
Finite automata

M. V. Lawson

Department of Mathematics
School of Mathematical and Computer Sciences
Heriot-Watt University
Riccarton, Edinburgh EH14 4AS
Scotland
M.V.Lawson@ma.hw.ac.uk

1 Introduction

The term ‘finite automata’ describes a class of models of computation that
are characterised by having a finite number of states. The use of the word ‘au-
tomata’ harks back to the early days of the subject in the 1950’s when they
were viewed as abstract models of real circuits. However, the readers of this
chapter can also view them as being implemented by programming languages,
or as themselves constituting a special class of programming languages. Taking
this latter viewpoint, finite automata form a class of programming languages
with very restricted operation sets: roughly speaking, programs where there
is no recursion or looping. In particular, none of them is a universal program-
ming language; indeed, it is possible to prove that some quite straightforward
operations cannot be programmed even with the most general automata I
discuss. Why, then, should anyone be interested in programming with, as it
were, one hand tied behind their back? The answer is that automata turn out
to be useful — so they are not merely mathematical curiosities. In addition,
because they are restricted in what they can do, we can actually say more
about them, which in turn helps us manipulate them.

The most general model I discuss in this chapter is that of a finite trans-
ducer, in Section 3.3, but I build up to this model in Sections 2, 3.1, and 3.2
by discussing, in increasing generality: finite acceptors, finite purely sequen-
tial transducers, and finite sequential transducers. The finite acceptors form
the foundation of the whole enterprise through their intimate link with regu-
lar expressions and, in addition, they form the pattern after which the more
general theories are modelled.

What then are the advantages of the various kinds of finite transducers
considered in this chapter? There are two main ones: the speed with which
data can be processed by such a device, and the algorithms that enable one
to make the devices more efficient. The fact that finite transducers of vari-

2 M. V. Lawson

ous kinds have turned out to be useful in natural language processing is a
testament to both of these advantages [23]. I discuss the advantages of finite
transducers in a little more detail in Section 4.

To read this chapter, I have assumed that you have been exposed to a first
course in discrete math(s); you need to know a little about sets, functions, and
relations, but not much more. My goal has been to describe the core of the
theory in the belief that once the basic ideas have been grasped, the business
of adding various bells and whistles can easily be carried out according to
taste.

Other reading There are two classic books outlining the theory of finite
transducers: Berstel [4] and Eilenberg [12]. Of these, I find Berstel’s 1979
book the more accessible. However, the theory has moved on since 1979, and
in the course of this chapter I refer to recent papers that take the subject up
to the present day. In particular, the paper [24] contains a modern, mathemat-
ical approach to the basic theory of finite transducers. The book by Jacques
Sakarovitch [30] is a recent account of automata theory that is likely to become
a standard reference. The chapters by Berstel and Perrin [6], on algorithms on
words, and by Laporte [21], on symbolic natural language processing, both to
be found in the forthcoming book by M. Lothaire, are excellent introductions
to finite automata and their applications. The articles [25] and [35] are inter-
esting in themselves and useful for their lengthy bibliographies. My chapter
deals entirely with finite strings — for the theory of infinite strings see [26].
Finally, finite transducers are merely a part of theoretical computer science;
for the big picture, see [17].

Terminology This has not been entirely standardised so readers should be on
their guard when reading papers and books on finite automata. Throughout
this chapter I have adopted the following terminology introduced by Jacques
Sakarovitch and suggested to me by Jean-Eric Pin: a ‘purely sequential func-
tion’ is what is frequently referred to in the literature as a ‘sequential function’;
whereas a ‘sequential function’ is what is frequently referred to as a ‘subse-
quential function’. The new terminology is more logical than the old, and
signals more clearly the role of sequential functions (in the new sense).

2 Finite Acceptors

The automata in this section might initially not seem very useful: their re-
sponse to an input is to output either a ‘yes’ or a ‘no’. However, the concepts
and ideas introduced here provide the foundation for the rest of the chapter,
and a model for the sorts of things that finite automata can do.

Finite automata 3

2.1 Alphabets, strings, and languages

Information is encoded by means of sequences of symbols. Any finite setA used
to encode information will be called an alphabet, and any finite sequence whose
components are drawn from A is called a string over A or simply a string,
and sometimes a word. We call the elements of an alphabet symbols, letters,
or tokens. The symbols in an alphabet do not have to be especially simple;
an alphabet could consist of pictures, or each element of an alphabet could
itself be a sequence of symbols. A string is formally written using brackets and
commas to separate components. Thus (now, is, the,winter, of, our,discontent)
is a string over the alphabet whose symbols are the words in an English
dictionary. The string () is the empty string. However, we shall write strings
without brackets and commas and so, for instance, we write 01110 rather
than (0, 1, 1, 1, 0). The empty string needs to be recorded in some way and we
denote it by ε. The set of all strings over the alphabet A is denoted by A∗,
read ‘A star’. If w is a string then |w | denotes the total number of symbols
appearing in w and is called the length of w. Observe that | ε | = 0. It is worth
noting that two strings u and v over an alphabet A are equal if they contain
the same symbols in the same order.

Given two strings x, y ∈ A∗, we can form a new string x · y, called the
concatenation of x and y, by simply adjoining the symbols in y to those in
x. We shall usually denote the concatenation of x and y by xy rather than
x · y. The string ε has a special property with respect to concatenation: for
each string x ∈ A∗ we clearly have that εx = x = xε. It is important to
emphasise that the order in which strings are concatenated is important: thus
xy is generally different from yx.

There are many definitions concerned with strings, but for this chapter I
just need two. Let x, y ∈ A∗. If u = xy then x is called a prefix of u, and y is
called a suffix of u.

Alphabets and strings are needed to define the key concept of this section:
that of a language. Before formally defining this term, here is a motivating
example.

Example 1. Let A be the alphabet that consists of all words in an English
dictionary; so we regard each English word as being a single symbol. The set
A∗ consists of all possible finite sequences of words. Define the subset L of A∗

to consist of all sequences of words that form grammatically correct English
sentences. Thus

to be or not to be∈ L

whereas

be be to to or not /∈ L.

Someone who wants to understand English has to learn the rules for deciding
when a string of words belongs to the set L. We can therefore think of L as
being the English language.

4 M. V. Lawson

For any alphabet A, any subset of A∗ is called an A-language or a language
over A or simply a language. Languages are usually infinite; the question we
shall address in Section 2.2 is to find a finite way of describing (some) infinite
languages.

There are a number of ways of combining languages to make new ones. If
L and M are languages over A so are L ∩M , L ∪M , and L′: respectively,
the intersection of L and M , the union of L and M , and the complement of
L. These are called the Boolean operations and come from set theory. Recall
that ‘x ∈ L ∪M ’ means ‘x ∈ L or x ∈ M or both.’ In automata theory, we
usually write L+M rather than L ∪M when dealing with languages. There
are two further operations on languages that are peculiar to automata theory
and extremely important: the product and the Kleene star. Let L and M be
languages. Then

L ·M = {xy: x ∈ L and y ∈M}

is called the product of L and M . We usually write LM rather than L ·M . A
string belongs to LM if it can be written as a string in L followed by a string
inM . For a language L, we define L0 = {ε}, and Ln+1 = Ln ·L. For n > 0, the
language Ln consists of all strings u of the form u = x1 . . . xn where xi ∈ L.
The Kleene star of a language L, denoted L∗, is defined to be

L∗ = L0 + L1 + L2 +

2.2 Finite acceptors

An information-processing device transforms inputs into outputs. In general,
there are two alphabets associated with such a device: an input alphabet A for
communicating with it, and an output alphabet B for receiving answers. For
example, consider a device that takes as input sentences in English and out-
puts the corresponding sentence in Russian. In later sections, I shall describe
mathematical models of such devices of increasing generality. In this section,
I shall look at a special case: there is an input alphabet A, but each input
string causes the device to output either ‘yes’ or ‘no’ once the whole input
has been processed. Those input strings from A∗ that cause the machine to
output ‘yes’ are said to be accepted by the machine, and those that cause it
to output ‘no’ are said to be rejected. In this way, A∗ is partitioned into two
subsets: the ‘yes’ subset we call the language accepted by the machine, and
the ‘no’ subset we call the language rejected by the machine. A device that
operates in this way is called an acceptor. We shall describe a mathematical
model of a special class of acceptors. Our goal is to describe potentially infinite
languages by finite means.

