
Lecture 6: Lamé’s theorem

Being an algorithm, we are entitled to ask what the complexity of
Euclid’s algorithm is, thus applying modern ideas to those of antiquity.
What is surprising is that to do this we shall apply some ideas from
the thirteenth century — the Fibonacci numbers. This application is
the first mathematical application of these numbers.

The Fibonacci numbers

In his book, Liber Abaci, Fibonacci posed the following puzzle:

A certain man put a pair of rabbits in a place surrounded
on all sides by a wall. How many pairs of rabbits can be
produced from that pair in a year if it is supposed that
every month each pair begets a new pair which from the
second month on becomes productive?

These are obviously mathematical rabbits rather than real ones so
let me spell out the rules more explicitly:

Rule 1: The problem begins with one pair of immature rabbits.1

Rule 2: Each immature pair of rabbits takes one month to ma-
ture.

Rule 3: Each mature pair of rabbits produces a new immature
pair at the end of a month.

Rule 4: The rabbits are immortal.

The important point is that we must solve the problem using the rules
we have been given. To do this, I am going to draw a picture. I will
represent an immature pair of rabbits by ◦ and a mature pair by •.
Rule 2 will be represented by
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Rule 1 tells us that we start with ◦. Applying the rules we obtain the
following picture for the first 4 months.

1Fibonacci himself seems to have assumed that the starting pair was already

mature but we shan’t.
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We start with 1 pair and at the end of the first month we still have 1
pair, at the end of the second month 2 pairs, at the end of the third
month 3 pairs, and at the end of the fourth month 5 pairs. I shall write
this F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, and so on.

There is an apparent pattern in the sequence of numbers 1, 1, 2, 3, 5, . . .
after the first two terms in the sequence each number is the sum of the
previous two. Let’s check that we are not just seeing things. Suppose
that the number of immature pairs of rabbits at a given time t is It

and the number of mature pairs is Mt. Then using our rules at time
t + 1 we have that Mt+1 = Mt + It and It+1 = Mt. Thus

Ft+1 = 2Mt + It.

Similarly

Ft+2 = 3Mt + 2It.

It is now easy to check that

Ft+2 = Ft+1 + Ft.

The sequence of numbers such that F1 = 1, F2 = 1 and satisfying
the rule Ft+2 = Ft+1 + Ft is called the Fibonacci sequence. We have
that

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21,

F9 = 34, F10 = 55, F11 = 89, F12 = 144, F13 = 233.
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Fibonacci numbers arise in the most diverse situations: famously, in
phyllotaxis2 which is the study of how leaves and petals are arranged
on plants.

Finding a formula: empirical results

We shall now look for a formula that will enable us to calculate Fn

directly. To begin, we’ll follow an idea due to the astronomer Jonannes
Kepler, and look at the behaviour of the fractions Fn+1

Fn

as n gets bigger
and bigger. I have tabulated some calculations below.

F2

F1

F3

F2

F4

F3

F5

F4

F6

F5

F7

F6

F8

F7

F15

F14

1 2 1 · 5 1 · 6 1 · 625 1 · 615 1 · 619 1 · 6180

These ratios seem to be going somewhere; the question is: where?
Notice that

Fn+1

Fn

=
Fn + Fn−1

Fn

= 1 +
Fn−1

Fn

= 1 +
1
Fn

Fn−1

.

But for very large n we suspect that Fn+1

Fn

and Fn

Fn−1
will be almost the

same. We therefore need to find the positive solution x to

x = 1 +
1

x
.

Thus x is a number that when you take its reciprocal3 and add 1 you get
x back again. This problem is really a quadratic equation in disguise

x2 = x + 1 or more usually x2 − x − 1 = 0.

I never remember formulae but I do remember methods. The method
I’ll use to solve this quadratic equation is called completing the square.
Look first at x2 − x; that is, we ignore for the moment the constant
term. This is equal to (x− 1

2
)2 − 1

4
. Substituting this into our original

equation we get

(x − 1

2
)2 − 1

4
= 1.

This equation can now be solved very simply to give us

x =
1 ±

√
5

2
.

That is

φ =
1 +

√
5

2
and φ̄ =

1 −
√

5

2
.

