Exercises 4

- (1) Show that 160 is invertible modulo 841 and calculate its inverse.
- (2) Calculate 460^{179} modulo 2047.
- (3) Find the unique solution to the following equations modulo 2640: $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{11}$, $x \equiv 5 \pmod{16}$.
- (4) Calculate $\phi(60)$.
- (5) The number n = pq where p and q are distint primes. Prove that if n and $\phi(n)$ are known then p and q are the roots of a quadratic.
- (6) Determine which of the groups \mathbb{U}_{10} and \mathbb{U}_{12} is cyclic.
- (7) Determine the orders of the elements in \mathbb{U}_{16} .
- (8) Prove that the invertible elements of a monoid do indeed form a group.
- (9) Prove that if two monoids are isomorphic then their groups of units are isomorphic.
- (10) Prove that the relation $a \equiv b \pmod{n}$ really is an equivalence relation, and that the set of equivalence classes really does form a monoid under multiplication.