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Abstract
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1 Introduction

This paper is the third in a sequence dealing with the relationship between the
polycyclic monoids and the Thompson groups [7, 8]. The polycyclic monoids
were introduced by Nivat and Perrot in 1971 [12] and rediscovered by Cuntz
in the course of defining what are now termed Cuntz C∗-algebras. For this
reason, within C∗-algebra theory, the polycyclic monoids are often called Cuntz
inverse semigroups [13, 15]. In [8], we described how strong representations
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of the polycyclic monoid Pn led to the construction of the Thompson group
Vn. Such representations have arisen elsewhere, in particular as the branching
function systems of [1]. The goal of this paper is to study the structure of the
representations by partial permutations of the polycyclic monoids in general
with a particular emphasis on the strong representations. Specifically, using
the ideas to be found in [9], we classify the primitive representations of the
polycyclic monoid on n generators. In the process, we shall give an inverse
semigroup interpretation of the work of Kawamura [4, 5], which provided the
initial impetus for this work, as well as some results of Bratteli and Jorgensen
[1].

We shall call upon standard inverse semigroup theory throughout this paper;
see [6], for example, for the rudiments of this theory. All inverse semigroups
will have a zero and we shall assume that homomorphisms are homomorphisms
that preserve the zero. The product in a semigroup will usually be denoted by
concatenation but sometimes we shall use · for emphasis; we shall also use it to
denote actions. In an inverse semigroup S we define

d(s) = s−1s and r(s) = ss−1.

The natural partial order will be the only partial order considered when we deal
with inverse semigroups. If X ⊆ S then E(X) is the set of idempotents in X.
An inverse submonoid of S is said to be wide if it contains all the idempotents
of S.

In this paper, a representation of an inverse semigroup by means of partial
bijections is a homomorphism θ: S → I(X) to the symmetric inverse monoid on
a set X. If S is a monoid we shall assume that the homomorphism is a monoid
homomorphism. A representation of an inverse semigroup in this sense leads to
a corresponding notion of an action of the inverse semigroup S on the set X:
the associated action is defined by s · x = θ(s)(x), if defined.1 For convenience,
we shall use the words ‘action’ and ‘representation’ interchangeably: if I say the
inverse semigroup S acts on a set X then this will imply the existence of an
appropriate homomorphism from S to I(X). If S acts on X, I shall often refer
to X as a space and its elements as points. A subset Y ⊆ X closed under the
action is called a subspace. Disjoint unions of actions are again actions.

An action is said to be effective if for each x ∈ X there exists s ∈ S such that
∃s · x. This is not much of a restriction because every action can be rendered
effective by omitting the points which are not acted on by any element. In this
paper, all our actions will be assumed to be effective.

The action of an inverse semigroup S on the set X induces an equivalence
relation ∼ on the set X when we define x ∼ y iff s · x = y for some s ∈ S. The
action is said to be transitive if ∼ is X×X. Just as in the theory of permutation
representations of groups, every representation of an inverse semigroup is a
disjoint union of transitive representations.

1The action is therefore a partial function from S × X to X mapping (s, x) to s · x when
∃s · x. We require that ∃(st) · x iff ∃s · (t · x) in which case they are equal and if ∃e · x where
e is an idempotent then e · x = x.
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Let X and Y be spaces. A morphism from X to Y is a function α: X → Y
such that ∃s ·x implies that ∃s ·α(x) and α(s ·x) = s ·α(x). A morphism is said
to be strong if it satisfies the condition that ∃s ·x ⇔ ∃s ·α(x). The terminology
‘strong morphism’ is taken from [2]. Such morphisms were studied first within
inverse semigroup theory in [16] where they were called ‘covering morphisms’.

A bijective strong morphism is called an equivalence. As with group actions,
equivalent actions are the same except for the labelling of the points. The proof
of the following is straightforward or can be found in [9].

Lemma 1.1 The images of strong morphisms are subspaces, and strong mor-
phisms between transitive spaces are surjective.

�

2 Background

The theory of transitive actions of inverse semigroups was first studied by Boris
Schein [17]. An account of this work is described in Section IV.4 of [14], and
Section 5.8 of [3]. We describe this work below modified in the obvious way to
accommodate our assumption that our inverse semigroups have a zero. Further
details can be found in [9].

If A ⊆ S is a subset of an inverse semigroup define

A↑ = {s ∈ S: a ≤ s for some a ∈ A}.

If A = A↑ then A is said to be closed (upwards). We shall be particularly
interested in the closed inverse subsemigroups.

Fix a point x ∈ X, and consider the set Sx consisting of all s ∈ S such
that s · x = x. We call Sx the stabiliser of the point x. If an element s fixes a
point then so too will any element above s, and so the set Sx is a closed inverse
subsemigroup of S. Observe that stabilisers cannot contain zero. Now let y ∈ X
be any point. By transitivity, there is an element s ∈ S such that s · x = y.
Observe that because s · x is defined so too is s−1s · x and that s−1s ∈ Sx. An
easy calculation shows that (sSx)↑ is the set of all elements of S which map x
to y. Let H be a closed inverse subsemigroup of S that does not contain zero.
Define a left coset of H to be a set of the form (sH)↑ where s−1s ∈ H.

Lemma 2.1

(i) Two cosets (sH)↑ and (tH)↑ are equal iff s−1t ∈ H.

(ii) If (sH)↑ ∩ (tH)↑ 6= ∅ then (sH)↑ = (tH)↑.

�

We denote by S/H the set of all left cosets of H in S. The inverse semigroup
S acts on the set S/H when we define

a · (sH)↑ = (asH)↑ ⇔ d(as) ∈ H.