A finite (deterministic) acceptorA is specified by five pieces of information:

A = (S,A, i, δ, T) ,

where S is a finite set called the set of states, A is the finite input alphabet, i
is a fixed element of S called the initial state, δ is a function δ: S × A → S,

Finite automata 5

called the transition function, and T is a subset of S (possibly empty!) called
the set of terminal or final states.

There are two ways of providing the five pieces of information needed to
specify an acceptor: transition diagrams and transition tables. A transition
diagram is a special kind of directed labelled graph: the vertices are labelled
by the states S of A; there is an arrow labelled a from the vertex labelled
s to the vertex labelled t precisely when δ(s, a) = t in A. That is to say,
the input a causes the acceptor A to change from state s to state t. Finally,
the initial state and terminal states are distinguished in some way: we mark

the initial state by an inward-pointing arrow, // i?>=<89:;, and the terminal

states by double circles t?>=<89:;'&%$Ã!"# . A transition table is just a way of describing the

transition function δ in tabular form and making clear in some way the initial
and terminal states. The table has rows labelled by the states and columns
labelled by the input letters. At the intersection of row s and column a we
put the element δ(s, a). The states labelling the rows are marked to indicate
the initial state and the terminal states.

Example 2. Here is a simple example of a transition diagram of a finite accep-
tor.

//?>=<89:;s
a

¨¨ b //?>=<89:;/.-,()*+t bgga
oo

We can easily read off the five ingredients that specify an acceptor from this
diagram:

• The set of states is S = {s, t}.
• The input alphabet is A = {a, b}.
• The initial state is s.
• The set of terminal states is {t}.

Finally, the transition function δ: S ×A→ S is given by

δ(s, a) = s, δ(s, b) = t, δ(t, a) = s, and δ(t, b) = t.

Here is the transition table of our acceptor

a b
→ s s t
← t s t

We designate the initial state by an inward-pointing arrow→ and the terminal
states by outward-pointing arrows ←. If a state is both initial and terminal,
then the inward- and outward-pointing arrows will be written as a single
double-headed arrow ↔.

6 M. V. Lawson

To avoid too many arrows cluttering up a transition diagram, the following
convention is used: if the letters a1, . . . , am label m transitions from the state
s to the state t, then we simply draw one arrow from s to t labelled a1, . . . , am

rather than m arrows labelled a1 to am, respectively.
Let A be a finite acceptor with input alphabet A and initial state i. For

each state q of A and for each input string x, there is a unique path in A

that begins at q and is labelled by the symbols in x in turn. This path ends
at a state we denote by q · x. We say that x is accepted by A if i · x is a
terminal state. That is, x labels a path in A that begins at the initial state
and ends at a terminal state. Define the language accepted or recognised by
A, denoted L(A), to be the set of all strings in the input alphabet that are
accepted by A. A language is said to be recognisable if it is accepted by some
finite automaton. Observe that the empty string is accepted by an automaton
if and only if the initial state is also terminal.

Example 3.We describe the language recognised by our acceptor in Exam-
ple 2. We have to find all those strings in (a+ b)∗ that label paths starting at
s and finishing at t. First, any string x ending in a ‘b’ will be accepted. To see
why, let x = x′b where x′ ∈ A∗. If x′ leads the acceptor to state s, then the b
will lead the acceptor to state t; and if x′ leads the acceptor to state t, then
the b will keep it there. Second, a string x ending in ‘a’ will not be accepted.
To see why, let x = x′a where x′ ∈ A∗. If x′ leads the acceptor to state s, then
the a will keep it there; and if x′ leads the acceptor to state t, then the a will
send it to state s. We conclude that L(A) = A∗{b}.

Here are some further examples of recognisable languages. I leave it as an
exercise to the reader to construct suitable finite acceptors.

Example 4. Let A = {a, b}.

(i) The empty set ∅ is recognisable.
(ii) The language {ε} is recognisable.
(iii) The languages {a} and {b} are recognisable.

It is worth pointing out that not all languages are recognisable. For ex-
ample, the language consisting of those strings of a’s and b’s having an equal
number of a’s and b’s is not recognisable.

One very important feature of finite (deterministic) acceptors needs to
be highlighted, since it has great practical importance. The time taken for a
finite acceptor to determine whether a string is accepted or rejected is a linear
function of the length of the string; once a string has been completely read,
we will have our answer.

The classic account of the theory of finite acceptors and their languages
is contained in the first three chapters of [16]. The first two chapters of my
book [22] describe the basics of finite acceptors at a more elementary level.

Finite automata 7

2.3 Non-deterministic ε-acceptors

The task of constructing a finite acceptor to recognise a given language can
be a frustrating one. The chief reason for the difficulty is that finite acceptors
are quite rigid: they have one initial state, and for each input letter and each
state exactly one transition. Our first step, then, will be to relax these two
conditions.

A finite non-deterministic acceptor A is determined by five pieces of in-
formation:

A = (S,A, I, δ, T),

where S is a finite set of states, A is the input alphabet, I is a set of initial
states, δ: S × A → P(S) is the transition function, where P(S) is the set of
all subsets of S, and T is a set of terminal states. In addition to allowing
any number of initial states, the key feature of this definition is that δ(s, a)
is now a subset of S, possibly empty. The transition diagrams and transition
tables we defined for deterministic acceptors can easily be adapted to describe
non-deterministic ones. If q is a state and x a string, then the set of all states
q′ for which there is a path in A beginning at q, ending at q′, and labelled by
x is denoted by q · x. The language L(A) recognised by a non-deterministic
acceptor consists of all those strings in A∗ that label a path in A from at least
one of the initial states to at least one of the terminal states.

It might be thought that, because there is a degree of choice available,
non-deterministic acceptors might be able to recognise languages that deter-
ministic ones could not. In fact, this is not so.

Theorem 1. Let A be a finite non-deterministic acceptor. Then there is an
algorithm for constructing a deterministic acceptor, Ad, such that L(Ad) =
L(A).

We now introduce a further measure of flexibility in constructing acceptors.
In both deterministic and non-deterministic acceptors, transitions may only
be labelled with elements of the input alphabet; no edge may be labelled
with the empty string ε. We shall now waive this restriction. A finite non-
deterministic acceptor with ε-transitions or, more simply, a finite ε-acceptor,
is a 5-tuple,

A = (S,A, I, δ, T),

where all the symbols have the same meanings as in the non-deterministic
case except that now

δ: S × (A ∪ {ε})→ P(S).

