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Definition (Representation)

A representation of a monoid M over a field K is a morphism
f : M → End(V ) from M to the monoid End(V ) of
endomorphisms of V , where V is a vector space over K.

We will be interested only in the case that V is finite
dimensional. It is well known that that if dim(V ) = n, then
End(V ) is isomorphic to the monoid Mn(K) of n× n
matrices over K.

Definition (Module)

A representation gives a linear action of M on the vector
space V by mv = f(m)v for m ∈ M, v ∈ V . We say that V is
an M−module.
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Definition (Linear Action)

Conversely, if there is a function M × V → V for some vector
space V over K satisfying:

• 1v = v for all v ∈ V

• m(nv) = (mn)v for all m,n ∈ M, v ∈ V

• m(v + w) = mv +mw, for all m ∈ M, v, w ∈ V

• m(cv) = c(mv), for all m ∈ V, c ∈ K, v ∈ V

then the assignment of m ∈ M to the function v �→ mv is a
morphism f : M → End(V ).
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The Monoid Algebra

Definition (Monoid Algebra)

For M a monoid and K a field let KM be the vector space
with basis M . KM becomes an (associative) algebra over K
by linearly extending the multiplication in M to KM .

Definition
For M a monoid with 0 element z and K a field, the reduced
monoid algebra is defined by K0M = KM/Kz. Algebraists
call such objects “algebras with a multiplicative basis”.

As algebras, KM ≈ K0M ×K.



Definition
(Module Morphism) Let M be a monoid, K a field and V and
W M-modules. An M-module morphism is a linear
transformation f : V → W such that f(mv) = mf(v) for all
m ∈ M , v ∈ V .
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If A is an associative algebra, there is an evident notion of
linear representation, linear action, A-module and A-module
morphism.

Every M-module morphism linearly extends to a KM-module
morphism and every KM-module morphism restricts to a
M-module morphism. This leads to an equivalence of the
category MMod of M-modules and KMMod of KM-modules.

The “modern” definition of the Representation Theory of a
monoid M is to “describe” the category MMod
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Finite Groups

An M-module V is simple if its only submodules are 0 and V .
V is semisimple if V is a direct sum of simple modules.

If V = S1

⊕
. . .

⊕
Sn is a semisimple module with simple

components Si, then the corresponding matrix representation
is block diagonal with the representations of the Si on the
diagonal. ⎛⎜⎜⎝

S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sn

⎞⎟⎟⎠
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Theorems of Wedderburn and Maschke

To simplify the presentation, we assume the field K is of
characteristic 0 and is algebraically closed and all modules are
finite dimensional. The following summarizes the fundamental
results of Wedderburn and Maschke for the representation
theory of finite groups.

Theorem
Let M be a finite group and K an algebraically closed field of
characteristic 0. Then:

1. Every M-module is semisimple

2. KM is isomorphic to a direct product
Mn1(K)× ...×Mnr(K) of matrix algebras over K.

3. The number r is equal to the number of distinct simple
M modules and also to the number of conjugacy classes
of M and ni is the dimension of Si.
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Thus here are the steps in understanding the category MMod
of modules over a finite group M :

1. Determine the simple M-modules, Si, i = 1 . . . r.
2. Given a M-module V determine the multiplicities

mi ≥ 0, i = 1 . . . r such that V ≈ m1S1

⊕
. . .

⊕
mrSr.

3. A morphism between M-modules V,W is determined by
Schur’s Lemma that states that HomM(Si, Sj) = K if
i = j and 0 otherwise.
It follows that HomM(mSi, nSj) = Mn,m(K), the space
of n×m matrices over K if i = j and 0 otherwise.

The first step is deep combinatorics. For the symmetric group,
there are Young diagrams, hook formulae, etc.

The second step is via Character Theory, where the character
χf : M → K of a representation f : M → Mn(K) is
χf (m) =Trace(f(m)). The simple characters form an
orthonormal basis for an inner product associated to
characters.
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A Difference of Opinion

Regarding these results a finite group theorist would say:

“This is one of the most important and useful results in finite
group theory and its applications to mathematics and science.”

A finite dimensional algebraist would say:

BORING!!!!!!!!!!!!!!!!!!

since if M is a finite group, then up to category equivalence,
Obj(MMod) = Nr and Hom((m1, . . .mr), (n1, . . . nr)) is the
space of (X1, . . .Xr), where Xi is an ni ×mi matrix over K.