3



This defines a transitive action. If H and K are any closed inverse subsemigroups
of S then they determine equivalent actions if and only if there exists s ∈ S
such that

sHs−1 ⊆ K and s−1Ks ⊆ H.

This relationship between two closed inverse subsemigroups is called conjugacy
although it is important to observe that equality need not hold in the definition
above.

Lemma 2.2 If H and K are conjugate as above then ss−1 ∈ K and s−1s ∈ H.
Also (sHs−1)↑ = K and (s−1Ks)↑ = H.

The following was motivated by Lemma 2.16 of Ruyle’s thesis [16].

Proposition 2.3 Let S be an inverse semigroup acting transitively on the sets
X and Y , and let x ∈ X and y ∈ Y . Let Sx and Sy be the stabilisers in S of
x and y respectively. There is a morphism α: X → Y such that α(x) = y iff
Sx ⊆ Sy. If such a morphism exists then it is unique.

Proof We begin by proving uniqueness. Let α, β: X → Y be morphisms such
that α(x) = β(x) = y. Let x′ ∈ X be arbitrary. By transitivity there exists
a ∈ S such that x′ = a ·x. By the definition of morphisms we have that ∃a ·α(x)
and ∃a · β(x) and that

α(x′) = α(a · x) = a · α(x)

and
β(x′) = β(a · x) = a · β(x).

But by assumption α(x) = β(x) = y and so α(x′) = β(x′). It follows that
α = β.

Let α: X → Y be a morphism such that α(x) = y. Let s ∈ Sx. Then ∃s · x
and s · x = x. By the definition of morphism, it follows that ∃s · α(x) and that
α(s · x) = s · α(x). But s · x = x and so α(x) = s · α(x). Hence s · y = y. We
have therefore proved that s ∈ Sy, and so Sx ⊆ Sy.

Suppose now that Sx ⊆ Sy. We have to define a morphism α: X → Y such
that α(x) = y. We start by defining α(x) = y. Let x′ ∈ X be any point in
X. Then x′ = a · x for some a ∈ S. We need to show that a · y exists. Since
a · x exists we know that a−1a · x exists and this is equal to x. It follows that
a−1a ∈ Sx and so a−1a ∈ Sy, by assumption. Thus a−1a · y exists and is equal
to y. But from the existence of a−1a · y we can deduce the existence of a · y.
We would therefore like to define α(x′) = a · y. We have to check that this
is well-defined. Suppose that x′ = a · x = b · x. Then b−1a · x = x and so
b−1a ∈ Sx. By assumption, b−1a ∈ Sy and so b−1a ·y = y. Thus bb−1a ·y = b ·y
and bb−1a · y = bb−1 · (a · y) = a · y. Thus a · y = b · y. It follows that α is a
well-defined function mapping x to y. It remains to show that α is a morphism.
Suppose that s · x′ is defined. By assumption, there exists a ∈ S such that
x′ = a · x. By definition α(x′) = a · y. We have that s · x′ = s · (a · x) = sa · x.
By definition α(s · x′) = sa · y. But sa · y = s · (a · y) = s · α(x′). Hence
α(s · x′) = s · α(x′), as required.
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The notion of a primitive group action is fundamental. Generalising it to
inverse semigroup actions is more problematical. The intuitive idea is that a
transitive inverse semigroup action should be ‘primitive’ if it is ‘simple’ in some
sense. However, in the case of inverse semigroup actions, there are a number
of ways in which the word ‘simple’ can be interpreted. Below we shall describe
one interpretation; for a fuller discussion see [9]

An action of S on X is said to be proper if for each non-zero s ∈ S there
is x ∈ X such that ∃s · x. In other words, non-zero elements of S are mapped
by θ to non-zero elements of I(X). If an action is not proper then the set of
elements s ∈ S which act as the empty function on X forms an ideal in S. A
closed inverse subsemigroup H of an inverse semigroup S is said to be proper if
it satisfies the following two conditions.

(P1) 0 /∈ H.

(P2) For each non-zero s ∈ S there exists a ∈ S such that d(a),d(sa) ∈ H.

The following is proved in [9].

Proposition 2.4 Every proper transitive action of the inverse semigroup with
zero S is equivalent to the action of S on a space of the form S/H where H is
some proper closed inverse subsemigroup of S.

Groups always act on one-point sets. However, the presence of a zero in the
inverse semigroup makes the situation a little more complicated.

Proposition 2.5 Let S be an inverse semigroup with zero. Then there is a
proper representation of S on the one-point set if and only if the zero element
of S is adjoined.

Proof If the zero is adjoined then H = S \ {0} is a proper closed inverse
subsemigroup of S and S/H is a one-point set. Thus S acts properly on a
one-point set. Conversely, let S act properly on a one-point set. The action is
evidently transitive. Let H be the stabiliser of the unique point. Then H is a
proper closed inverse subsemigroup of S. Let s ∈ S be any non-zero element.
Then there exists a ∈ S such that d(a),d(sa) ∈ H. Now H = (aH)↑ = (saH)↑

since there is only one point. Thus a, sa ∈ H. But then saa−1 ∈ H and
saa−1 ≤ s and so s ∈ H. It follows that H = S \ {0} and since H is an inverse
subsemigroup it follows that the zero is adjoined.

�

Let S be an inverse semigroup with zero in which the zero is not adjoined
and let X be a proper transitive space where |X| > 1. We say that the action
is primitive if every morphism from X to another proper transitive space is an
equivalence.
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Proposition 2.6 Let S be an inverse semigroup with zero in which the zero is
not adjoined. Let S act transitively and properly on a space X where |X| > 1.
Let x ∈ X, and let Sx be its stabiliser. Then the action is primitive if and only
if Sx is a maximal proper closed inverse subsemigroup.