The only difference between such acceptors and non-deterministic ones is that
we allow transitions, called ε-transitions, of the form

//?>=<89:;s ε //?>=<89:;t

8 M. V. Lawson

A path in an ε-acceptor is a sequence of states each labelled by an element
of the set A∪ {ε}. The string corresponding to this path is the concatenation
of these labels in order; it is important to remember at this point that for
every string x we have that εx = x = xε. We say that a string x is accepted
by an ε-automaton if there is a path from an initial state to a terminal state
the concatenation of whose labels is x.

Example 5. Consider the following finite ε-acceptor:

///.-,()*+ ε //

a

²²

/.-,()*+
b

²²/.-,()*+
ε

ÂÂ?
??

??
??

? /.-,()*+
ε

²²/.-,()*+ÂÁÀ¿»¼½¾
The language it recognises is {a, b}. The letter a is recognised because

aε labels a path from the initial to the terminal state, and the letter b is
recognised because εbε labels a path from the initial to the terminal state.

The existence of ε-transitions introduces a further measure of flexibility
in building acceptors but, as the following theorem shows, we can convert
such acceptors to non-deterministic automata without changing the language
recognised.

Theorem 2. Let A be a finite ε-acceptor. Then there is an algorithm that
constructs a non-deterministic acceptor without ε-transitions, As, such that
L(As) = L(A).

Example 6.We can use ε-acceptors to prove that if L and M are recognisable
languages, then so is LM . By assumption, we are given two acceptors A and
B such that L(A) = L and L(B) =M . We picture A and B schematically as
follows:

?>=<89:;'&%$Ã!"#

//?>=<89:; A

?>=<89:;'&%$Ã!"#

and

?>=<89:;'&%$Ã!"#

//?>=<89:; B

?>=<89:;'&%$Ã!"#
Now construct the following ε-acceptor: from each terminal state of A draw
an ε-transition to the initial state of B. Make each of the terminal states of

Finite automata 9

A ordinary states and make the initial state of B an ordinary state. Call the
resulting acceptor C. This can be pictured as follows:

?>=<89:;
ε

¿¿9
99

99
99

9
?>=<89:;'&%$Ã!"#

//?>=<89:; A ?>=<89:; B

?>=<89:;
ε

BB¦¦¦¦¦¦¦¦ ?>=<89:;'&%$Ã!"#
It is easy to see that this ε-acceptor recognises LM . By Theorem 2, we can
construct a non-deterministic acceptor recognising LM , and by Theorem 1
we can convert this non-deterministic acceptor into a deterministic acceptor
recognising LM . We have therefore proved that LM is recognisable.

Using the idea of Example 6, the following can easily be proved.

Theorem 3. Let A be an alphabet and L and M be languages over A.

(i) If L and M are recognisable then L+M is recognisable.
(ii) If L and M are recognisable then LM is recognisable.
(iii) If L is recognisable then L∗ is recognisable.

It is worth mentioning that the recognisable languages are closed under all
the Boolean operations: thus if L and M are recognisable so too are L ∩M ,
L +M , and L′. Furthermore, given finite deterministic acceptors for L and
M , it is easy to construct directly finite deterministic acceptors for L ∩M ,
L+M , and L′. The proof of this can be found in Chapter 2 of [22].

The explicit algorithms for constructing deterministic acceptors from non-
deterministic ones (‘the subset construction’), and non-deterministic acceptors
from ε-acceptors are described in most books on automata theory; see [16],
and Chapters 3 and 4 of [22], for example.

2.4 Kleene’s theorem

This is now a good opportunity to reflect on which languages we can now prove
are recognisable. I want to pick out four main results. Let A = {a1, . . . , an}.
Then from Example 4 and Theorem 3, we have the following:

• Each of the languages ∅, {ε}, and {ai} is recognisable.
• The union of two recognisable languages is recognisable.
• The product of two recognisable languages is recognisable.
• The Kleene star of a recognisable language is recognisable.

10 M. V. Lawson

Call a language over an alphabet basic if it is either empty, consists of the
empty string alone, or consists of a single symbol from the alphabet. Then
what we have proved is the following: a language that can be constructed from
the basic languages by using only the operations +, ·, and ∗ a finite number of
times must be recognisable. Such a language is said to be regular or rational.

Example 7. Consider the language L over the alphabet {a, b} that consists of
all strings of even length. We shall show that this is a regular language. A
string of even length is either empty, or can be written as a product of strings
of length 2. Conversely every string that can be written as a product of strings
of length 2 has even length. It follows that

L = ((({a}{a}+ {a}{b}) + {b}{a}) + {b}{b})∗.

Thus L is regular.

In the example above, we would much rather write

L = (aa+ ab+ ba+ bb)∗

for clarity. How to do this in general is formalised in the notion of a ‘regular
expression.’ Let A = {a1, . . . , an} be an alphabet. A regular expression (over
A) or rational expression (over A) is a sequence of symbols formed by repeated
application of the following rules:

(R1) ∅ is a regular expression.
(R2) ε is a regular expression.
(R3) a1, . . . , an are each regular expressions.
(R4) If s and t are regular expressions then so is (s+ t).
(R5) If s and t are regular expressions then so is (s · t).
(R6) If s is a regular expression then so is (s∗).
(R7) Every regular expression arises by a finite number of applications of the

rules (R1) through (R6).

As usual, we will write st rather than s · t. Each regular expression s describes
a regular language, denoted by L(s). This language is calculated by means of
the following rules. Simply put, they tell us how to ‘insert the curly brackets.’

(D1) L(∅) = ∅.
(D2) L(ε) = {ε}.
(D3) L(ai) = {ai}.
(D4) L(s+ t) = L(s) + L(t).
(D5) L(s · t) = L(s) · L(t).
(D6) L(s∗) = L(s)∗.

It is also possible to get rid of many of the left and right brackets that occur in a
regular expression by making conventions about the precedence of the regular
operators. When this is done, regular expressions form a useful notation for

Finite automata 11

describing regular languages. However, if a language is described in some other
way, it may be necessary to carry out some work to find a regular expression
that describes it; Example 7 illustrates this point.

The first major result in automata theory is the following, known as
Kleene’s theorem.

Theorem 4. A language is recognisable if and only if it is regular. In par-
ticular, there are algorithms that accept as input a regular expression r, and
output a finite acceptor A such that L(A) = L(r); and there are algorithms
that accept as input a finite acceptor A, and output a regular expression r
such that L(r) = L(A).

This theorem is significant for two reasons: first, it tells us that there is
an algorithm that enables us to construct an acceptor recognising a language
from a suitable description of that language; second, it tells us that there is
an algorithm that will produce a description of the language recognised by an
acceptor.

A number of different proofs of Kleene’s theorem may be found in Chap-
ter 5 of [22]. For further references on how to convert regular expressions into
finite acceptors, see [5] and [7]. Regular expressions as I have defined them are
useful for proving Kleene’s theorem but hardly provide a convenient tool for
describing regular languages over realistic alphabets containing large numbers
of symbols. The practical side of regular expressions is described by Friedl [14]
who shows how to use regular expressions to search texts.

2.5 Minimal automata

In this section, I shall describe an important feature of finite acceptors that
makes them particularly useful in applications: the fact that they can be
minimised. I have chosen to take the simplest approach in describing this
property, but at the end of this section, I describe a more sophisticated one
needed in generalisations.