Now let M be an arbitrary finite monoid and V be an
M-module.



Now let M be an arbitrary finite monoid and V be an
M-module.
By choosing a basis for V according to a composition series
(the Jordan-Holder Theorem holds for M-modules), a matrix
representation is block triangular:⎛⎜⎜⎝

S1 T1,2 . . . T1,n

0 S2 . . . T2,n
...

...
. . .

...
0 0 . . . Sn

⎞⎟⎟⎠
where the Si are simple and Ti,j gives information of how to
glue Sj and Si together.
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The Munn-Ponizovsky Theorem

Thus the representation theory of a finite monoid breaks into 2
parts:

1. Determine the simple modules.

2. Determine the Ti,j that measure how to combine Si and
Sj .

The simple modules are determined by the Munn-Ponizovsky
Theorem, which we recall here. The second part is encoded by
the “quiver”, which is a combinatorial/homological object
associated to KM . (There is another approach via the
Krull-Schmidt Theorem that classifies indecomposable
modules and minimal morphisms between them).
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Munn-Ponizovsky Theorem

Let S be a simple M module. We first identify the J -class
associated to S.

Theorem (Apex)

Let M be a finite monoid and let S be a simple M-module.
Then the set of elements of M of minimal non-zero rank form
a unique regular J -class of M called the apex of S, Apex(S).

Let e be an idempotent of Apex(S) with maximal subgroup G.
Restriction of S gives a simple G-module.

Theorem
With the notation above, eS is a simple G-module. (Apex(S),
eS) is the Munn-Ponizovsky pair associated to S.



Conversely, let J be a regular J -class of M and let G be a
maximal subgroup of J with identity e. Then a simple
G-module V induces a simple M-module by induction (or
co-induction) via the following steps. This proof scheme
summarizes that of O. Ganyushkin, V. Mazorchuk and B.
Steinberg, based on a Lemma of Green.
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1. Let L be the L-class of e. L acts by partial functions on
the left of L (left Schutzenberger representation) and G
acts on the right of L by permutations. Thus KL is an
M −G-bimodule.

2. Then Ind(KL) = KL
⊗

KG V , the M-module induced by
V has a unique maximal submodule (its Radical). The
quotient by the Radical of Ind(KL) is the unique simple
M module S with Apex(S)=J and eS = V .

3. Dually, if R is the R-class of e, then KR is a G−M
bimodule and the M-module Coind(V ) =
HomKG(KR, V ) has a unique minimal submodule S( (its
Socle) which is the unique simple M module S with
Apex(S)=J and eS = V .
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Computing the Simple Modules

Let C be the (l × r) structure matrix of J . Let
ρ : G → Mn(K), where n = dim(V ). We then have the
following.

1. The matrix C
⊗

ρ (substitute ρ(g) wherever g appears in
C and an n× n 0-matrix wherever 0 appears in C)
defines a linear transformation fV = C

⊗
ρ : V r → V l.

By the previous identifications it is also an M-module
morphism fV : Ind(V ) → Coind(V ).

2. The simple M-module corresponding to V in the
Munn-Ponizovsky correspondence is isomorphic to both
Ind(V )/Ker(fV ) (Lallement-Petrich) and to Im(fV )
(Rhodes-Zalcstein).



The following important result follows from the use of these
results.



The following important result follows from the use of these
results.

Theorem
Let M be a finite monoid and K a field that doesn’t divide
the order of any subgroup of M . Then KM is semisimple if
and only if M is regular and every structure matrix C is
invertible over the algebra KG, where G is the maximal
subgroup of the J-class of C.



The following important result follows from the use of these
results.

Theorem
Let M be a finite monoid and K a field that doesn’t divide
the order of any subgroup of M . Then KM is semisimple if
and only if M is regular and every structure matrix C is
invertible over the algebra KG, where G is the maximal
subgroup of the J-class of C.

Corollary

Let M be a finite inverse monoid and K a field that doesn’t
divide the order of any maximal subgroup. Then KM is
semisimple.
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Thus computing the image and kernel of C as a matrix over
the algebra KG is a fundamental problem. This can be a deep
and sophisticated problem.
The following is due to Okninski-Putcha, as well as Kovacs in
the case of the full matrix monoid.

Theorem
Let F be a finite field. Then the full matrix monoid Mn(F )
has a semisimple algebra over a field whose characteristic
doesn’t divide the order of any maximal subgroup. More
generally, the same is true for any finite monoid of Lie type.
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Let K be an algebraically closed field of characteristic 0.