Proof Suppose that the action is primitive. Let Sx ⊆ H where H is a proper
closed inverse subsemigroup. Then by Proposition 2.3, there is a morphism
α: S/Sx −→ S/H mapping the point Sx to the point H. By assumption α is
an equivalence. Applying Proposition 2.3 to the inverse of α we deduce that
Sx = H.

Suppose that Sx is a maximal proper closed inverse subsemigroup and let
α: X → Y be a morphism taking x to y. By Proposition 2.3, we have that
Sx ⊆ Sy. By assumption, Sx = Sy, and so α is an equivalence, as claimed.

�

The zero of the polycyclic monoids is not adjoined and the polycyclic monoids
are congruence-free. Thus the proper closed inverse submonoids are just the
closed inverse submonoids that do not contain zero. It follows that in order
to characterise the primitive actions of such inverse monoids, we shall need to
classify their maximal proper closed inverse submonoids up to conjugacy.

3 The polycyclic monoids

In this section, we outline the theory of the polycyclic monoids. Most of the
results are well-known although our classification of the wide inverse submonoids
of the polycyclic monoids (Theorem 3.3) appears to be new.

Let n ≥ 1, and put An = {a1, . . . , an}. A string in A∗
n, the free monoid

generated by An, will be called positive. The empty string is denoted ε. The
length of the string x is denoted by |x|. The free semigroup on An is denoted
by A+

n . The set of right infinite strings over An is denoted by Aω
n . If x is a

finite string then xω = xxx . . .. A right infinite string x is said to be ultimately
periodic if it is of the form yzω where y and z are finite strings and z is non-
empty. For the purposes of this paper, an infinite string is aperiodic if it is not
ultimately periodic. If u = vw are strings, then v is called a prefix of u, and a
proper prefix if w is not the empty string; whereas w is called a suffix of u, and
a proper suffix if v is not the empty string. If x is a string then the notation
x̄ will be used to denote a prefix of x. A pair of elements of A∗

n is said to be
prefix-comparable if one is a prefix of the other. If x and y are prefix-comparable
we define

x ∧ y =

{

x if y is a prefix of x
y if x is a prefix of y

A string is said to be primitive if it is not a proper power of another string. Let
x and y be strings. If x = uv and y = vu then x and y are said to be conjugate.
A Lyndon word (or string) is a primitive string that is minimal in its conjugacy
class with respect to the lexicographic ordering [10]. For us, Lyndon strings
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are just a way of choosing a unique representative from conjugacy classes of
primitive strings.

The following is proved as Proposition 1.3.4 of [10].

Proposition 3.1 Let x, y ∈ A+. Then x and y are conjugate iff xz = zy for
some string z.

�

The bicyclic monoid is defined by the following monoid presentation

B = P1 = 〈a1: a−1

1 a1 = 1〉.

The polycyclic monoid Pn, where n ≥ 2, is defined as a monoid with zero by the
following presentation

Pn = 〈a1, . . . , an, a−1

1 , . . . , a−1
n : a−1

i ai = 1and a−1

i aj = 0, i 6= j〉.

Intuitively, think of a1, . . . , an as partial bijections of a set X and a−1

1 , . . . , a−1
n

as their respective partial inverses. The first relation says that each partial
bijection ai has domain the whole of X and the second says that the ranges of
distinct ai are orthogonal. As a concrete example of P2, one can take as a1 and
a2 the two maps that shrink the Cantor set to its lefthand and righthand sides,
respectively. Every non-zero element of Pn is of the form yx−1 where x, y ∈ A∗

n.
Identify the identity with εε−1. The product of two elements yx−1 and vu−1 is
zero unless x and v are prefix-comparable. If they are prefix-comparable then

yx−1 · vu−1 =

{

yzu−1 if v = xz for some string z
y(uz)−1 if x = vz for some string z

The non-zero idempotents in Pn are the elements of the form xx−1, where x
is positive, and the natural partial order is given by yx−1 ≤ vu−1 iff y = vp
and x = up for some positive string p. Observe that if xx−1 and yy−1 are
non-zero idempotents then xx−1 · yy−1 6= 0 if and only if either xx−1 ≤ yy−1 or
yy−1 ≤ xx−1. When non-zero

xx−1 · yy−1 = (x ∧ y)(x ∧ y)−1.

An inverse semigroup with zero is said to be E∗-unitary if every element
above a non-zero idempotent is an idempotent. An inverse semigroup is said
to be E-unitary if every element above an idempotent is an idempotent. The
bicyclic monoid is E-unitary and the polycyclic monoids are E∗-unitary.

There is a function λ from the non-zero elements of Pn to the additive group
Z defined by λ(uv−1) = |u| − |v|. If yx−1 · vu−1 6= 0 then direct verification
shows that

λ(yx−1 · vu−1) = λ(yx−1) + λ(vu−1).

Lemma 3.2 In a polycyclic monoid if uv−1 ≤ xy−1, wz−1 then xy−1 and wz−1

are comparable.
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Proof It follows that u = xp = wq and v = yp = zq for some strings p and q.
If |p| = |q| then xy−1 = wz−1, if |p| < |q| then xy−1 ≤ wz−1, and if |q| < |p|
then wz−1 ≤ xy−1.

�

Meakin and Sapir [11] proved there was a bijection between the congruences
on the free monoid on n generators A∗ and the positively self-conjugate wide
inverse submonoids of the polylcyclic monoid on n generators Pn. We generalise
this result as follows.

