) = ∆(β),∆α = ∆β , the graphs

G(A(α)(T,∆(α),∆α))) and G(A(β)(T,∆(β),∆β)) are isomorphic, and therefore the

subshifts MD(G(A(α)(T,∆(α),∆α) and MD(G(A(β)(T,∆(β),∆β) are topologically
conjugate.

In the case that Tαα > Tββ or Tαα = Tββ, Tαβ > Tβα, an automorphism of
the graph with adjacency matrix T leaves the vertices α and β fixed and therefore
permutes the sets {f ∈ F : s(e) = t(e) = α} and {f ∈ F : s(e) = t(e) = β}. It
follows then for this case from [Kr3, Corollary 3.2] and [HIK, Proposition 4.2] that
I−k (α), I−k (β), k ∈ N, are invariants. Therefore by (1αα) and (1αβ) no subshift

MD(G(A(α)(T,∆(α),∆α))), 0 < ∆(α) ≤ Tαα, 0 ≤ ∆α ≤ Tαβ,

is topologically conjugate to any of the subshifts

MD(G(A(β)(T,∆(β),∆β))), 0 ≤ ∆(β) ≤ Tββ, 0 ≤ ∆β ≤ Tβα,∆
(β)+Tβα−∆β > 0,

and by (1ββ) and (1βα) no subshift

MD(G(A(β)(T,∆(β),∆β))), 0 < ∆(β) ≤ Tββ, 0 ≤ ∆β ≤ Tβα,



30 TOSHIHIRO HAMACHI AND WOLFGANG KRIEGER

is topologically conjugate to any of the subshifts

MD(G(A(α)(T,∆(α),∆α))), 0 ≤ ∆(α) ≤ Tαα, 0 ≤ ∆α ≤ Tαβ ,∆
(α)+Tαβ−∆α > 0.

We prove that under the hypothesis that Tαα > Tββ or Tαα = Tββ, Tαβ > Tβα,
no subshift

MD(G(A(α)(T, 0,∆α)))

is topologically conjugate to a subshift

MD(G(A(β)(T, 0,∆β))).

Assume the contrary. Then it follows from (1αα) and (1ββ) (or from (1αβ) and
(1βα)) and (α2) and (β2) that

∆αTβα = Tαβ∆β .(5.2)

In the the case that

Tββ = 0.

one has by (5βα) and (5ββ) that

(Tαα − 1)(Tβα −∆β) = 0.

Tβα = ∆β is impossible, and for the case that Tαα = 1 one has from (3αα) and
(3αβ) that

1 + ∆α = Tαβ,

and then from (15.2 that Tαβ = ∆α, which is also impossible.
In the the case that

Tββ > 0.

It follows from (3αα) and (3αβ), and from (3αα) and (3αβ), that

1 + ∆α = Tαβ, 1 + ∆β = Tβα.

Fom this one has by (5.2) that

∆α = ∆β , Tαβ = Tβα,

and from this one has by (5αα) and (5αβ) (or by (5ββ) and (5βα)), that

Tαα = Tββ,

which contradicts the hypothesis.
Consider now also the matrix T as the adjacency matrix of a directed graph G(T )

with its Markov-Dyck shift MD(G(T )). The subshift MD(G(T )) has Property (A)
and its associated semigroup is the inverse semigroup of G(T ). One has

I02 (G(T )) = Tαα + Tαβ + Tβα + Tββ,

and

I02 (MD(G(A(α)(T,∆(α),∆α) = I02 (MD(G(β)(T,∆(β),∆β) =

Tαα + Tαβ + Tβα + Tββ + 1.

It follows that the subshift MD(G(T )) is not topologically conjugate to any of the
subshifts MD(G(α)(T,∆(α),∆α), nor to any of the subshifts MD(G(β)(T,∆(β),∆β).
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6. R-graph semigroups associated to subshifts with Property (A)

There exist finite strongly connected directed graphs G whose inverse semigroup
SG is associated to topologically transitive subshifts with Property (A) that are not
topologically conjugate to SG-presentations [Kr3, Section 8]. However, as is seen
from the following theorem, the class of R-graph semigroups that are associated to
topologically transitive subshifts with Property (A) coincides with the class of R-
graph semigroups that are associated to SR(P, E−, E+) presentations with Property
(A).

For a semigroup (with zero) S we set

[F ] = {F ′ ∈ S : Γ(F ′) = Γ(F )}.

The set [S] = {[F ] : F ∈ S} with the product given by

[G][H ] = [GH ], G,H ∈ S,

is a semigroup.

Theorem 6.1. The R-graph semigroup SR(P, E−, E+) is associated to a topologi-
cally transitive subshift with Property (A) if and only if the R-graph GR(P, E−, E+)
satisfies conditions (a), (b), (c) and (d).

Proof. The R-graph GR(P, E−, E+) satisfies Condition (a) if the projection of
S(P, E−, E+) onto [S(P, E−, E+)] is an isomorphism, and this is by Theorem 2.3
of [HK] necessary for the R-graph semigroup S(P, E−, E+) to be associated to a
topologically transitive subshift with Property (A).

To prove necessity of conditions (b), (c) and (d), let X ⊂ ΣZ be a subshift with
property (A), and let S(P, E−, E+) be an R-graph semigroup that is associated to
X .

Let (ei)0≤i≤I , I ∈ N, be a cycle in E−
R, and let p = s(e−0 ). Let p ∈ P (A(X))

be a representative of p, and let y ∈ YX be a representative of
∏

0≤i≤I ei that is
left asymptotic and right asymptotic to the orbit of p. The density of YX in X
[HK, Lemma 2.1] implies that y ∈ A(X). Therefore [y]≈ = [p]≈, which contradicts∏

0≤i≤I ei 6= 1p. This proves necessity of Condition (b−). The proof of the necessity

of Condition (b+) is symmetric.
Let p ∈ P(1) such that

η(p) 6= p,(1)

and let e− ∈ E−
R(p) and e+ ∈ E+

R(p). Let p ∈ P (A(X)) be a representative of
p, and let q ∈ P (A(X)) be a representative of η(p). Also, let y(−) ∈ YX be a
representative of e−, that is left asymptotic to the orbit of q and right asymptotic
to the orbit of p and let y(+) ∈ YX be a representative of e+, that is left asymptotic
to the orbit of p and right asymptotic to the orbit of q . The density of YX in X
implies that y(−) and y(+) are in A(X). Therefore [p]≈ = [q]≈ and this contradicts
(1). This proves necessity of Condition (c).

Let q, r ∈ P, q 6=, r, let (e−i )0≤i≤I(−), I(−) ∈ N, be a path in E−
R from q to r

and let (e+i )0≤i≤I(+), I(+) ∈ N, be a path in E+
R from q to r. Let q ∈ P (A(X))

be a representative of q, and let r ∈ P (A(X)) be a representative of r. Also let
y(−) ∈ YX be a representative of

∏
0≤i≤I(−) e

−
i , that is left asymptotic to the orbit

of q and right asymptotic to the orbit of r and let y(+) ∈ YX be a representative of∏
0≤i≤I(+) e

+
i , that is left asymptotic to the orbit of q and right asymptotic to the

orbit of r. The density of YX in X implies that y(−) and y(+) are in A(X), and this
means that the images under the projection of S(P, E−, E+) onto [S(P, E−, E−)] of∏

0≤i≤I(−) e
−
i and

∏
0≤i≤I(+) e

+
i are the same. This proves necessity of Condition

(d).
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Sufficiency is assured by Theorem (3.3), from which it follows, that for R-graphs
GR(P, E−, E+), that satisfy conditions (a), (b), (c) and (d) the subshifts X(E− ∪
E+,P, idE−∪E+) have Property (A) and have as their associated semigroup the R-
graph semigroup SR(P, E−, E+). �

Examples of R-graphs GR(P, E−, E+) that satisfy conditions (a), (b), (c) and (d),
are

P = {p}, E− = {α−, β−}, E+ = {α+, β+},

R = {(α−, α+), (α−, β+), (β−, α+)},

and

P = {p}, E− = {α−, β−, γ−}, E+ = {α+, β+, γ+},

R = (E− × E+) \ {(α−, α+), (β−, β+)(γ−, γ+)}.

Conditions (a), (b), (c) and (d) are satisfied in the case of the graph inverse semi-
groups of finite directed graphs in which every vertex has at least two incoming
edges. This is the case that was considered in [HIK]. More generally, these condi-
tions are also satisfied in the case of R-graph semigroups SR(P, E−, E+) where the
R-graph GR(P, E−, E+) is such that

E−(R(η(p), p)) = ∅, E+(R(η(p), p)) = ∅, p ∈ P(1).

This is the case that was considered in [Kr4].
For R-graph semigroups SR(P, E−, E+) that satisfy conditions (a), (b), (c) and

(d) the subshifts X(E− ∪ E+,P, idE−∪E+) are topologically conjugate if and only if
their associated semigroups are isomorphic, if and only if theR-graphs GR(P, E−, E+)
are isomorphic (see [Kr3, Kr4]). By this remark and by the results of section 4 and
5 we have also shown that the Markov-Dyck shifts that arise from strongly con-
nected directed graphs with up to three vertices are topologically conjugate if and
only if the directed graphs are isomorphic.
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