Definition
A finite dimensional algebra A is basic if every simple module
of A is one dimensional.

This concept is important because of the following result.

Theorem (Algebras are basic up to Morita Equivalence)

Let A be a finite dimensional algebra over K. Then there is a
unique finite dimensional basic algebra B such that A-Mod is
equivalent to B-Mod.



Theorem
The following conditions are equivalent.

1. A is a finite dimensional basic algebra over K.



Theorem
The following conditions are equivalent.

1. A is a finite dimensional basic algebra over K.

2. A/ rad(A) ∼= K
n, where n = dim(A).



Theorem
The following conditions are equivalent.

1. A is a finite dimensional basic algebra over K.

2. A/ rad(A) ∼= K
n, where n = dim(A).

3. Every simple module of A is 1-dimensional.



Theorem
The following conditions are equivalent.

1. A is a finite dimensional basic algebra over K.

2. A/ rad(A) ∼= K
n, where n = dim(A).

3. Every simple module of A is 1-dimensional.

4. A has a faithful representation by triangular matrices over
K.
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Definition
A completely simple semigroup is rectangular if its
idempotents form (a necessarily rectangular) band.

Thus, a completely simple semigroup S is rectangular if and
only if it is isomorphic to a Rees matrix semigroup over a
group and with structure matrix, the matrix of all 1’s.
Equivalently, S is isomorphic to the direct product of a group
and a rectangular band.

Definition
A finite monoid is a rectangular monoid if all of its regular
D-classes are rectangular completely simple semigroups.
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Example

1. Bands. That is, monoids in which every element is an
idempotent.

2. J ,L,R-trivial monoids. That is, monoids in which the
corresponding Green’s relation is trivial.

3. The class DA, which are the monoids that are rectangular
and have trivial subgroups.
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Monoids Whose Algebras are Basic

Theorem
Let M be a finite monoid and K an algebraically closed field
of characteristic 0. Then KM is basic if and only if M is
rectangular and every subgroup of M is abelian.

The proof follows from our discussion above.

1. It is well known from group theory that a finite group G
has all simple modules 1-dimensional if and only if G is
Abelian.

2. One sees without difficult that the structure matrix of a
regular J -class has rank 1 if and only if the corresponding
principal factor is rectangular.
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Monoid Algebras are Stratified

This page is for people who know something about
quasihereditary and stratified algebras.

The (reverse of) the J -order on a finite monoid M can be
extended to a partial order on the set Simp(M) ={S|S is a
simple M-module} by:

S ≤ T if and only if Apex(T ) <J Apex(S).

Thus all the simple modules with Apex the identity J -class
are minimal elements in this partial order and all the simple
modules with Apex the minimal ideal of M are maximal
elements in this poset. Simple modules with the same Apex
are not comparable.



Theorem (Nico 1975, Putcha 1990)

If M is a finite regular monoid, then KM is a quasihereditary
algebra with respect to this partial order. An arbitrary finite
monoid is a stratified algebra with respect to this partial order.



Theorem (Nico 1975, Putcha 1990)

If M is a finite regular monoid, then KM is a quasihereditary
algebra with respect to this partial order. An arbitrary finite
monoid is a stratified algebra with respect to this partial order.

Remark
It follows in particular that if M is a finite regular monoid,
then KM has finite global dimension.
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Coxeter Groups

Definition (Coxeter Group)

A Coxeter Group W is given by a set S of generators and
relations of the form s2 = 1 for all s ∈ S and (st)ms,t = 1,
where s 	= t ∈ S and ms,t = mt,s > 1.

Example

The symmetric group on n letters, Sn is a Coxeter group with
Coxeter presentation S = {s1, . . . , sn−1} and relations
s2i = 1, (sisj)

2 = 1, |i− j| > 1, (sisi+1)
3 = 1.

Identify si with the transposition (i i+ 1).

Braid Form of Presentation

s2i = 1, sisj = sjsi, |i− j| > 1, sisi+1si = si+1sisi+1.
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Associated Structures and Monoids

Coxeter groups have many associated geometric and
combinatorial objects.
In the last years, it was realized that some of these have
interesting monoid structures as well. We will look at two of
them:

1. The Coxeter Complex and its Left Regular Band

2. The Bruhat Order and its J -trivial monoid.
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The Coxeter Complex

A Coxeter group acts faithfully by reflections over hyperplanes
in R

n.
This defines the structure of a hyperplane arrangement, a set

of hyperplanes that partitions Rn into faces.
This is called the Coxeter Complex. This complex and all
(central) hyperplane arrangements have the structure of a

monoid that is a left regular band.
Here is the arrangement associated to S3.
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Figure: The Cayley graph of S3 is the dual graph of the chambers relative
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Figure: The Cayley graph of S3 is the dual graph of the chambers relative
to the reflections defining the group.