Theorem 3.3 There is a bijection between right congruences on A∗ and wide
inverse submonoids of Pn.

Proof Let ρ be a right congruence on A∗. Let

Pρ = {xy−1 ∈ Pn: xρy} ∪ {0}.

We prove that Pρ is a wide inverse subsemigroup of Pn. The nonzero idempo-
tents of Pn are the elements of the form xx−1. Since ρ is an equivalence relation
for every string x we have that xρx. Thus Pρ contains all the idempotents of Pn.
If xy−1 ∈ Pρ then xρy and so yρx, since ρ is an equivalence relation, and it fol-
lows that yx−1 ∈ Pρ. Thus Pρ is closed under inverses. It remains to show that
Pρ is closed under products. Let xy−1, wz−1 ∈ Pρ Suppose that xy−1 ·wz−1 6= 0.
There are two possibilities. Suppose that w = yp. Then xy−1 ·wz−1 = (xp)z−1.
Now xρy and yp = wρz. By assumption, ρ is a right congruence and so xpρyp.
By transitivity, we have that xpρz and so (xp)z−1 ∈ Pρ, as required. Now sup-
pose that y = wp. Then xy−1 · wz−1 = x(zp)−1. Now xρy = wp and wρz. By
assumption, ρ is a right congruence and so wpρzp. By transitivity, xρzp and so
x(zp)−1 ∈ Pρ. Thus we have proved that Pρ is a wide inverse submonoid of Pn.

We now go in the other direction. Let S be a wide inverse submonoid of Pn.
Define a relation ρ = ρS on A∗ by

xρy ⇔ xy−1 ∈ S.

We shall prove that ρ is a right congruence on A∗. Let x ∈ A∗. Then S is a
wide inverse subsemigroup and so xx−1 ∈ S. It follows that xρx and so ρ is
reflexive. Suppose that xρy. Then xy−1 ∈ S. But S is an inverse subsemigroup
and so closed under inverses. Thus yx−1 ∈ S. Hence yρx. It follows that ρ
is symmetric. Suppose that xρy and yρz. Then xy−1, yz−1 ∈ S. Since S is
closed under products we have that xz−1 ∈ S. Thus xρz. It follows that ρ is
transitive. Finally suppose that xρy and z ∈ A∗ is arbitrary. By assumption
xy−1 ∈ S. Because S is a wide inverse submonoid of Pn it is an order ideal.
Observe that xz(yz)−1 ≤ xy−1. Thus xz(yz)−1 ∈ S. It follows that xzρyz. We
have therefore proved that ρ is a right congruence, as claimed.

�

8



We specialise the above result to the case of the bicyclic monoid P1. The
theory we describe here is part of the theory of inverse ω-semigroups [14], where
an inverse monoid is said to be an ω-semigroup if its idempotents form a chain
order isomorphic to the natural numbers with respect to the dual ordering. The
free monoid associated with the bicyclic monoid is just N under addition. Be-
cause this monoid is commutative, right congruences on N are just congruences.
The congruences on N can be easily classified and this will enable us to classify
all wide inverse submonoids of P1. We follow Howie [3]. A monogenic monoid
is determined by two natural numbers: the index m ≥ 0 and the period r ≥ 1.
Define the relation ≡m

r on N as follows: a ≡m
r b iff 0 ≤ a, b < m and a = b, or

a, b ≥ m and a ≡ b (mod r).
We now describe the wide inverse submonoid of P1 that corresponds to ≡m

r .
I’ll denote the generator of the free monoid on one generator by a. There
are elements apa−q where p, q ≥ m and p ≡ q (mod r) together with the
idempotents aia−i where 0 ≤ i < m. There’s no agreed notation for this inverse
submonoid, but if we denote the bicyclic monoid by B then it is natural to denote
this submonoid by Bm

r . The inverse monoids Bm
r are precisely the fundamental

inverse ω-monoids. If m = 0 then we denote this monoid by Br (which agrees
with Howie [3]).

Lemma 3.4 The inverse monoid Bm
r is simple if and only if m = 0.

Proof Suppose that Bm
r is simple and that m > 0 and 1 ≤ i ≤ m. Consider

the idempotent aia−i and the idempotent aja−j where j ≥ r. Then we must
have aia−i ≤ aja−j , which is impossible.

Now suppose that m = 0. Let aia−i and aja−j be arbitrary idempotents.
Let k ≥ j and congruent to i modulo r. Then aia−iDaka−k ≤ aja−j . Thus Br

is simple.

�

4 Representations of the polycyclic monoids

The goal of this section is to describe all the proper closed inverse submonoids
of the polycyclic monoids up to conjugacy and, in particular, determine the
maximal proper closed inverse submonoids. By Proposition 2.6, this will enable
us to describe all the primitive representations of the polycyclic monoids. It
turns out that a strong constraint on the proper closed inverse submonoids is
that they cannot contain zero.

We begin by constructing a family of proper closed inverse submonoids of
Pn.

Lemma 4.1 Let x and p be strings such that p is non-empty and where x and
p have no non-trivial suffix in common. The smallest closed inverse submonoid
of Pn containing the element x(xp)−1 is

P x,p
n = {xprp̄(xpsp̄)−1: r, s ≥ 0, p̄ is a prefix of p} ∪ {x̄x̄−1: x̄ is a prefix of x}.
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The idempotents of this semigroup are the elements of the form yy−1 where y
is a prefix of the string xpω.

