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Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
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2-categories: definition

Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is

induced by the cartesian product).

This means that a 2-category % is given by the following data:
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Definition. A 2-category is a category enriched over the monoidal
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v v vy

which are subject to the obvious set of (strict) axioms.
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Terminology.

» An object in €(i, j) is called a 1-morphism of €.
» A morphism in €1, j) is called a 2-morphism of €.

» Composition in €(1,j) is called vertical and denoted o;.
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» An object in €(i, j) is called a 1-morphism of €.

» A morphism in €1, j) is called a 2-morphism of €.

» Composition in €(1,j) is called vertical and denoted o;.
>

Composition in ¥ is called horizontal and denoted oq.

Principal example. The category Cat is a 2-category.

Objects of Cat are small categories.
1-morphisms in Cat are functors.
2-morphisms in Cat are natural transformations.

Composition is the usual composition.

vV v.v. vy

Identity 1-morphisms are the identity functors.
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2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If C is a category with one object &, then C(é&, &) is a monoid
under composition.

If (S,0,e) is a monoid, we can form a category C = C(s o.e) as follows:
» The only object of C is é.

> C(, &) :=S.

» Composition in C is given by multiplication in S.

Volodymyr Mazorchuk Linear representations of semigroups from 2-categories 4/22



2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.
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empty or it may contain many elements.
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2-categories: over monoids, part 6: the interchange law

Need: the interchange law (y o1 x) og (y' 01 x’) = (y 0g y') 01 (x 09 X').
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In our case: yxy'x’ = yy'xx’ V x,y,x’,y’ € X OK since X C Z(S).

Claim. The above defines on C the structure of a 2-category if and only
if X C Z(S).
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S — monoid
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Example: From [Kudryavtseva-M] it follows that if © is the full graph on
{1,2,...,n} oriented from smaller to bigger vertices (i.e. HKg is the
Kiselman semigroup), then there exists ' such that this action is faithful.

Volodymyr Mazorchuk Linear representations of semigroups from 2-categories 22/22



Other Hecke-Kiselman monoids

I, © as above

Fact: Mapping ¢; to G; gives a weak functorial action of HKg on
kl-mod.

Example: From [Kudryavtseva-M] it follows that if © is the full graph on
{1,2,...,n} oriented from smaller to bigger vertices (i.e. HKg is the
Kiselman semigroup), then there exists ' such that this action is faithful.

Difficulty: Composition of the G;'s may decompose!

Volodymyr Mazorchuk Linear representations of semigroups from 2-categories 22/22



Other Hecke-Kiselman monoids

I, © as above

Fact: Mapping ¢; to G; gives a weak functorial action of HKg on
kl-mod.

Example: From [Kudryavtseva-M] it follows that if © is the full graph on
{1,2,...,n} oriented from smaller to bigger vertices (i.e. HKg is the
Kiselman semigroup), then there exists ' such that this action is faithful.

Difficulty: Composition of the G;'s may decompose!

Problem: What are indecomposable 1-morphisms in €'g r?

Volodymyr Mazorchuk Linear representations of semigroups from 2-categories 22/22



Other Hecke-Kiselman monoids

I, © as above

Fact: Mapping ¢; to G; gives a weak functorial action of HKg on
kl-mod.

Example: From [Kudryavtseva-M] it follows that if © is the full graph on
{1,2,...,n} oriented from smaller to bigger vertices (i.e. HKg is the
Kiselman semigroup), then there exists ' such that this action is faithful.

Difficulty: Composition of the G;'s may decompose!
Problem: What are indecomposable 1-morphisms in €'g r?

Known full answer: For I, any composition of the G;'s is
indecomposable.

Volodymyr Mazorchuk Linear representations of semigroups from 2-categories 22/22



Other Hecke-Kiselman monoids

I, © as above

Fact: Mapping ¢; to G; gives a weak functorial action of HKg on
kl-mod.

Example: From [Kudryavtseva-M] it follows that if © is the full graph on
{1,2,...,n} oriented from smaller to bigger vertices (i.e. HKg is the
Kiselman semigroup), then there exists ' such that this action is faithful.

Difficulty: Composition of the G;'s may decompose!
Problem: What are indecomposable 1-morphisms in €'g r?

Known full answer: For I, any composition of the G;'s is
indecomposable.

Known partial answer: For a Dynkin quiver of type A and any
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