The Cayley graph of S3 relative to Coxeter generators

1

s1 s2

s2s1s1s2

s1s2s1 = s2s1s2

Figure: The Cayley graph of S3 is the dual graph of the chambers relative
to the reflections defining the group.
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xy :=

{
the face first encountered after a small
movement along a line from x toward y

xy

x

y

�

�
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R

2 consisting of three distinct lines. The geometric product is just
multiplication in {0,+,−}3.

All hyperplane arrangement LRBs are submonoids of
{0,+,−}n, where n = the number of hyperplanes.
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Left-regular bands (LRBs)

Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:

• x2 = x (B is a “band”)
• xyx = xy (“left-regularity”)

Remarks

• Informally: identities say ignore “repetitions”.

• We consider only finite monoids here.
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Theorem
Let B be a band. The following are equivalent:

1. B is an LRB.

2. Green’s relation y≤R x iff xy = y is a partial order.

3. Green’s relation R is the identity relation.

4. aB = aBa for all a ∈ B.

5. Ba = BaB for all a ∈ B.

6. Green’s relations L and J coincide.

7. If f : B → Λ(B) is the map to the maximal semilattice
image, then f−1(l) is left zero for all l ∈ Λ(B).

8. B divides {0,+,−}n, for some n, where {0,+,−} is the
monoid with identity 0 and left zero ideal {+,−}.
That is, LRB is the variety of monoids generated by the
monoid {0,+,−}.
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Representation Theory of LRBs

• Simple KB-modules and its Jacobson Radical

Let Λ(B) denote the lattice of principal left ideals of B,
ordered by inclusion:

Λ(B) = {Bb : b ∈ B} Ba ∩Bb = B(ab)

Monoid surjection:
σ : B → Λ(B)

b �→ Bb

ker(σ) = rad(KB)

where σ : KB → K(Λ(B)) is the extended morphism.
K(Λ(B)) is semisimple and so simple KB-modules SX are
indexed by X ∈ Λ(B).



Semisimple Quotient and Simple Modules

KB/ rad(KB) ∼= KB/ ker(σ) ∼= KΛ(B) ∼= K
Λ(B)

For each X ∈ Λ(B), the corresponding simple module is 1
dimensional and is given by the following action.

ρX(a) =

{
1, if σ(a) ≥ X,

0, otherwise

Let SX denote the corresponding simple module.



Semisimple Quotient and Simple Modules

KB/ rad(KB) ∼= KB/ ker(σ) ∼= KΛ(B) ∼= K
Λ(B)

For each X ∈ Λ(B), the corresponding simple module is 1
dimensional and is given by the following action.

ρX(a) =

{
1, if σ(a) ≥ X,

0, otherwise

Let SX denote the corresponding simple module.
We see then that KB is a basic algebra: All of its simple
modules are 1 dimensional. Equivalently, KB has a faithful
representation by triangular matrices.



Bruhat Order

Let W be a Coxeter group with generators S.

Definition
A word x over S is reduced if it is a shortest length
representative for some w ∈ W .

Theorem
(Tits). Let x, y be reduced representatives for an element
w ∈ W . Then there is a series of Braid Moves that change x
to y.

Definition
Let y = s1...sn be a word over S. A subword of y is a word
x = si1 ...sik where 1 ≤ i1 ≤ ...ik ≤ n
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Theorem
Let W be a Coxeter group with generators S and let
u, w ∈ W . The following conditions are equivalent.

1. Every reduced word y for w has a subword x that is a
reduced word for u.

2. Some reduced word y for w has a subword x that is a
reduced word for u.



Subwords and the Definition of Bruhat Order

Theorem
Let W be a Coxeter group with generators S and let
u, w ∈ W . The following conditions are equivalent.

1. Every reduced word y for w has a subword x that is a
reduced word for u.

2. Some reduced word y for w has a subword x that is a
reduced word for u.

Definition
Let u, w ∈ W . Define u ≤ w if some reduced word for u is a
subword of some reduced word for w.