Proof It is clear that P x,p
n is upwardly closed under the natural partial order

and closed under inversion. We prove that it is closed under multiplication.
Observe first that we can show that the elements

{xprp̄(xpsp̄)−1: r, s ≥ 0, p̄ a prefix of p}

form an inverse subsemigroup (isomorphic to B|p|) by means of a routine veri-
fication. The products

xprp̄(xpsp̄)−1 · x̄x̄−1

give nothing new. It follows that P x,p
n is a closed inverse submonoid of Pn

containing the element x(xp)−1.
We now prove that it is the smallest closed inverse submonoid containing

x(xp)−1. Let H be a closed inverse submonoid containing x(xp)−1. Then H
contains xx−1 and so contains all idempotents x̄x̄−1 where x̄ is a prefix of x. By
taking powers we can get all elements of the form x(xpr)−1 and so by products all
elements of the form xpr(xps)−1. Because of upward closure under the natural
partial order we must also have all elements of the form xprp̄(xpsp̄)−1 where p̄
is a prefix of p. We have thus shown that P x,p

n ⊆ H.

�

The closed inverse submonoids P x,p
n will play an important role in what fol-

lows.

Notation We write P p
n instead of P ε,p

n .

Lemma 4.2 We have that P x,p
n ⊆ P y,q

n if and only if x = y and p = qs for
some s ≥ 0 with equality iff x = y and p = q.

Proof Suppose that P x,p
n ⊆ P y,q

n . Since x(xp)−1 ∈ P y,q
n , we have that x(xp)−1 =

yqr q̄(yqsq̄)−1. Thus
x = yqr q̄ and xp = yqsq̄.

From the first equality we deduce that |x| ≥ |y|. There are now two cases to
consider.

Case 1. Suppose that |x| = |y|. Then x = y. It follows that r = 0 and q̄ = ε.
Hence p = qs for some s ≥ 0.

Case 2. Suppose that |x| > |y| thus either r > 0 or q̄ is not the empty string.
Substituting and cancelling, we get that

qr q̄p = qsq̄.

Observe that |p| < |q| cannot occur because by comparing lengths we have that
r|q|+ |q̄|+ |p| = s|q|+ |q̄| and so r|q|+ |p| = s|q|. It follows that |p| is congruent
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to 0 modulo |q|. However |p| < |q| and so p must be the empty string. But
this is excluded by our assumptions on x and p. Thus |p| ≥ |q|. It follows that
q̄ is a suffix of both x and p. Hence by our assumption q̄ = ε. Thus x = yqr

and qrp = qs and r > 0. If r = s then p is the empty string which contradicts
our assumptions. If s < r then qr−sp = ε which is impossible. It follows that
s > r and so p = qs−r where s − r ≥ 1. However now x and p have q at least
as a common suffix, which contradicts our assumption. It follows that this case
cannot occur.

To prove the converse, suppose that x = y and p = qr. Then x(xp)−1 =
y(yqr)−1 ∈ P y,q

n . However P x,p
n is the smallest closed inverse submonoid con-

taining x(xp)−1 by Lemma 4.1 and so P x,p
n ⊆ P y,q

n .

�

Theorem 4.3 Each proper closed inverse submonoid of Pn belongs to exactly
one of the following classes:

1. Finite chain type: it consists of a finite chain of idempotents.

2. Infinite chain type: it consists of an infinite chain of idempotents.

3. Cycle type: it is of the form P x,p
n where p 6= ε and where x and p have

no non-trivial suffix in common. If x = ε we say that P p
n is of pure cycle

type.

Proof Let H be a proper closed inverse submonoid of Pn. Any two idempotents
xx−1, yy−1 ∈ H must be comparable for if not then their product would be zero.
It follows that E(H) is a linearly ordered set. There are now two possibilities:
this linearly ordered set is either finite or infinite. If it is finite then it is a finite
chain of groups by Proposition 5.2.13 of [6]. However, the polycyclic monoids
are combinatorial and so the only groups available are the trivial ones. It follows
that if E(H) is finite then H = E(H) is just a finite chain of idempotents and
so is the closed inverse subsemigroup determined by its smallest idempotent.
This accounts for both finite and infinite chain types.

In the light of the above, we need now only describe those closed inverse
submonoids that contain non-idempotent elements. It follows that H is an
inverse ω-monoid and since it is contained in the polycyclic monoid which is
combinatorial it must be fundamental. Hence H must be abstractly isomorphic
to a monoid of the form Bm

r . However, we need to discover how that monoid is
embedded in Pn. We shall prove that in fact H = P x,p

n for some strings x and
p.

We shall use the function λ defined in Section 3. Because H doesn’t contain
zero, the restriction of λ to H defines a monoid homomorphism from H to the
additive group Z. Because H is inverse its image will be inverse and so, since
the image lives in a group, its image will be a subgroup of Z. If xy−1 ∈ H
then xx−1, yy−1 ∈ H and so they must be comparable. It follows that either
x = yp or y = xp for some string p. If the former then ypy−1 ∈ H and if the
latter then x(xp)−1 ∈ H and so by inverting xpx−1 ∈ H. It follows that since
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we are assuming that H contains non-idempotent elements the image of λ is a
non-trivial subgroup of Z. In particular, λ(xy−1) = |p| ∈ Z, with the notation
above. Thus the image of λ restricted to H is of the form nZ where n ≥ 1.
We may therefore find a maximal (with respect to the natural partial order)
non-idempotent element yx−1 in H such that λ(yx−1) is positive and as small
as possible. We may therefore write y = xp for some non-empty string p. Thus
the image of λ restricted to H is the subgroup |p|Z. The element x(xp)−1 ∈ H
is also maximal, and so we know that x and xp have no non-trivial suffix in
common. The conditions of Lemma 4.1 hold and so P x,p

n ⊆ H.
Let uv−1 ∈ H. We shall prove that uv−1 ∈ P x,p

n . Suppose first that u = v.
Choose r large enough so that |xpr| > |u|. Since uu−1, xpr(xpr)−1 ∈ H we know
that they are comparable. Thus u is a prefix of xpr by length considerations.
It follows that uu−1 ∈ P x,p

n . Suppose now that uv−1 is not an idempotent and,
by taking inverses, if necessary, we can assume that λ(uv−1) > 0. Because
uu−1, vv−1 ∈ P x,p

n , by our first result, we can write uv−1 = xprp(xpsp)−1.
We will be done if we can show that p = p. Multiplying uv−1 on the left by
xp(xprp)−1 we get that xp(xpsp)−1 ∈ H. Multiplying this element on the right
by xpsp̄(xp)−1 we get that xp(xp)−1 ∈ H. By taking inverses if necessary we
can assume that |p| ≤ |p|. Then 0 ≤ λ(xp(xp)−1) < |p|. It follows that p = p
and so uv−1 ∈ P x,p

n , as required.

�

Let H be a proper closed inverse submonoid. If E(H) is finite then the type
of H is the finite string w with the property that the idempotents of H are
precisely those elements of the form uu−1 where u is a prefix of w. If E(H) is
infinite then the type of H is the infinite string w with the property that the
idempotents of H are precisely those elements of the form uu−1 where u is a
prefix of w. We say that H is ultimately periodic if its type is an ultimately
periodic infinite string, and we say that it is aperiodic if its type is an infinite
string which is not ultimately periodic.

We shall now set about classifying the proper closed inverse submonoids of
Pn up to conjugacy.

Theorem 4.4

1. Let H be a proper closed inverse submonoid of S of finite chain type. Then
all closed inverse submonoids conjugate to it are of finite chain type, and
all submonoids of finite chain type are conjugate.

2. Let H be a proper closed inverse submonoid of infinite chain type. The
only closed inverse submonoids conjugate to H are also of infinite chain
type. Two closed inverse submonoids of infinite chain type are conjugate
if and only if there are idempotents vv−1 ∈ H and uu−1 ∈ K such that for
all strings p we have that vp(vp)−1 ∈ H iff up(up)−1 ∈ K. It follows that
they are conjugate iff their types differ in only a finite number of places.

12



3. Let H be a proper closed inverse submonoid of cycle type. The only closed
inverse submonoids conjugate to H are also of cycle type. Furthermore
P x,p

n is conjugate to P y,q
n if and only if p and q are conjugate strings.

Proof 1. Let H be a proper closed inverse submonoid consisting entirely of
idempotents. Let K be conjugate to H. By assumption, there exists an element
s such that sHs−1 ⊆ K and s−1Ks ⊆ H. Let k ∈ K. Then s−1ks ∈ H.
By assumption s−1ks = e, an idempotent, necessarily nonzero. It follows that
ses−1 = ss−1kss−1 ≤ k. Now ses−1 is an idempotent, necessarily nonzero.
Thus k is an idempotent because Pn is E∗-unitary. Hence K consists entirely
of idempotents.

Suppose now that H consists of only a finite number of idempotents. We
prove that K contains only a finite number of idempotents. The set sHs−1

also consists of a finite set of idempotents and (sHs−1)↑ = K. Because H has
a smallest idempotent so too does sHs−1. It follows that K has only finitely
many idempotents.

We now prove that any two proper closed inverse submonoids of finite
chain type are conjugate. Let H = (uu−1)↑ and K = (vv−1)↑. We show
that vu−1Huv−1 = {vv−1}. By direct calculation, if ū is a prefix of u then
vu−1 · ūū−1 · uv−1 = vv−1. It follows that vu−1Huv−1 ⊆ K and uv−1Kvu−1 ⊆
H. Thus H and K are conjugate.

2. The proof of the first claim follows from the proof of (1) above. Let H
and K both be of infinite chain type such that there are idempotents vv−1 ∈
H and uu−1 ∈ K such that for all strings p we have that vp(vp)−1 ∈ H iff
up(up)−1 ∈ K. We prove that uv−1Hvu−1 ⊆ K. Consider first an idempotent
of the form v̄v̄−1. Direct calculation shows that uv−1 · v̄v̄−1 · vu−1 is equal to
uu−1. The elements below vv−1 in H are of the form vp(vp)−1 for some p, and
uv−1 · vp(vp)−1 · vu−1 = up(up)−1. It follows that uv−1Hvu−1 ⊆ K. It readily
follows now that if our condition is satisfied then H and K are conjugate.

Suppose that H and K are conjugate. Then there is an element uv−1 such
that uv−1Hvu−1 ⊆ K and vu−1Kuv−1 ⊆ H. In addition, vv−1 ∈ H and
uu−1 ∈ K. It is easy to check that vp(vp)−1 ∈ H implies that up(up)−1 ∈ K
and vice-versa.

3. Suppose that uv−1P x,p
n vu−1 ⊆ P y,q

n and vu−1P y,q
n uv−1 ⊆ P x,p

n . Then
vv−1 ∈ P x,p

n and uu−1 ∈ P y,q
n . Thus v = xprp̄ and u = yqsq̄. We know that

uv−1 · x(xp)−1 · vu−1 ∈ P y,q
n .

Carrying out the calculations and using Proposition 3.1, we find that p is con-
jugate to a power of q. A similar argument shows that q is conjugate to a power
of p. It follows that p and q are conjugate.

Suppose now that p and q are conjugate. Then p = cd and q = dc for some
strings c and d. We shall show that

y(xc)−1 · P x,p
n · xcy−1 ⊆ P y,q

n .

First, we have that
y(xc)−1 · x̄x̄−1 · xcy−1 = yy−1.
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Now let r, s ≥ 1 then

y(xc)−1 · xprp̄(xpsp̄)−1 · xcy−1 = yqr−1(dp̄)(yqs−1(dp̄))−1.

The string dp̄ is equal to q̄ or qq̄ for some q̄. Thus this string belongs to P y,q
n .

The cases r = 0 or s = 0 also lead to strings that belong to P y,q
n , and we have

proved our claim. It now readily follows that P x,p
n and P y,q

n are conjugate.

�

We can now classify the proper closed inverse submonoids corresponding to
primitive actions.

Theorem 4.5 Every proper closed inverse submonoid of the polycyclic monoid
Pn which corresponds to a primitive action is conjugate to a closed inverse
submonoid of one of the following two types:

1. Aperiodic type with two such being conjugate when their types differ in
only a finite number of places.

2. Pure cycle type P p
n where p is a primitive string.

Proof From the theory developed in Section 2, we have first to locate the max-
imal proper closed inverse submonoids. The proper closed inverse submonoids
are described by Theorem 4.3. Those of finite chain type cannot be maximal
because they can be embedded in proper closed inverse submonoids of infinite
chain type. If H is of infinite chain type xpω then H ⊂ P x,p

n . Thus the maximal
proper closed inverse submonoids of infinite chain type are those of aperiodic
type.

If H is of cycle type P x,p
n and p is not a primitive string then P x,p

n is not
maximal by Lemma 4.2. It follows that the maximal proper inverse submonoids
of cycle type are precisely those of the form P x,p

n where p is a primitive string.
We now use Theorem 4.4 to classify the maximal proper inverse submonoids

up to conjugacy. Those of cycle type can be represented by P p
n where p is a

primitive string. Two proper closed inverse submonoids of aperiodic type are
conjugate iff their corresponding infinite strings differ in only a finite number of
places.

�

Thus the conjugacy classes of the maximal proper closed inverse submonoids
of pure cycle type are classified using Lyndon strings.

We now describe the actions associated with each of the conjugacy classes of
proper closed inverse submonoids of Pn. We begin with the simplest case first.

Define an action of Pn on A∗
n as follows:

xy−1 · u =

{

xp if u = yp for some string p
undefined otherwise

14



We call this the natural action of Pn on A∗
n. Observe that this action is tran-

sitive because xy−1 · y = x for any two strings x and y. The stabiliser of the
point x consists of all the idempotents of the form x̄x̄−1. The following is now
immediate.

Proposition 4.6 The action corresponding to a proper closed inverse submonoid
of finite chain type is the natural action of Pn on A∗

n.

�

Define an action of Pn on Aω
n as follows:

xy−1 · u =

{

xp if u = yp for some infinite string p
undefined otherwise

We call this the natural action of Pn on Aω
n . This action is no longer transitive

but we shall study the orbits of the action each of which gives rise to a transitive
action of Pn. Observe that if xpω is an ultimately periodic string we can assume
that x and p have no suffix in common because if they did we could write x = x̄y
and p = p̄y, where y is as long as possible, and then xpω = x̄(yp̄)ω with x̄ and yp̄
having no non-trivial suffix in common. Next we can assume that p is primitive
because if p = qs then xpω = xqω.

The proof of the following is straightforward.

Proposition 4.7 With respect to the natural action of Pn on Aω
n we have the

following.

1. The ultimately periodic string xpω, where p is primitive and x and p have
non non-trivial suffix in common, has the stabiliser P x,p

n .

2. The infinite aperiodic string x has the stabiliser the closed inverse sub-
monoid of chain type x.

�

It follows that the natural action of the polycyclic monoid on the set of
infinite strings is the disjoint union of each of the primitive transitive represen-
tations of the polycyclic monoid with each such representation occuring exactly
once.

5 Strong representations and branching func-

tion systems

We now single out a special class of representations of the polycyclic monoids.
A representation of Pn on a set X is said to be strong if

X = a1 · X ∪ . . . ∪ an · X.
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Such actions played an important role in our paper [8] and were introduced in
[1]. Not all actions are strong: for example, the natural action of Pn on A∗

n is
not strong because the empty string is not in the set A+

n = (a1 + . . . + an)A∗.
However, the natural action of Pn on Aω

n is strong because every point is an
infinite string and so begins with some letter of An; that is

Aω
n = (a1 + . . . + an)Aω

n .

The disjoint union of strong actions is strong.

Proposition 5.1 The only transitive action of Pn which is not strong is its
natural action on A∗

n.

Proof This can obviously be proved following our classification of closed inverse
submonoids. However, we give an alternative proof that explains what is going
on. Let Pn act transitively on the set X. Let x ∈ X and let its stabiliser in Pn

be Sx. All we shall assume about Sx is that it has infinitely many idempotents
linearly ordered. Let y ∈ X be arbitrary. Then there is a string uv−1 such
that uv−1 · x = y. If u 6= ε then there is nothing to prove so we shall assume
that u = ε. It follows that the elements of Pn mapping x to y are precisely
those in [v−1H]. We now use the fact that the idempotents in H are linearly
ordered and that there are infinitely many of them. Choose ww−1 ∈ H such
that |w| > |v|. Then v−1 · ww−1 is defined and so w = vp for some non-empty
string p. It follows that v−1 · ww−1 = pw−1. Hence pw−1 · x = y and again y
belongs to (a1 + . . . + an)X. Thus the action of Pn on X is strong.

