
Lecture 5: Euclid’s algorithm

Introduction

The fundamental arithmetic operations are addition, subtraction,
multiplication and division. But there is a fifth operation which I
would argue is just as fundamental — and that is the operation of
taking greatest common divisors.

It might be thought that this operation is not fundamental because it
depends on the others for its definition. But this argument also applies
to multiplication, which is repeated addition, and division, which is
repeated subtraction.

A better argument for the importance of this operation is that it
is the key to unlocking many of the deeper properties of the natural
numbers. These properties are interesting in themselves and pivotal in
appreciating the applications of number theory to cryptography.

In the remainder of this lecture, I shall review the theory of the
greatest common divisor of two natural numbers. I shall assume that
you have met this before and so in the lecture itself I shall give a
summary account whereas in the written notes I shall provide extra
information for private study, if you need it.

I shall use the following notation. We denote by N the set of natural

numbers — I include zero — and by Z the set of integers.

Gcd’s

The following result is simple but at the same time very useful. It
can be proved using the following idea. For simplicity let’s assume that
both a and b are positive. If 0 < a < b then b · 0 < a < b · 1. If a ≥ b

then we can always find a q such that bq ≤ a < b(q + 1). We therefore
have the following.

Lemma 0.1 (Remainder Theorem). Let a, b ∈ Z where b > 0. Then

there are unique integers q and r such that

a = bq + r

where 0 ≤ r < b.

The number q is called the quotient and the number r is called the
remainder. For example, if we consider the pair of natural numbers 14
and 3 then

14 = 3 · 4 + 2

where 4 is the quotient and 2 is the remainder.
Let a and b be integers. We say that a divides b if there is a q such

that b = aq. In other words, there is no remainder. We also say that a
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is a divisor of b. We write a | b to mean the same thing as ‘a divides b’.1

Warning! a | b does not mean the same thing as a

b
. The latter is a

number, the former is a statement about two numbers.

Let a, b ∈ N. A number d which divides both a and b is called a com-

mon divisor. The largest number which divides both a and b is called
the greatest common divisor of a and b and is denoted by gcd(a, b). A
pair of natural numbers a and b is said to be coprime if gcd(a, b) = 1.

Special case We define gcd(0, 0) = 0 for completeness.

Example 0.2. Consider the numbers 12 and 16. The set of divisors
of 12 is the set {1, 2, 3, 4, 6, 12}. The set of divisors of 16 is the set
{1, 2, 4, 8, 16}. The set of common divisors is the intersection of these
two sets: namely, {1, 2, 4}. The largest common divisor of 12 and 16
is therefore 4. Thus gcd(12, 16) = 4.

A simple practical application of greatest common divisors is in sim-
plifying fractions. For example, the fraction 12

16
is equal to the fraction

3

4
because we can divide out the common factor of numerator and de-

nominator. The fraction which results cannot be simplified further and
is in its lowest terms. We now justify this claim. The following result
tells us that if we divide out the greatest common divisor of a pair of
numbers, then the pair of numbers that results is coprime.

Lemma 0.3. Let d = gcd(a, b). Then gcd(a

d
, b

d
) = 1.

Proof. Let a = a′d and b = b′d. Suppose that e | a

d
and e | b

d
. Then

a

d
= ex and b

d
= ey for some natural numbers x and y. Thus a = exd

and b = eyd. Observe that ed | a and ed | b. But d is the greatest
common divisor and so e = 1, as required. �

If the numbers a and b are large, then calculating their gcd in the
way suggested by the definition would be time-consuming and error-
prone. The definition of the gcd of two numbers gives no clue that
there might be a fast way of computing it. We want to find an efficient

way of calculating the greatest common divisor. The following lemma
is the basis of just such an efficient method.

1Observe that if a is nonzero, then a | a, if a | b and b | a then a = ±b, and

finally if a | b and b | c then a | c.
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Lemma 0.4. Let a, b ∈ N, where b 6= 0, and let a = bq + r where

0 ≤ r < b by the Remainder Theorem. Then

gcd(a, b) = gcd(b, r).

Proof. Let d be a common divisor of a and b. Since a = bq + r we have
that a − bq = r so that d is also a divisor of r. It follows that any
divisor of a and b is also a divisor of b and r.

Now let d be a common divisor of b and r. Since a = bq + r we have
that d divides a. Thus any divisor of b and r is a divisor of a and b.

It follows that the set of common divisors of a and b is the same as
the set of common divisors of b and r. Thus gcd(a, b) = gcd(b, r). �

The point is that b < a and r < b. So calculating gcd(b, r) will
be easier than calculating gcd(a, b) because the numbers involved are
smaller. Compare

︷ ︸︸ ︷

a = b q + r

with

a = bq + r
︸ ︷︷ ︸

.

The above result is the basis of an efficient algorithm for computing
greatest common divisors. It was described by Euclid around 300 BC
in his book the Elements in Propositions 1 and 2 of Book VII.