Given a recognisable language L, there will be many finite acceptors that
recognise L. All things being equal, we would usually want to pick the smallest
such acceptor: namely, one having the smallest number of states. It is conceiv-
able that there could be two different acceptors A1 and A2 both recognising
L, both having the same number of states, and sharing the additional property
that there is no acceptor with fewer states recognising L. In this section, I shall
explain why this cannot happen. This result has an important consequence:
every recognisable language is accepted by an essentially unique smallest ac-
ceptor. To show that this is true, we begin by showing how an acceptor may
be reduced in size without changing the language recognised. There are two
methods that can be applied, each dealing with a different kind of inefficiency.

The first method removes states that cannot play any role in deciding
whether a string is accepted. Let A = (S,A, i, δ, T) be a finite acceptor. We

12 M. V. Lawson

say that a state s ∈ S is accessible if there is a string x ∈ A∗ such that i·x = s.
Observe that the initial state itself is always accessible because i · ε = i. A
state that is not accessible is said to be inaccessible. An acceptor is said to be
accessible if every state is accessible. It is clear that the inaccessible states of
an automaton can play no role in accepting strings; consequently, we expect
that they could be removed without the language being changed. This turns
out to be the case.

Theorem 5. Let A be a finite acceptor. Then there is an algorithm that con-
structs an accessible acceptor, Aa, such that L(Aa) = L(A).

The second method identifies states that ‘do the same job.’ Let A =
(S,A, i, δ, T) be an acceptor. Two states s, t ∈ S are said to be distinguishable
if there exists x ∈ A∗ such that

(s · x, t · x) ∈ (T × T ′) ∪ (T ′ × T),

where T ′ is the set of non-terminal states. In other words, for some string x,
one of the states s · x and t · x is terminal and the other non-terminal. The
states s and t are said to be indistinguishable if they are not distinguishable.
This means that for each x ∈ A∗ we have that

s · x ∈ T ⇔ t · x ∈ T.

Define the relation 'A on the set of states S by

s 'A t⇔ s and t are indistinguishable.

We call'A the indistinguishability relation, and it is an equivalence relation. It
can happen, of course, that each pair of states in an acceptor is distinguishable:
in other words, the relation 'A is equality. We say that such an acceptor is
reduced.

Theorem 6. Let A be a finite acceptor. Then there is an algorithm that con-
structs a reduced acceptor, Ar, such that L(Ar) = L(A).

Our two methods can be applied to an acceptor A in turn yielding an
acceptor Aar = (Aa)r that is both accessible and reduced. The reader may
wonder at this point whether there are other methods for removing states.
We shall see that there are not.

We now come to a fundamental definition. Let L be a recognisable lan-
guage. A finite deterministic acceptor A is said to be minimal (for L) if
L(A) = L, and if B is any finite acceptor such that L(B) = L, then the num-
ber of states of A is less than or equal to the number of states of B. Minimal
acceptors for a language L certainly exist. The problem is to find a way of
constructing them. Our search is narrowed down by the following observation
whose simple proof is left as an exercise: if A is minimal for L, then A is both
accessible and reduced.

Finite automata 13

In order to realise the main goal of this section, we need to have a precise
mathematical definition of when two acceptors are essentially the same: one
that we can check in a systematic way however large the automata involved.
The definition below provides the answer to this question.

Let A = (S,A, s0, δ, F) and B = (Q,A, q0, γ,G) be two acceptors with
the same input alphabet A. An isomorphism θ from A to B is a function
θ: S → Q satisfying the following four conditions:

(IM1) The function θ is bijective.
(IM2) θ(s0) = q0.
(IM3) s ∈ F ⇔ θ(s) ∈ G.
(IM4) θ(δ(s, a)) = γ(θ(s), a) for each s ∈ S and a ∈ A.

If there is an isomorphism from A to B we say that A is isomorphic
to B. Isomorphic acceptors may differ in their state labelling and may look
different when drawn as directed graphs, but by suitable relabelling, and by
moving states and bending transitions, they can be made to look identical.
Thus isomorphic automata are ‘essentially the same’ meaning that they differ
in only trivial ways.

Theorem 7. Let L be a recognisable language. Then L has a minimal accep-
tor, and any two minimal acceptors for L are isomorphic. A reduced accessible
acceptor recognising L is a minimal acceptor for L.

Remark It is worth reflecting on the significance of this theorem, particularly
since in the generalisations considered later in this chapter, a rather more
subtle notion of ‘minimal automaton’ has to be used. Theorem 7 tells us that
if by some means we can find an acceptor for a language, then by applying
a couple of algorithms, we can convert it into the smallest possible acceptor
for that language. This should be contrasted with the situation for arbitrary
problems where, if we find a solution, there are no general methods for making
it more efficient, and where the concept of a smallest solution does not even
make sense. The above theorem is therefore one of the benefits of working
with a restricted class of operations.

The approach I have adopted to describing a minimal acceptor can be
generalised in a straightforward fashion to the Moore and Mealy machines I
describe in Section 3.1. However, when I come to the sequential transducers of
Section 3.2, this naive approach breaks down. In this case, it is indeed possible
to have two sequential transducers that do the same job, are as small as possi-
ble, but which are not isomorphic. A specific example of this phenomenon can
be found in [27]. However, it transpires that we can still pick out a ‘canonical
machine’ that also has the smallest possible number of states. The construc-
tion of this canonical machine needs slightly more sophisticated mathematics;
I shall outline how this approach can be carried out for finite acceptors.

The finite acceptors I have defined are technically speaking the ‘complete
finite acceptors.’ An incomplete finite acceptor is defined in the same way as
a complete one except that we allow the transition function to be a partial

14 M. V. Lawson

function. Clearly, we can convert an incomplete acceptor into a complete one
by adjoining an extra state and defining appropriate transitions. However,
there is no need to do this: incomplete acceptors bear the same relationship
to complete ones as partial functions do to (globally defined) functions, and in
computer science it is the partial functions that are the natural functions to
consider. For the rest of this paragraph, ‘acceptor’ will mean one that could be
incomplete. One way of simplifying an acceptor is to remove the inaccessible
states. Another way of simplifying an acceptor is to remove those states s for
which there is no string x such that s · x is terminal. An acceptor with the
property that for each state s there is a string x such that s · x is terminal is
said to be coaccessible. Clearly, if we prune an acceptor of those states that
are not coaccessible, the resulting acceptor is coaccessible. The reader should
observe that if this procedure is carried out on a complete acceptor, then the
resulting acceptor could well be incomplete. This is why I did not define this
notion earlier. Acceptors that are both accessible and coaccessible are said
to be trim. It is possible to define what we mean by a ‘morphism’ between
acceptors; I shall not make a formal definition here, but I will explain how
they can be used. Let L be a recognisable language, and consider all the trim
acceptors recognising L. If A and B are two such acceptors, it can be proved
that there is at most one morphism from A to B. If there is a morphism from
A to B, and from B to A, then A and B are said to be ‘isomorphic’; this
has the same significance as my earlier definition of isomorphic. The key point
now is this:

there is a distinguished trim acceptor AL recognising L characterised
by the property that for each trim acceptor A recognising L there is a,
necessarily unique, morphism from A to AL.

It turns out that AL can be obtained from A by a slight generalisation of the
reduction process I described earlier. By definition, AL is called the minimal
acceptor for L. It is a consequence of the defining property of AL that AL has
the smallest number of states amongst all the trim acceptors recognising L.
The reader may feel that this description of the minimal acceptor merely com-
plicates my earlier, more straightforward, description. However, the important
point is this: the characterisation of the minimal acceptor in the terms I have
highlighted above generalises, whereas its characterisation in terms of having
the smallest possible number of states does not. A full mathematical justifi-
cation of the claims made in this paragraph can be found in Chapter III of [12].