�

Proposition 5.2 Let Pn act on X. If the action is not strong then either X
is just a disjoint union of copies of the natural action of Pn on A∗

n or it can be
written X = Xf ∪ X∞, a disjoint union of subspaces, where the action of Pn

on X∞ is strong and the action of Pn on Xf is again a disjoint union of copies
of the natural action of Pn on A∗

n.

Proof Define

X∞ =
∞
⋂

i=1

Ai
nX.

This is just the set of all points x of X such that for each integer m ≥ 0 there
exists a string u of length m such that u−1 · x is defined. In other words, it
consists of all points whose stabilisers are infinite. If X∞ is non-empty, then it
is a subpace of X and by construction Pn acts strongly on it.

Put Xf = X \ X∞. If non-empty, this consists of those points x in X such
that for some integer m ≥ 0 there are no strings u of length m such that u−1 ·x
is defined. In other words, it consists of all points whose stabilisers are finite.
The action of Pn on each orbit of Xf is therefore equivalent to its natural action
on A∗

n.
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�

The above two results deal with actions which are not strong. We now turn
to those which are. The following lemma just spells out the technique that lay
behind the proof of the above proposition.

Lemma 5.3 Let Pn act strongly on the set X. Let x ∈ X. Then for each
natural number m there is a unique string u of length m and a point y such that
x = u · y (which is equivalent to saying that ∃u−1 · x). Suppose that u−1 · x and
v−1 · x are defined and |u| ≥ |v| then v is a prefix of u.

Proof Because the action is strong, there is a b1 ∈ An and a point x1 such that
x = b1 · x1. The same argument can be applied to x1. Thus induction supplies
the existence of a string u and a point y. Suppose that x = u · y = v · z and
u and v have the same length. Let the first letter of u be a. Then a−1 · x is
defined. Thus a−1v is defined and is non-zero. It follows that the first letter of
v is also a. By induction it follows that u = v, and so y = z.

We have that x = u · y iff ∃u−1 · x = y which proves the alternative charac-
terisation stated in the brackets.

Suppose that ∃u−1 · x and ∃v−1 · x and that |u| > |v|. Both uu−1 · x and
vv−1 · x are defined and so u and v are comparable, and from our assumption
on their respective lengths we have that v is a prefix of u.

�

Morphisms between strong representations behave well.

Lemma 5.4 Let Pn act strongly on both X and Y . Then every morphism
α: X → Y is strong.

Proof We have to prove that ∃uv−1 ·α(x) implies that ∃uv−1 ·x. Because w ·x
is defined for all positive strings w it is enough to prove the result when u = ε.
Suppose that v−1 · α(x). By Lemma 5.3 there is a string u of length |v| and a
point y such that x = u · y. Thus α(x) = u · y. It follows that v−1u is non-zero
and so, since u and v have the same length, they must be equal. Thus x = v · y
and so, in particular, ∃v−1 · x, as claimed.

�

The following is just our version of the coding map of [1].

Proposition 5.5 Let Pn act strongly on X. Then there is a strong morphism

σ: X → Aω
n

such that every finite prefix of σ(x) of length m is the unique string u of length
m such that u−1 · x is defined.
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Proof The map σ is well-defined by Lema 5.3. It remains to show that σ is
a morphism. Suppose that wz−1 · x is defined. Then z is a prefix of σ(x) and
so σ(x) = zz′ where z′ is infinite. From the definition of the natural action on
infinite strings we have that wz−1 · σ(x) is defined and is equal to wz′. But
σ(wz−1 · x) is also equal to wz′. Thus σ(wz−1 · x) = wz−1 · σ(x).

�

We call the map σ the coding morphism. If the coding morphism is injective
then Bratteli and Jorgensen [1] define the action to be multiplicity-free. It
follows by Lemma 1.1 and Proposition 5.5 that a multiplicity-free strong action
is equivalent to a subspace of the natural action of Pn on infinite strings. Thus
by Proposition 4.7, a strong action is multiplicity-free if and only if it is a
disjoint union of primitive strong actions each of which occurs at most once,
thus providing a completely algebraic characterisation of this notion.

Strong representations of Pn determine and are determined by ‘n-ary branch-
ing function systems’ which we now define. A branching function system is a
set X equipped with n injective functions fi: X → X for i = 1, . . . , n such that
the images of the functions form a partition of the set X [1]. Thus branching
function systems are special kinds of unary algebras (in the sense of universal al-
gebra). The equivalence between strong representations and branching function
systems is easy to establish. Given a strong action of Pn on X its restriction to
A∗

n and so to An gives rise to a branching function system. Conversely, given a
branching function system on X, we have a function from An to I(X). This can
be extended to a monoid homomorphism of A∗

n to I(X) using the fact that A∗
n

is the free monoid on An. This homomorphism can be extended to a homomor-
phism of Pn to I(X) using the relations implicit in the definition of a branching
function system.

There is an equivalent way of expressing the data making up a branching
function system. Let (X, f1, . . . , fn) be a system. Define

n
⊔

i=1

X =

n
⋃

i=1

{i} × X

to be the disjoint union of n copies of X and define a function α: X →
⊔n

i=1
X

by α(x) = (i, y) where fi(y) = x. It is easy to check that α is a bijection.
Conversely, every bijection α from X to

⊔n
i=1

X defines a branching function
system by putting fi(y) = α−1(i, y). See Section 9.3 of [6] for more on this
approach to branching function systems.

Thus to study strong representations of the polycyclic monoid on n genera-
tors, it is enough to study n-ary branching function systems. It is now easy to
see why Kawamura’s results [4, 5] can be derived from ours: in fact, his papers
inspired us. His approach via branching function systems is more straightfor-
ward than ours, but the results of this paper put his results in a broader context,
and the methods could be applied elsewhere.
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