Algorithm 0.5 (Euclid’s algorithm).
Input: a, b ∈ N such that a ≥ b and b 6= 0.
Output: gcd(a, b).
Procedure: write a = bq+r where 0 ≤ r < b. Then gcd(a, b) = gcd(b, r).
If r 6= 0 then repeat this procedure with b and r and so on. The last
non-zero remainder is gcd(a, b)

Example 0.6. Let’s calculate gcd(19, 7) using Euclid’s algorithm. I
have highlighted the numbers that are involved at each stage.

19 = 7 · 2 + 5

7 = 5 · 1 + 2

5 = 2 · 2 + 1 ∗

2 = 1 · 2 + 0

By our result above we have that

gcd(19, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = gcd(1, 0).

The last non-zero remainder is 1 and so gcd(19, 7) = 1 and, in this
case, the numbers are coprime.
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Theorem 0.7 (Bézout). There are integers x and y such that

gcd(a, b) = xa + yb.

I shall prove this theorem using the following.

Algorithm 0.8 (Extended Euclidean algorithm).
Input: a, b ∈ N where a ≥ b and b 6= 0.
Output: numbers x, y ∈ Z such that gcd(a, b) = xa + yb.
Procedure: apply Euclid’s algorithm to a and b; working from bottom
to top rewrite each remainder in turn.

Example 0.9. This is a little involved so I have split the process up into
steps. I shall apply the extended Euclidean algorithm to the example I
calculated above. I have highlighted the non-zero remainders wherever
they occur, and I have discarded the last equality where the remainder
was zero. I have also marked the last non-zero remainder.

19 = 7 · 2 + 5

7 = 5 · 1 + 2

5 = 2 · 2 + 1 ∗

The first step is to rearrange each equation so that the non-zero re-
mainder is alone on the lefthand side.

5 = 19 − 7 · 2

2 = 7 − 5 · 1

1 = 5 − 2 · 2

Next we reverse the order of the list

1 = 5 − 2 · 2

2 = 7 − 5 · 1

5 = 19 − 7 · 2

We now start with the first equation. The lefthand side is the gcd we
are interested in. We treat all other remainders as algebraic quantities
and systematically substitute them in order. Thus we begin with the
first equation

1 = 5 − 2 · 2.

The next equation in our list is

2 = 7 − 5 · 1



5

so we replace 2 in our first equation by the expression on the right to
get

1 = 5 − (7 − 5 · 1) · 2.

We now rearrange this equation by collecting up like terms treating the
highlighted remainders as algebraic objects to get

1 = 3 · 5 − 2 · 7.

We can of course make a check at this point to ensure that our arith-
metic is correct. The next equation in our list is

5 = 19 − 7 · 2

so we replace 5 in our new equation by the expression on the right to
get

1 = 3 · (19 − 7 · 2) − 2 · 7.

Again we rearrange to get

1 = 3 · 19 − 8 · 7 .

The algorithm now terminates and we can write

gcd(19, 7) = 3 · 19 + (−8) · 7 ,

as required. We can also, of course, easily check the answer!

Here is an application of Bézout’s theorem.

Lemma 0.10. c | a and c | b iff c | gcd(a, b)

Proof. Let d = gcd(a, b). Suppose that c | a and c | b. We can find
integers x and y such that d = xa + yb. It follows immediately that
c | d. Conversely, suppose that c | d. By definition d | a and d | b so it
is immediate that c | a and c | b. �

Euclid’s Elements

Euclid’s algorithm turns out to be of fundamental importance in
modern cryptography. It is therefore perhaps surprising that it is 2,300
years old.

We know virtually nothing about Euclid himself although by the
close scrutiny of ancient texts scholars have deduced that he lived
around 300BC, that he was probably educated in Athens, and that
his working life was spent in Alexandria.

Despite the obscurity of his life, he is famous because of the book he
wrote known in English as the Elements from the Greek Stoicheia. This
book is the single most influential maths book ever written, arguably
the most influential science book ever written, and one of the most
influential books — period, as the Americans would say — ever written.
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I have some difficulty in whether to call it a ‘book’ or ‘books’. It is
usually described as consisting of thirteen books, numbered I-XIII, but
we would nowadays regard these as individual chapters each of which
being originally written on a single roll of papyrus.

Euclid’s magnum opus is commonly regarded as a geometry book
and it is certainly true that it contains the foundations of both plane
and solid geometry: Pythagoras’ theorem is the highlight of Book I,
Book IV constructs some regular polygons and Book XIII is all about
the Platonic solids. The geometric aspects of the Elements were the
foundations of building and surveying — the great European cathedrals
contain embodiments of some of Euclid’s theorems — but they also
stirred the imagination of subsequent mathematicians leading to the
development of non-Euclidean geometry in the nineteenth century. Our
modern understanding of the large-scale structure of the universe is
based on this mathematics.

But this book also contains some basic algebra, although it is dis-
guised to our eyes as geometry, in Book II, and, particularly relevant
to this course, it contains the basics of number theory in Books VII
and IX.

We shall meet some more of Euclid’s results over the course of the
next few lectures.