A simple algorithm for minimising an acceptor and an algorithm for con-
structing a minimal acceptor from a regular expression are described in Chap-
ter 7 of [22]. For an introduction to implementing finite acceptors and their
associated algorithms, see [34].

Finite automata 15

3 Finite Transducers

In Section 2, I outlined the theory of finite acceptors. This theory tells us
about devices where the response to an input is simply a ‘yes’ or a ‘no’. In
this section, I describe devices that generalise acceptors but generate outputs
that provide more illuminating answers to questions. Section 3.1 describes
how to modify acceptors so that they generate output. It turns out that there
are two ways to do this: either to associate outputs with states, or to associate
outputs with transitions. The latter approach is the one adopted for general-
isations. Section 3.2 describes the most general way of generating output in a
sequential fashion, and Section 3.3 describes the most general model of ‘finite
state devices.’

3.1 Finite purely sequential transducers

I shall begin this section by explaining how finite acceptors can be adapted
to generate outputs.

A language L is defined to be a subset of some A∗, where A is any alphabet.
Subsets of sets can also be defined in terms of functions. To see how, let X
be a set, and let Y ⊆ X be any subset. Define a function

χY : X → 2 = {0, 1}

by

χY (x) =

{

1 if x ∈ Y
0 if x /∈ Y .

The function χY , which contains all the information about which elements
belong to the subset Y , is called the characteristic function of the subset Y .
More generally, any function

χ: X → 2

defines a subset of X: namely, the set of all x ∈ X such that χ(x) = 1. It
is not hard to see that subsets of X and characteristic functions on X are
equivalent ways of describing the same thing. It follows that languages over
A can be described by functions χ: A∗ → 2, and vice versa.

Suppose now that L is a language recognised by the acceptor A =
(Q,A, i, δ, T). We should like to regard A as calculating the characteristic
function χL of L. To do this, we need to make some minor alterations to A.
Rather than labelling a state as terminal, we shall instead add the label ‘1’ to
the state; thus if the state q is terminal, we shall relabel it as q/1. If a state q
is not terminal, we shall relabel it as q/0. Clearly with this labelling, we can
dispense with the set T since it can be recovered as those states q labelled ‘1’.
What we have done is define a function λ: Q → 2. Our ‘automaton’ is now
described by the following information: B = (Q,A,2, q0, δ, λ). To see how this
automaton computes the characteristic function, we need an auxilliary func-
tion ωB: A

∗ → (0 + 1)∗, which is defined as follows. Let x = x1 . . . xn be a

16 M. V. Lawson

string of length n over A, and let the states B passes through when processing
x be q0, q1, . . . , qn. Thus

q0
x1−→ q1

x2−→ . . .
xn−→ qn.

Define the string
ωB(x) = λ(q0)λ(q1) . . . λ(qn).

Thus ωB: A
∗ → (0 + 1)∗ is a function such that

ωB(ε) = λ(q0) and |ωB(x)| = |x|+ 1.

The characteristic function of the language L(A) is the function ρωB: A
∗ → 2,

where ρ is the function that outputs the rightmost letter of a non-empty string.
For the automaton B, I have defined two functions: ωB: A

∗ → (0 + 1)∗,
which I shall call the output response function of the automaton B, and
χB: A

∗ → 2, which I shall call the characteristic function of the automa-
ton B. I shall usually just write ω and χ when the automaton in question is
clear. We have noted already that χ = ρω. On the other hand,

ω(x1 . . . xn) = χ(ε)χ(x1)χ(x1x2) . . . χ(x1 . . . xn).

Thus knowledge of either one of ω and χ is enough to determine the other;
both are legitimate output functions, and which one we use will be decided
by the applications we have in mind. To make these ideas more concrete, here
is an example.

Example 8. Consider the finite acceptor A below

// GFED@ABC?>=<89:;q a,b // GFED@ABCr
a,b

oo

The language L(A) consists of all those strings in (a+ b)∗ of even length.
We now convert it into the automaton B described above

// ONMLHIJKq/1
a,b // ONMLHIJKr/0
a,b

oo

We can calculate the value of the output response function ω: (a + b)∗ →
(0 + 1)∗ on the string aba by observing that in processing this string we pass
through the four states: q, r, q, and r. Thus ω(aba) = 1010. By definition,
χ(aba) = 0.

There is nothing sacrosanct about the set 2 having two elements. We
could just as well replace it by any alphabet B, and so view an automaton as
computing functions from A∗ to B. This way of generating output from an
automaton leads to the following definition.

Finite automata 17

A finite Moore machine, A = (Q,A,B, q0, δ, λ), consists of the following
ingredients: Q is a finite set of states, A is the input alphabet, B is the output
alphabet, q0 is the initial state, δ:Q × A → Q is the transition function, and
λ: Q → B tells us the output associated with each state. As in our special
case where B = 2, we can define the output response function ωA: A∗ → B∗

and the characteristic function χA: A∗ → B; as before, knowing one of these
functions means we know the other. When drawing transition diagrams of
Moore machines the function λ is specified on the state q by labelling this
state q/λ(q). The same idea can be used if the Moore machine is specified by
a transition table.

Example 9. Here is an example of a finite Moore machine where the output
alphabet has more than two letters.

// ONMLHIJKq/0

b

¯¯
a // ONMLHIJKr/1 bqq

a

}}||
||
||
||
|

ONMLHIJKs/2

a

OO

b

LL

Here the input alphabet A = {a, b} and the output alphabet is B =
{0, 1, 2}. In the table below, I have calculated the values of ω(x) and χ(x) for
various input strings x.

x ω(x) χ(x)

ε 0 0
a 01 1
b 00 0
aa 012 2
ab 011 1
ba 001 1
bb 000 0
aaa 0120 0
aab 0122 2
aba 0112 2
abb 0111 1
baa 0012 2
bab 0011 1
bba 0001 1
bbb 0000 0

¥

18 M. V. Lawson

It is natural to ask under what circumstances a function f : A∗ → B
is the characteristic function of some finite Moore machine. One answer to
this question is provided by the theorem below, which can be viewed as an
application of Kleene’s theorem. For a proof see Theorem XI.6.1 of [12].

Theorem 8. Let f : A∗ → B be an arbitrary function. Then there is a finite
Moore machine A with input alphabet A and output alphabet B such that
f = χA, the characteristic function of A, if and only if for each b ∈ B the
language f−1(b) is regular.

Moore machines are not the only way in which output can be generated.
A Mealy machine A = (Q,A,B, q0, δ, λ) consists of the following ingredients:
Q is a finite set of states, A is the input alphabet, B is the output alphabet,
q0 is the initial state, δ:Q×A→ Q is the transition function, and λ: Q×A→
B associates an output symbol with each transition. The output response
function ωA: A∗ → B∗ of the Mealy machine A is defined as follows. Let
x = x1 . . . xn be a string of length n over A, and let the states A passes
through when processing x be q0, q1, . . . , qn. Thus

q0
x1−→ q1

x2−→ . . .
xn−→ qn.

Define
ωA(x) = λ(q0, x1)λ(q1, x2) . . . λ(qn−1, xn).

Thus ωA: A∗ → (0 + 1)∗ is a function such that

ωA(ε) = ε and |ωA(x)| = |x|.

Although Moore machines generate output when a state is entered, and
Mealy machines during a transition, the two formalisms have essentially the
same power. The simple proofs of the following two results can be found as
Theorems 2.6 and 2.7 of [16].

Theorem 9. Let A and B be finite alphabets.