Fact: ≤ is a partial order on W called the Bruhat order, with
the identity element as minimal element.
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The Bruhat Order of S3

1

s1 s2

s2s1s1s2

s1s2s1 = s2s1s2



Subword Order, Partially Ordered Monoids and J -Trivial
Monoids

In Algebraic Automata Theory, the relationship between
subword order of free monoids, partially ordered monoids in
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monoids is part of the celebrated theorem of Imre Simon
which we recall here.



Subword Order, Partially Ordered Monoids and J -Trivial
Monoids

In Algebraic Automata Theory, the relationship between
subword order of free monoids, partially ordered monoids in
which the identity is the minimal element and finite J -trivial
monoids is part of the celebrated theorem of Imre Simon
which we recall here.

Definition
A monoid M is J -trivial if distinct elements generate distinct
principal two sided ideals. That is, for all
m,n ∈ M,MmM = MnM if and only if m = n.



Simon’s Theorem

Theorem
(Simon) Let M be a finite monoid. The following conditions
are equivalent.

1. M is J -trivial.



Simon’s Theorem

Theorem
(Simon) Let M be a finite monoid. The following conditions
are equivalent.

1. M is J -trivial.

2. M satisfies the identities
xn = xn+1, (xy)n = (yx)nwhere n = |M |.



Simon’s Theorem

Theorem
(Simon) Let M be a finite monoid. The following conditions
are equivalent.

1. M is J -trivial.

2. M satisfies the identities
xn = xn+1, (xy)n = (yx)nwhere n = |M |.

3. M is a homomorphic image of a finite partially ordered
monoid in which 1 is the minimal element.



Simon’s Theorem

Theorem
(Simon) Let M be a finite monoid. The following conditions
are equivalent.

1. M is J -trivial.

2. M satisfies the identities
xn = xn+1, (xy)n = (yx)nwhere n = |M |.

3. M is a homomorphic image of a finite partially ordered
monoid in which 1 is the minimal element.

4. M is a subdirect product of finite syntactic monoids
M(L), where L is a language over some finite alphabet S
and L is a Boolean combination of languages of the form
S∗s1...S∗snS∗, si ∈ S, i = 1, ..., n.



Simon’s Theorem

Theorem
(Simon) Let M be a finite monoid. The following conditions
are equivalent.

1. M is J -trivial.

2. M satisfies the identities
xn = xn+1, (xy)n = (yx)nwhere n = |M |.

3. M is a homomorphic image of a finite partially ordered
monoid in which 1 is the minimal element.

4. M is a subdirect product of finite syntactic monoids
M(L), where L is a language over some finite alphabet S
and L is a Boolean combination of languages of the form
S∗s1...S∗snS∗, si ∈ S, i = 1, ..., n.



Simon’s Theorem

Theorem
(Simon) Let M be a finite monoid. The following conditions
are equivalent.

1. M is J -trivial.

2. M satisfies the identities
xn = xn+1, (xy)n = (yx)nwhere n = |M |.

3. M is a homomorphic image of a finite partially ordered
monoid in which 1 is the minimal element.

4. M is a subdirect product of finite syntactic monoids
M(L), where L is a language over some finite alphabet S
and L is a Boolean combination of languages of the form
S∗s1...S∗snS∗, si ∈ S, i = 1, ..., n.



The 0-Hecke Monoid
Of course, no finite group has a non-trivial multiplicative
partial order.



The 0-Hecke Monoid
Of course, no finite group has a non-trivial multiplicative
partial order.
The analogy between Simon’s Theorem and Bruhat order of a
Coxeter group W suggests that for (finite) W , there is a
(finite) J -trivial monoid H(W ) that is partially ordered with
respect to the Bruhat order.



The 0-Hecke Monoid
Of course, no finite group has a non-trivial multiplicative
partial order.
The analogy between Simon’s Theorem and Bruhat order of a
Coxeter group W suggests that for (finite) W , there is a
(finite) J -trivial monoid H(W ) that is partially ordered with
respect to the Bruhat order.

Definition
Let W be a Coxeter group with generators S. The 0-Hecke
monoid H(W ) is the monoid with generating set S and with
relations s2 = s for all s ∈ S and the same braid relations as
W .



The 0-Hecke Monoid
Of course, no finite group has a non-trivial multiplicative
partial order.
The analogy between Simon’s Theorem and Bruhat order of a
Coxeter group W suggests that for (finite) W , there is a
(finite) J -trivial monoid H(W ) that is partially ordered with
respect to the Bruhat order.