Blankinship’s algorithm

This is an alternative procedure to the extended Euclidean algorithm
that delivers exactly the same information but in a much easier form
and is the one I recommend. It uses matrix theory and was described
by W. A. Blankinship in ‘A new version of the Euclidean algorithm’
American Mathematical Monthly 70 (1963), 742–745. To explain how
it works, let’s go back to the basic step of Euclid’s algorithm. If a ≥ b

then we divide b into a and write

a = bq + r

where 0 ≤ r ≤ b. The key point is that gcd(a, b) = gcd(b, r). We shall
now think of (a, b) and (b, r) as column matrices

(
a

b

)

,

(
r

b

)

.

We want the 2 × 2 matrix that maps

(
a

b

)

to

(
r

b

)

.
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This is the matrix
(

1 −q

0 1

)

.

Thus
(

1 −q

0 1

)(
a

b

)

=

(
r

b

)

.

Finally, we can describe the process by the following matrix operation
(

1 0 a

0 1 b

)

→

(
1 −q r

0 1 b

)

by carrying out an elementary row operation. This procedure can be
iterated. It will terminate when one of the entries in the righthand
column is 0. The non-zero entry will then be the greatest common
divisor of a and b and the matrix on the lefthand side will tell you how
to get to (0, gcd(a, b)) from (a, b) and so will provide the information
that the Euclidean algorithm provides. All of this is best illustrated by
means of an example.

Let’s calculate x, y such that gcd(2520, 154) = xa + yb. We start
with the matrix

(
1 0 2520
0 1 154

)

If we divide 154 into 2520 it goes 16 times plus a remainder. Thus we
subtract 16 times the second row from the first to get

(
1 −16 56
0 1 154

)

We now repeat the process but, since the larger number, 154, is on the
bottom, we have to subtract some multiple of the first row from the
second. This time we subtract twice the first row from the second to
get

(
1 −16 56

−2 33 42

)

Now repeat this procedure to get
(

3 −49 14
−2 33 42

)

And again
(

3 −49 14
−11 180 0

)
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The process now terminates because we have a zero in the rightmost
column. The non-zero entry in the rightmost column is gcd(2520, 154).
We also know that

(
3 −49

−11 180

) (
2520
154

)

=

(
14
0

)

.

Now this matrix equation corresponds to two equations. The bottom
one can be verified. The top one says that

14 = 3 × 2520 − 49 × 154.

Gauss’s Lemma

We can use Bézout’s theorem to prove a result which is one of the
most useful in number theory. Suppose that c | ab. In general, we can-
not make any deductions about whether c divides a or b. For example,
15 | 6 × 35 but neither 6 nor 35 are divisible by 15. However, if we
know in addition that gcd(c, a) = 1, that is that c and a are coprime,
then we can deduce that c | b. This result is called Gauss’s Lemma.
Here is the proof. We are told that gcd(c, a) = 1. By Bézout’s theorem
there exist integers x and y such that

1 = cx + ay.

Multiply both sides of this equation by b to get

b = bcx + aby.

Now c | bcx and c | aby and so c | b, as required.

Linear Diophantine equations

This is an application of Bézout’s theorem which again I assume
you have met before. The details here are therefore for private study
if you haven’t. Named after the third century Greek mathematician
Diophantus, a Diophantine equation is an equation where we are inter-
ested only in the integer solutions. In this section, we are interested in
equations of the form

ax + by = c

where a, b, c are integers and where we require solutions (x, y) to be
integers as well. Think geometrically: ax + by = c is a line in the
plane and we want to know which lattice points are on this line where
a lattice point is a point (x, y) where both x and y are integers.

Theorem 0.11. A necessary and sufficient condition for the equation

ax + by = c
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to have an integer solution is that gcd(a, b) | c. If this condition is

satisfied, and (x0, y0) is any one solution and d = gcd(a, b) then all

solutions are obtained as follows
(

x

y

)

=

(
x0

y0

)

+ n

(
b

d

−a

d

)

where n ∈ Z is arbitrary.

Proof. I shall sketch out the proof. Suppose first that ax0 + by0 = c is
a solutions in integers. Then clearly gcd(a, b) | c.

We now prove tha converse. Suppose that gcd(a, b) | c. Put d =
gcd(a, b). Then a

d
and b

d
are coprime. Thus by Bézout’s theorem there

are integers x′ and y′ such that

1 =
a

d
x′ +

b

d
y′.

If we multiply both sides by c we get that

c =
a

d
cx′ +

b

d
cy′.

We may write this as

c = a(
c

d
x′) + b(

c

d
y′).

Put x0 = c

d
x′ and y0 = c

d
y′ both integers by our assumption. We have

proved that the equation has a solution and we have shown how to find
one.

It is an easy exercise to check that for any n ∈ Z, the following are
all solutions (

x0

y0

)

+ n

(
b

d

−a

d

)

It remains to show now that every solution has the above form.
Let ax + by = c be any solution. Subtract from this the solution
ax0 + by0 = c to get a(x − x0) + b(y − y0) = 0. Thus

a

d
(x − x0) = −

b

d
(y − y0).

But a

d
and b

d
are coprime. We now apply Gauss’s Lemma. We deduce

that b

d
divides x − x0. We may therefore write

x = x0 + n
b

d

for some n ∈ Z. But this implies that y − y0 = −na

d
. �


