Exercises 2

(1) Prove the following four results.

Result 1: If $a_n > 0$ then $a_n x^n + ... + a_1 x + a_0 = O(x^n)$.

Result 2: If $0 \le m < n$ then $x^m < x^n$ for all x > 1. In particular, $x^m = O(x^n)$.

Result 3: If a > 1 then $x^m = O(a^x)$ for all m.

Result 4: $\log_2(x) < x^{\alpha}$ for all $\alpha > 0$ for x large enough. In particular, $\log_2(x) = O(x^{\alpha})$.

- (2) Place the following functions in their correct order with respect to f = O(g) i.e. fastest before slowest. You should justify your answers. You will find Question 1 helpful.
 - \bullet n^2
 - $\log n$
 - $\log \log n$
 - $(\log n)^2$
 - $\sqrt{\log n}$
 - n!
 - *n*ⁿ
 - $n^2 \log n$
 - $n \log n \log \log n$
 - \bullet $n^{\frac{3}{2}}$
 - \bullet 2^n
 - \bullet 2^{n^2}
 - 3ⁿ
 - $\log(n^2 + 1)$
- (3) The goal of this question is to give you a sense of the difference between polynomial-time algorithms and exponential-time algorithms.
 - (a) A program has time complexity n^5 . On a current computer the largest problem which can be solved in 1 hour is n = N. What is the size of the largest problem which can be solved in 1 hour by a machine which is 10,000 times faster?
 - (b) A program has time complexity 2^n . On a current computer the largest problem which can be solved in 1 hour is n = M. What is the size of the largest problem which can be solved in 1 hour by a machine which is 10,000 times faster?
- (4) Estimate the time complexity of multiplying two $n \times n$ matrices together. Focus on the number of multiplications needed.
- (5) Estimate the time complexity of searching for someone's telephone number in a telephone book.

- (6) Use the algorithm from the lectures to determine whether the number 997 is prime or not.
- (7) Find a proper factorization of the number 9,699,691.