Definition
Let W be a Coxeter group with generators S. The 0-Hecke
monoid H(W ) is the monoid with generating set S and with
relations s2 = s for all s ∈ S and the same braid relations as
W .

Remark
The name “0-Hecke monoid” comes from the fact that the
algebra KH(W ) over a field K is the Hecke algebra with
parameter q = 0.
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Theorem
Let W be a finite Coxeter group. Then the following holds:

1. A word over S is reduced for W if and only if it is reduced
for H(W ).

2. |W | = |H(W )|.
3. H(W ) is an ordered monoid with respect to the Bruhat

order on W and thus H(W ) is a J -trivial monoid.
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Other incarnations of the 0-Hecke monoid
The monoid H(W ) has been discovered a number of times in
a number of fields. Here are some isomorphic descriptions of
this monoid:

1. H(W ) is isomorphic to the submonoid of the power
monoid P (W ) generated by {1, s}, s ∈ S.

2. H(W ) is isomorphic to the submonoid of the power
monoid of P (W ) that is equal to the set of principal order
ideals of W relative to Bruhat order and subset
multiplication. That is, the product of two principal order
ideals is an order ideal, where a principal order ideal
w↓ = {v ∈ W |v ≤ w}.

3. H(W ) is isomorphic to the monoid structure on Bruhat
Cells and Schubert Cells in the theory of Linear Algebraic
Groups.

4. Mazorchuck, Steinberg H(W ) is isomorphic to the monoid
generated by Tits folds on the Coxeter complex of W .
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Representation Theory of J -trivial Monoids

Let M be a J -trivial and let E(M) denote the idempotents of
M .
Although E(M) is equal to the lattice of regular J -classes of
M , it is not necessarily a submonoid of M .
If we define a product ∗ on E(M) by:

e ∗ f = (ef)ω

where xω is the unique idempotent in the subsemigroup
generated by an element x of a finite semigroup, then we have
the following Theorem.
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Theorem
Let M be a J -trivial monoid and let K be a field.

1. E(M) is a monoid that is a semilattice under the product
∗.

2. The map σ : M → (E(M), ∗), where σ(m) = mω is a
surjective morphism.

3. ker(σ) = rad(KM) where σ : KM → KE(M) is the
extended morphism.

4. KE(M) is semisimple and so simple KM-modules SX are
indexed by X ∈ E(M).
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Semisimple Quotient and Simple Modules

KM/ rad(KM) ∼= KM/ ker(σ) ∼= KE(M) ∼= K
E(M)

For each X ∈ E(M), the corresponding simple module is 1
dimensional and is given by the following action.

ρX(a) =

{
1, if σ(a) ≥ X,

0, otherwise

Let SX denote the corresponding simple module.
We see then that KM , like the algebra of an LRB is a basic
algebra: All of its simple modules are 1 dimensional.
Equivalently, KM has a faithful representation by triangular
matrices.
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Basic Algebras

Let K be an algebraically closed field.

Theorem
The following conditions are equivalent.

1. A is a finite dimensional basic algebra over K.

2. A/ rad(A) ∼= K
n, where n = dim(A).

3. Every simple module of A is 1-dimensional.

4. A has a faithful representation by triangular matrices over
K.

Theorem
Every finite dimensional algebra over K is Morita equivalent to
a unique basic algebra.
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Finite Monoids Whose Algebras are Basic

Definition
A completely simple semigroup is rectangular if its
idempotents form (a necessarily rectangular) band.

Thus, a completely simple semigroup is rectangular if and only
if it is isomorphic to a Rees matrix semigroup over a group
and with structure matrix, the matrix of all 1’s.

Definition
A finite monoid is a rectangular monoid if all of its regular
D-classes are rectangular completely simple semigroups.

Theorem
Let M be a finite monoid and K an algebraically closed field
of characteristic 0. The following conditions are equivalent.

1. KM is basic.

2. M is a rectangular monoid and every subgroup of M is
Abelian.
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Examples of Finite Monoids with Basic Algebras

1. Bands.

2. J−,L−,R− trivial monoids.

3. DA={M | Every regular D-class of M is a rectangular
band.}
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Representation Theory of Rectangular Monoids

Let M be a rectangular monoid and let Λ be the lattice of
regular J -classes of M .
For each λ ∈ Λ let Gλ be a maximal subgroup of λ.