(i) Let A be a finite Moore machine with input alphabet A and output alphabet
B. Then there is a finite Mealy machine B with the same input and output
alphabets and a symbol a ∈ A such that χA = aχB.

(ii) Let A be a finite Mealy machine with input alphabet A and output alphabet
B. Then there is a finite Moore machine B with the same input and output
alphabets and a symbol a ∈ A such that χB = aχA.

A partial function f : A∗ → B∗ is said to be prefix-preserving if for all
x, y ∈ A∗ such that f(xy) is defined, the string f(x) is a prefix of f(xy). From
Theorems 8 and 9, we may deduce the following characterisation of the output
response functions of finite Mealy machines.

Theorem 10. A function f : A∗ → B∗ is the output response function of a
finite Mealy machine if and only if the following three conditions hold:

Finite automata 19

(i) |f(x)| = |x| for each x ∈ A∗.
(ii) f is prefix-preserving.
(iii) The set f−1(X) is a regular subset of A∗ for each regular subset X ⊆ B∗.

Both finite Moore machines and finite Mealy machines can be minimised
in a way that directly generalises the minimisation of automata described in
Section 2.5. The details can be found in Chapter 7 of [9], for example.

Mealy machines provide the most convenient starting point for the further
development of the theory of finite automata, so for the remainder of this
section I shall concentrate solely on these. There are two ways in which the
definition of a finite Mealy machine can be generalised. The first is to allow
both δ, the transition function, and λ, the output associated with a transition,
to be partial functions. This leads to what are termed incomplete finite Mealy
machines. The second is to define λ: Q × A → B∗; in other words, we allow
an input symbol to give rise to an output string. If both these generalisations
are combined, we get the following definition.

A finite (left) purely sequential transducer A = (Q,A,B, q0, δ, λ) consists
of the following ingredients: Q is a finite set of states, A is the input alphabet,
B is the output alphabet, q0 is the initial state, δ:Q × A → Q is a partial
function, called the transition function, and λ: Q × A → B∗ is a partial
function that associates an output string with each transition. The output
response function ωA: A∗ → B∗ of the purely sequential transducer A is a
partial function defined as follows. Let x = x1 . . . xn be a string of length n
over A, and suppose that x labels a path in A that starts at the initial state;
thus

q0
x1−→ q1

x2−→ . . .
xn−→ qn.

Define the string

ωA(x) = λ(q0, x1)λ(q1, x2) . . . λ(qn−1, xn).

I have put the word ‘left’ in brackets; it refers to the fact that in the defini-
tion of δ and λ we read the input string from left to right. If instead we read
the input string from right to left, we would have what is known as a finite
right purely sequential transducer. I shall assume that a finite purely sequential
transducer is a left one unless otherwise stated. A partial function f : A∗ → B∗

is said to be (left) purely sequential if it is the output response function of some
finite (left) purely sequential transducer. Right purely sequential partial func-
tions are defined analogously. The notions of left and right purely sequential
functions are distinct, and there are partial functions that are neither.

The following theorem generalises Theorem 10 and was first proved in [15].
A proof can be found in [4] as Theorem IV.2.8.

Theorem 11. A partial function f : A∗ → B∗ is purely sequential if and only
if the following three conditions hold:

20 M. V. Lawson

(i) There is a natural number n such that if x is a string in A∗, and a ∈ A,
and f(xa) is defined, then

|f(xa)| − |f(x)| ≤ n.

(ii) f is prefix-preserving.
(iii) The set f−1(X) is a regular subset of A∗ for each regular subset X ⊆ B∗.

The theory of minimising finite acceptors can be extended to finite purely
sequential transducers. See Chapter XII, Section 4 of [12].

The final result of this section is proved as Proposition IV.2.5 of [4].

Theorem 12. Let f : A∗ → B∗ and g: B∗ → C∗ be left (resp. right) purely
sequential partial functions. Then their composition g ◦ f : A∗ → C∗ is a left
(resp. right) purely sequential partial function.

3.2 Finite sequential transducers

The theories of recognisable languages and purely sequential partial functions
outlined in Sections 2 and 3.1 can be regarded as the classical theory of finite
automata. For example, the Mealy and Moore machines discussed in Sec-
tion 3.1, particularly in their incomplete incarnations, form the theoretical
basis for the design of circuits. But although purely sequential functions are
useful, they have their limitations. For example, binary addition cannot quite
be performed by means of a finite purely sequential transducer (see Exam-
ple IV.2.4 and Exercise IV.2.1 of [4]). This led Schützenberger [33] to introduce
the ‘finite sequential transducers’ and the corresponding class of ‘sequential
partial functions.’ The definition of a finite sequential transducer looks like a
cross between finite acceptors and finite purely sequential transducers.

A finite sequential transducer, A = (Q,A,B, q0, δ, λ, τ, xi), consists of the
following ingredients: Q is a finite set of states, A is the input alphabet, B
is the output alphabet, q0 is the initial state, δ: Q × A → Q is a transition
partial function, λ: Q × A → B∗ is an output partial function, τ :T → B∗ is
the termination function, where T is a subset of Q called the set of terminal
states, and xi ∈ B

∗ is the initialisation value.
To see how this works, let x = x1 . . . xn be an input string from A∗. We

say that x is successful if it labels a path from q0 to a state in T . For those
strings x ∈ A∗ that are successful, we define an output string from B∗ as
follows: the initialisation value xi is concatenated with the output response
string determined by x and the function λ, just as in a finite purely sequential
transducer, and then concatenated with the string τ(q0 ·x). In other words, the
output is computed in the same way as in a finite purely sequential transducer
except that this is prefixed by a fixed string and suffixed by a final output
string determined by the last state. Partial functions from A∗ to B∗ that
can be computed by some finite sequential transducer are called sequential

Finite automata 21

partial functions.1 Finite sequential transducers can be represented by suitably
modified transition diagrams: the initial state is represented by an inward-
pointing arrow labelled by xi, and each terminal state t is marked by an
outward-pointing arrow labelled by τ(t).

Every purely sequential function is sequential, but there are sequential
functions that are not purely sequential. Just as with purely sequential trans-
ducers, finite sequential transducers can be minimised, although the procedure
is necessarily more complex; see [27] and [11] for details and the Remark at
the end of Section 2.5; in addition, the composition of sequential functions is
sequential. A good introduction to sequential partial functions and to some
of their applications is the work in [27].

3.3 Finite transducers

In this section, we arrive at our final class of automata, which contains all the
automata we have discussed so far as special cases.

A finite transducer, T = (Q,A,B, q0, E, F), consists of the following ingre-
dients: a finite set of states Q, an input alphabet A, an output alphabet B, an
initial state q0,

2 a set of final or terminal states F , and a set E of transitions
where

E ⊆ Q×A∗ ×B∗ ×Q.

A finite transducer can be represented by means of a transition diagram where
each transition has the form

// GFED@ABCp
x/y // GFED@ABCq

where (p, x, y, q) ∈ E. As usual, we indicate the initial state by an inward-
pointing arrow and the final states by double circles.

To describe what a finite transducer does, we need to introduce some
notation. Let

e = (q1, x1, y1, q
′
1) . . . (qn, xn, yn, q

′
n)

be any sequence of transitions. The state q1 will be called the beginning of e
and the state q′n will be called the end of e. The label of e is the pair of strings

(x1 . . . xn, y1 . . . yn).

If e is the empty string then its label is (ε, ε). We say that a sequence of
transitions e is allowable if it describes an actual path in T; this simply means
that for each consecutive pair

(qi, xi, yi, q
′
i)(qi+1, xi+1, yi+1, q

′
i+1)

1 Berstel [4] does not include in his definition the string xi (alternatively, he assumes
that xi = ε). However, the class of partial functions defined is the same.

2 Sometimes a set of initial states is allowed; this does not change the theory.

22 M. V. Lawson

in e we have that q′i = qi+1. An allowable sequence e is said to be successful if
it begins at the initial state and ends at a terminal state. Define the relation

R(T) = {(x, y) ∈ A∗ ×B∗: (x, y) is the label of a successful path in T}.

We call R(T) the relation computed by T.
Observe that in determining the y ∈ B∗ such that (x, y) ∈ R(T) for a given

x, the transducer T processes the string x in the manner of an ε-acceptor.
Thus we need to search for those paths in T starting at the initial state and
ending at a terminal state such that the sequence of labels (a1, b1), . . . , (an, bn)
encountered has the property that the concatenation a1 . . . an is equal to x
where some of the ai may well be ε.

Example 10. The following is a transition diagram of a transducer T

// GFED@ABCp

a/a,b/b

±±
ε/ε // GFED@ABC?>=<89:;q a/ε,b/ε

ll

In this case, the input and output alphabets are the same and equal {a, b}.
The relation R(T) ⊆ (a+ b)∗ × (a+ b)∗ computed by T is the set of all pairs
of strings (x, y) such that y is a prefix of x. This is a relation rather than a
function because a non-empty string has more than one prefix.

The relations in A∗ ×B∗ that can be computed by finite transducers can
be described in a way that generalises Kleene’s theorem. To see how, we need
to define what we mean by a ‘regular’ or ‘rational’ subset of A∗ × B∗. If
(x1, y1), (x2, y2) ∈ A

∗ ×B∗, then we define their product by

(x1, y1)(x2, y2) = (x1x2, y1y2).

This operation is the analogue of concatenation in A∗. Observe that (ε, ε) has
the property that (ε, ε)(x, y) = (x, y) = (x, y)(ε, ε). If L,M ⊆ A∗ × B∗, then
define LM to be the set of all products of elements in L followed by elements
in M . With these preliminaries out of the way, we can define a regular or
rational subset of A∗ × B∗ in a way analogous to the definition of a regular
subset given in Section 2.4. A regular subset of A∗×B∗ is also called a regular
or rational relation from A∗ to B∗.

The following result is another application of Kleene’s Theorem; see Theo-
rem III.6.1 of [4] for a proof and [29] for the correct mathematical perspective
on finite transducers.

Theorem 13. A relation R ⊆ A∗×B∗ can be computed by a finite transducer
with input alphabet A and output alphabet B if and only if R is a regular
relation from A∗ to B∗.

Finite automata 23

In the Introduction, I indicated that there were simple computations that
finite transducers could not do. A good example is that of reversing a string;
see Exercise III.3.2 of [4].

The theory of finite transducers is more complex than that of finite accep-
tors. In what follows, I just touch on some of the key points.

The following is proved as Theorem III.4.4 of [4].

Theorem 14. Let A,B,C be finite alphabets. Let R be a regular relation from
A∗ to B∗ and let R′ be a regular relation from B∗ to C∗. Then R′ ◦ R is a
regular relation from A∗ to C∗, where (a, c) ∈ R′ ◦ R iff there exists b ∈ B∗

such that (a, b) ∈ R′ and (b, c) ∈ R.

Let R be a regular relation from A∗ to B∗. Given a string x ∈ A∗, there
may be no strings y such that (x, y) ∈ R; there might be exactly one such
string y; or they might be many such strings y. If a relation R from A∗ to B∗

has the property that for each x ∈ A∗ there is at most one element y ∈ B∗

such that (x, y) ∈ R, then R can be regarded as a partial function from A∗ to
B∗. Such a function is called a regular or rational partial function.

It is important to remember that a regular relation that is not a regu-
lar partial function is not, in some sense, deficient; there are many situations
where it would be unrealistic to expect a partial function. For example, in nat-
ural language processing, regular relations that are not partial functions can
be used to model ambiguity of various kinds. However, regular partial func-
tions are easier to handle. For example, there is an algorithm that will deter-
mine whether two regular partial functions are equal or not (Corollary IV.1.3
[4]), whereas there is no such algorithm for arbitrary regular relations (Theo-
rem III.8.4(iii) [4]). Classes of regular relations sharing some of the advantages
of sequential partial functions are described in [1] and [23].

Theorem 15. There is an algorithm that will determine whether the relation
computed by a finite transducer is a partial function or not.

This was first proved by Schützenberger [32], and a more recent paper [3]
also discusses this question.

Both left and right purely sequential functions are examples of regular
partial functions, and there is an interesting relationship between arbitrary
regular partial functions and the left and right purely sequential ones. The
following is proved as Theorem IV.5.2 of [4].

Theorem 16. Let f : A∗ → B∗ be a partial function such that f(ε) = ε. Then
f is regular if and only if there is an alphabet C and a left purely sequential
partial function fL: A

∗ → C∗ and a right purely sequential partial function
fR: C

∗ → B∗ such that f = fR ◦ fL.

The idea behind the theorem is that to compute f(x) we can first process
x from left to right and then from right to left. Minimisation of machines that

24 M. V. Lawson

compute regular partial functions is more complex and less clear-cut than for
the sequential ones; see [28] for some work in this direction.

The sequential functions are also regular partial functions. The following
definition is needed to characterise them. Let x and y be two strings over the
same alphabet. We denote by x∧ y the longest common prefix of x and y. We
define the prefix distance between x and y by

d(x, y) = |x|+ |y| − 2|x ∧ y|.

In other words, if x = ux′ and y = uy′, where u = x ∧ y, then d(x, y) =
|x′|+ |y′|. A partial function f : A∗ → B∗ is said to have bounded variation if
for each natural number n there exists a natural number N such that, for all
strings x, y ∈ A∗,

if d(x, y) ≤ n then d(f(x), f(y)) ≤ N .

Theorem 17. Every sequential function is regular. In particular, the sequen-
tial functions are precisely the regular partial functions with bounded variation.

The proof of the second claim in the above theorem was first given by
Choffrut [10]. Both proofs can be found in [4] (respectively, Proposition IV.2.4
and Theorem IV.2.7).

Theorem 18. There is an algorithm that will determine whether a finite
transducer computes a sequential function.

This was first proved by Choffrut [10], and more recent papers that discuss
this question are [2] and [3].

Finite transducers were introduced in [13] and, as we have seen, form a
general framework containing the purely sequential and sequential transduc-
ers.

4 Final Remarks

In this section, I would like to touch on some of the practical reasons for
using finite transducers. But first, I need to deal with the obvious objection
to using them: that they cannot implement all algorithms, because they do
not constitute a universal programming language. However, it is the very lack
of ambition of finite transducers that leads to their virtues: we can say more
about them, and what we can say can be used to help us design programs
using them. The manipulation of programs written in universal programming
languages, on the other hand, is far more complex. In addition:

• Not all problems require for their solution the full weight of a universal
programming language — if we can solve them using finite transducers
then the benefits described below will follow.

Finite automata 25

• Even if the full solution of a problem does fall outside the scope of finite
transducers, the cases of the problem that are of practical interest may
well be described by finite transducers. Failing that, partial or approximate
solutions that can be described by finite transducers may be acceptable
for certain purposes.

• It is one of the goals of science to understand the nature of problems. If a
problem can be solved by a finite transducer then we have learnt something
non-trivial about the nature of that problem.

The benefits of finite transducers are particularly striking in the case of
finite acceptors:

• Finite acceptors provide a way to describe potentially infinite languages
in finite ways.

• Determining whether a string is accepted or rejected by a deterministic
acceptor is linear in the length of the string.

• Acceptors can be both determinised and minimised.

The important point to bear in mind is that languages are interesting because
they can be used to encode structures of many kinds. An example from math-
ematics may be instructive. A relational structure is a set equipped with a
finite collection of relations of different arities. For example, a set equipped
with a single binary relation is just a graph with at most one edge joining any
two vertices. We say that a relational structure is automatic if the elements
of the set can be encoded by means of strings from a regular language, and
if each of the n-ary relations of the structure can be encoded by means of an
acceptor. Encoding n-ary relations as languages requires a way of encoding
n-tuples of strings as single strings, but this is easy and the details are not
important; see [19] for the complete definition and [8] for a technical analy-
sis of automatic structures from a logical point of view. Minimisation means
that encoded structures can be compressed with no loss of information. Now
there are many ways of compressing data, but acceptors provide an additional
advantage: they come with a built-in search capability. The benefits of using
finite acceptors generalise readily to finite sequential transducers.

There is a final point that is worth noting. Theorem 14 tells us that com-
posing a sequence of finite transducers results in another finite transducer.
This can be turned around and used as a design method; rather than try-
ing to construct a finite transducer in one go, we can try to design it as the
composition of a sequence of simpler finite transducers.

The books [18, 20, 31] although dealing with natural language processing
contain chapters that may well provide inspiration for applications of finite
transducers to other domains.

Acknowledgements It is a pleasure to thank a number of people who helped
in the preparation of this article.

26 M. V. Lawson

Dr Karin Haenelt of the Fraunhofer Gesellschaft, Darmstadt, provided con-
siderable insight into the applications of finite transducers in natural language
processing which contributed in formulating Section 4.

Dr Jean-Eric Pin, director for research of CNRS, made a number of sug-
gestions including the choice of terminology and the need to clarify what is
meant by the notion of minimisation.

Dr Anne Heyworth of the University of Leicester made a number of useful
textual comments as well as providing the automata diagrams.

Prof John Fountain and Dr Victoria Gould of the University of York made
a number of helpful comments on the text.

My thoughts on the role of finite transducers in information processing
were concentrated by a report I wrote for DSTL in July 2003 (Contract num-
ber RD026-00403) in collaboration with Peter L. Grainger of DSTL.

Any errors remaining are the sole responsibility of the author.

References

1. C. Allauzen and M. Mohri, Finitely subsequential transducers, Interna-

tional J. Foundations Comp. Sci. 14 (2003), 983–994.
2. M.-P. Béal and O. Carton, Determinization of transducers over finite and infinite

words, Theoret. Comput. Sci. 289 (2002), 225–251.
3. M.-P. Béal, O. Carton, C. Prieur, and J. Sakarovitch, Squaring transducers,

Theoret. Comput. Sci. 292 (2003), 45–63.
4. J. Berstel, Transductions and Context-free Languages, B.G. Teubner, Stuttgart,

1979.
5. J. Berstel and J.-E. Pin, Local languages and the Berry-Sethi algorithm, Theo-

ret. Comput. Sci. 155 (1996), 439–446.
6. J. Berstel and D. Perrin, Algorithms on words, in Applied Combinatorics on

Words (editor M. Lothaire), in preparation, 2004.
7. A. Brüggemann-Klein, Regular expressions into finite automata, Lecture Notes

in Computer Science 583 (1992), 87–98.
8. A. Blumensath, Automatic structures, Diploma Thesis, Rheinisch-Westfälische

Technische Hochschule Aachen, Germany, 1999.
9. J. Carroll and D. Long, Theory of Finite Automata, Prentice-Hall, Englewood

Cliff, NJ, 1989.
10. Ch. Choffrut, Une caractérisation des fonctions séquentielles et des fonctions

sous-séquentielles en tant que relations rationelles, Theoret. Comput. Sci. 5

(1977), 325–337.
11. Ch. Choffrut, Minimizing subsequential transducers: a survey, Theoret. Com-

put. Sci. 292 (2003), 131–143.
12. S. Eilenberg, Automata, Languages, and Machines, Volume A, Academic Press,

New York, 1974.
13. C. C. Elgot and J. E. Mezei, On relations defined by generalized finite automata,

IBM J. Res. Develop. 9 (1965), 47–65.
14. J. E. F. Friedl, Mastering regular expressions, O’Reilly, Sebastopol, CA, 2002.
15. S. Ginsburg and G. F. Rose, A characterization of machine mappings,

Can. J. Math. 18 (1966), 381–388.

Finite automata 27

16. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, Reading, MA, 1979.
17. J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation, 2nd Edition, Addison-Wesley, Reading, MA, 2001.
18. D. Jurafsky and J. H. Martin, Speech and Language Processing, Prentice-Hall,

Englewood Cliff, NJ, 2000.
19. B. Khoussainov and A. Nerode, Automatic presentations of structures, Lecture

Notes in Computer Science 960 (1995), 367–392.
20. A. Kornai (editor), Extended Finite State Models of Language, Cambridge Uni-

versity Press, London, 1999.
21. E. Laporte, Symbolic natural language processing, in Applied Combinatorics on

Words (editor M. Lothaire), in preparation, 2004.
22. M. V. Lawson, Finite Automata, CRC Press, Boca Raton, FL, 2003.
23. M. Mohri, Finite-state transducers in language and speech processing, Com-

put. Linguistics 23 (1997), 269–311.
24. M. Pelletier and J. Sakarovitch, On the representation of finite deterministic

2-tape automata, Theoret. Comput. Sci. 225 (1999), 1–63.
25. D. Perrin, Finite automata, in Handbook of Theoretical Computer Science, Vol-

ume B (editor J. Van Leeuwen), Elsevier, Amsterdam, 1990, 1–57.
26. D. Perrin and J. E. Pin, Infinite Words, Elsevier, Amsterdam, 2004.
27. Ch. Reutenauer, Subsequential functions: characterizations, minimization, ex-

amples, Lecture Notes in Computer Science 464 (1990), 62–79.
28. Ch. Reutenauer and M.-P. Schützenberger, Minimization of rational word func-

tions, Siam. J. Comput. 20 (1991), 669–685.
29. J. Sakarovitch, Kleene’s theorem revisited, Lecture Notes in Computer Science

281 (1987), 39–50.
30. J. Sakarovitch, Eléments de Théorie des Automates, Vuibert, Paris, 2003.
31. E. Roche and Y. Schabes (editors), Finite-State Language Processing, The MIT

Press, 1997.
32. M.-P. Schützenberger, Sur les relations rationelles, in Automata theory and for-

mal languages (editor H. Brakhage), Lecture Notes in Computer Science 33

(1975), 209–213.
33. M.-P. Schützenberger, Sur une variante des fonctions séquentielles, Theo-

ret. Comput. Sci. 4 (1977), 47–57.
34. B. W. Watson, Implementing and using finite automata toolkits, in Extended

Finite State Models of Language (editor A. Kornai), Cambridge University Press,
London, 1999, 19–36.

35. Sheng Yu, Regular languages, in Handbook of Formal Languages, Volume 1 (ed-
itors G. Rozenberg and A. Salomaa), Springer-Verlag, Berlin, 1997, 41–110.