2This is made of two Greek words: phyllo meaning leaf and taxis meaning

arrangement.
3The reciprocal of a number x is 1

x
.
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The number φ is called the golden ratio, about which more nonsense
has been written than any other number. Observe that

φ2 = φ + 1 and φ̄2 = φ̄ + 1

and that

φ + φ̄ = 1 and φφ̄ = −1.

Let’s go back and see if this calculation makes sense. First we cal-
culate φ and we get

φ = 1 · 618033988 . . .

I compute
F20

F19

=
6765

4181
= 1 · 618033963

on my pocket calculator. This is pretty close.

Binet’s formula

Fn = 1√
5

(

φn − φ̄n
)

.

There are a number of different proofs of this formula. In the exer-
cises, I shall let you prove it by induction. Here I shall give a direct
proof using what are called generating functions, a very important tech-
nique in number theory. It’s convenient to define F0 = 0.

Put

F (z) =
∞

∑

i=0

Fiz
i.

Then observe that

F (z) = z + zF (z) + z2F (z).

It follows that

F (z) =
z

1 − z − z2
.

Thus

F (z) =
1√
5

(

1

1 − φz
− 1

1 − φ̄z

)

.

We deduce that

F (z) =
∞

∑

i=0

1√
5
(φi − φ̄i)zi,

and the proof of Binet’s formula follows by comparsion with the original
series.

The Fibonacci numbers and Euclid’s algorithm
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The Fibonacci numbers and Euclid’s algorithm do not on the face of
it look as if they have anything to do with each other. In fact, there is
a deep connection between them that we shall now uncover.

If a = b then gcd(a, b) = a = b. Also if a = 0 then gcd(0, b) = b.
Thus we may always assume that one number is strictly larger than
the other and that neither is zero. Thus a > b > 0.

For notation, we put r0 = a and r1 = b. We shall suppose that Eu-
clid’s algorithm terminates after exactly n divisions have been carried
out. Thus we are taking as our step one application of the Remainder
theorem.

We therefore accumulate the following calculations:

r0 = r1q1 + r2

r1 = r2q2 + r3

. . .

rn−2 = rn−1qn−1 + rn

rn−1 = rnqn + 0

where 0 < r2 < r1, 0 < r3 < r2, . . . , 0 < rn < rn−1 and rn+1 = 0.

• The smallest value that the last non-zero remainder rn can at-
tain is 1. Now F2 = 1 and so rn ≥ F2.

• Now rn−1 = rnqn. Since rn < rn−1 it follows that qn cannot be
equal to 1. Thus qn ≥ 2. It follows that rn−1 ≥ 2rn ≥ 2 = F3.

• These two arguments get us started. Now look at

rn−2 = rn−1qn−1 + rn.

Since qn−1 ≥ 1 we have that

rn−2 ≥ rn−1 + rn ≥ F3 + F2 = F4.

• This argument can clearly be repeated going up our list of cal-
culations. We deduce that b = r1 ≥ Fn+1.

Thus if n divisions are needed in the application of Euclid’s algorithm
the smaller of the two numbers whose gcd is being sought cannot be
smaller than the (n + 1)th Fibonacci number.

Our goal is to estimate the value of n in terms of the number b.

• We have a formula for the nth Fibonacci number but it is a bit
complicated. An induction argument shows that

Fn > φn−2

for n ≥ 3. See the Exercises for this.
• Thus b ≥ Fn+1 implies that b > φn−1.



6

• Take log10’s of both sides to get

log10(b) > (n − 1) log10(φ).

• log10(φ) > 1

5
.

• Thus log10(b) > 1

5
(n − 1).

• If k is the number of digits in the base 10 representation of the
number b, we have already shown that k = ⌊log10(b)⌋+1. Thus
k > log10(b).

• It follows that k > 1

5
(n − 1).

• Thus 5k ≥ n.

We have therefore proved the following.

Theorem 0.1 (Lamé). The number of divisions needed in the applica-

tion of Euclid’s algorithm is less than or equal to five times the number

of digits in the smaller of the two numbers whose gcd is being sought.

The point is that not only is the gcd theoretically important but it
can be calculated in polynomial time.