Theorem
Let M be a finite rectangular monoid and K a field of
characteristic 0.

1. Let N be the maximal semilattice of groups image of M .
Then N ∼= ⋃

λ∈Λ Gλ.

2. Let σ : M → ⋃
λ∈Λ Gλ be the natural morphism. Then

ker σ = rad(KM), where σ : KM → K(
⋃

λ∈Λ Gλ) is the
extended morphism.
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Combinatorial objects as LRBS

• A large number of combinatorial structures admit an LRB
multiplication.

• For example:
1. real hyperplane arrangements

(Tits/Bidigare-Hanlon-Rockmore)
2. oriented matroids (Bland)
3. matroids (K. Brown)
4. complex hyperplane arrangements (Björner)
5. interval greedoids (Björner)

• Markov chains on these objects can be analyzed via LRB
representation theory.

• This has been done by: Bidigare, Hanlon and Rockmore;
Diaconis and Brown; Brown; Björner; Diaconis and
Athanasiadis; and Chung and Graham.
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Free LRB and the Tsetlin library

The free LRB F (A) on a set A consists of all repetition-free
words over the alphabet A. Product: concatenate and remove
repetitions.

Example: In F ({1, 2, 3, 4, 5}):
3 · 14532 = 3145�32 = 31452

Tsetlin Library: shelf of books
“use a book, then put it at the front”

• ordering of the books ↔ word containing every letter

• move book to the front ↔ left-multiplication by generator

• long-term behavior: favorite books move to the front
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Random walks on hyperplane arrangements

Bidigare–Hanlon–Rockmore (1995):

◦ showed eigenvalues admit a simple description

◦ present a unified approach to several Markov chains

Brown–Diaconis (1998):

◦ described stationary distribution

◦ proved diagonalizability of transition matrices

Brown (2000):

◦ extended results to LRBs (and later to bands)

◦ proved diagonalizability for LRBs using algebraic
techniques and representation theory of LRBs

Others:

Björner, Athanasiadis-Diaconis, Chung-Graham, . . .
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Free Partially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .

• F (Kn) = free commutative LRB, that is the free
semilattice, on n generators.

• LRB-version of the Cartier-Foata free
partially-commutative monoid (aka trace monoids).



Acyclic orientations

Elements of F (G) correspond to acyclic orientations of
induced subgraphs of the complement G.

Example

G =
a b

d c
G =

a b

d c

Acyclic orientation on induced subgraph on vertices {a, d, c}:

a

d c

In F (G): cad = cda = dca (c comes before a since c → a)



Random walk on F (G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it



Random walk on F (G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it



Random walk on F (G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it



Random walk on F (G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a
different LRB (graphical arrangement of G)
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The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let Δ(Λ) = {x1 > x2 . . . > xk|xi ∈ Λ} be
the set of chains in Λ. Define a product on Δ(Λ) by:

(x1 > x2 . . . > xk)(y1 > y2 . . . > yl) =

(x1 > x2 . . . > xk ≥ xky1 ≥ xky2 ≥ . . . ≥ xkyl)

and then erasing equalities.

• This is the (right) Rhodes expansion of Λ.

• It is an LRB whose R order has Hasse diagram a tree and
L order is the Hasse diagram of Λ.
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• A variation that looks at reduced walks through a Cayley
graph of Λ relative to a set of generators is called the
Karnofsky-Rhodes expansion.

• The free LRB on A is the Karnofsky-Rhodes expansion of
the free semilattice on A, since a non-repeating word can
be identified with a chain in the subset lattice:

31245 ↔ ∅ < {3} < {3, 1} < {3, 1, 2} < {3, 1, 2, 4} < {3, 1, 2, 4, 5}

• Many of the LRBs on combinatorial structures are
submonoids of (Karnofsky)-Rhodes expansions of
semilattices.



Poset of a LRB

B is a partially-ordered set via its R-order:

a ≤ b ⇔ ba = a

Example: F ({a, b, c})

abcacbbacbcacabcba

abacbabccacb

abc

1



Certain subposets of a LRB
For Ba ⊆ Bb, consider the subposet of B:

B[Ba,Bb) =
{
x ∈ B : x < b and Ba ≤ Bx

}
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Certain subposets of a LRB
For Ba ⊆ Bb, consider the subposet of B:

B[Ba,Bb) =
{
x ∈ B : x < b and Ba ≤ Bx

}
Example: B(abc) ⊆ Bb

abcacbbacbcacabcba

abacbabccacb

abc

1

B[Babc,Bb) = {bc, ba, bca, bac}
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Computation of Ext

Our main theorem is:
Theorem (Margolis-Saliola-Steinberg)

Let B be an LRB and X, Y ∈ Λ(B). Then

Extn
KB(SX , SY )

=

⎧⎪⎨⎪⎩
K if X = Y and n = 0

H̃n−1
(
ΔB[X,Y ),K

)
if X < Y and n > 0

0 otherwise

where ΔB[X,Y ) is the order complex of the subposet B[X,Y ).
This is the simplicial complex whose simplices are the chains
(ordered subsets) of the poset.



Poset and Λ(B) for B = F ({a, b, c})

abcacbbacbcacabcba

abacbabccacb

abc

1

Babc

BbcBacBab

BcBbBa

B
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Quiver of KB

The (Ext)-quiver of an algebra A is the digraph QA with:

• vertex set the simple A-modules SX

• dimExt1A(SX , SY ) arrows SX → SY

If Q is a digraph, then the path algebra KQ is the algebra
whose elements are formal K linear combinations of
(directed)paths of Q.
One reason quivers are important is the following theorem.

Theorem
Let A be a basic finite dimensional algebra. Then A is a
quotient of the path algebra P = KQA of its quiver QA by an
ideal I such that (P+)n ⊆ I ⊆ (P+)2, for some n ≥ 2, where
(P+) is the ideal of positive length paths. Conversely, every
such algebra is a finite dimensional basic algebra.
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Corollary. Let B be a finite LRB. The quiver of KB has vertex
set Λ(B). The number of arrows X → Y is 0 if X 	< Y ;
otherwise, it is one less than the number of connected
components of ΔB[X,Y ).

Proof. For X < Y :

Ext1
KB(SX , SY ) = H̃0

(
ΔB[X,Y ),K

)
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Global dimension
Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the
minimum length of a projective resolution

· · · −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ M −→ 0

• The global dimension gl. dimA is the sup of the
projective dimensions of A-modules.

• gl. dimA = 0 iff A is semisimple.
• A is hereditary (submodules of projective modules are
projective) iff gl. dimA ≤ 1. It is known that every finite
dimensional basic hereditary algebra is the algebra of both
a LRB and of a J -trivial semigroup.

• For finite-dimensional algebras, the sup can be taken over
simple modules.

• It is known that every finite regular monoid has an algebra
of finite global dimension.
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Global dimension and Leray numbers

gl. dimKB = sup
{
n : H̃n−1

(
ΔB[X,Y ),K

) 	= 0 for all X < Y
}

For a simplicial complex C with vertex set V ,

Leray
K
(C) = min

{
d : H̃d(C[W ],K) = 0 for all W ⊆ V

}
Consequently:

1. gl. dimKB ≤ Leray
K
(Δ(B))

2. If the Hasse diagram of the poset ≤R is a tree then
gl. dimKB ≤ 1, that is, KB is hereditary.

3. (K. Brown) The free LRB is hereditary.

4. gl. dimKF (G) = Leray
K
(Cliq(G))

5. KF (G) is hereditary iff G is chordal, that is, has no
induced cycles greater than length 3.





Outline of Proof

An Eckmann-Shapiro–type lemma reduces to the case:

Extn
KB(Ŝ0, Ŝ1)

= Hn(B, S
̂1) (monoid cohomology)

= Hn−1(B,KB[̂0,̂1)) (dimension shift)

= Hn−1(B � B[̂0,̂1),K) (Eckmann-Shapiro)

= Hn−1(|B � B[̂0,̂1)|,K) (classifying space)

= Hn−1(Δ(B[̂0,̂1)),K) (Quillen’s Theorem A)
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Geometric LRBs
Most of the LRBs that arise in combinatorics are submonoids
of direct products of {0,+,−}n for some n.
The key property of such monoids is that left stabilizers are
commutative. That is, the monoid satisfies the quasiidentity:

((xz = z) ∧ (yz = z)) → (xy = yx)

Call an LRB satisfying this quasiidentity a geometric LRB.

Theorem
An LRB B embeds into {0,+,−}n for some n iff B is
geometric. That is, the quasivariety generated by {0,+,−} is
the quasivariety of geometric LRBs.

Remark
Mark Sapir proved on the other hand that there are a
continuum of quasivarieties of LRBs generated by finite LRBs.
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