Exercises 7

- (1) Find the Hamming distance between 11000 and 11000 and between 1100101 and 0111011.
- (2) Below you will find listed four codes. Show that each code is linear, find generator and parity check matrices, and determine the parameters of each code (n, k, d).

Code 1

Code 2

Code 3

Code 4

- (3) Let $\mathbf{v} \in \mathbb{Z}_2^n$. Define $S(\mathbf{v}, r)$ to be the set of all vectors \mathbf{u} such that $d(\mathbf{u}, \mathbf{v}) \leq r$. This is called a *sphere of radius r centered on* \mathbf{v} .
 - (a) How many elements does the set $S(\mathbf{v}, r)$ contain?
 - (b) Let $C \subseteq \mathbb{Z}_2^n$ be a code containing M elements. Suppose that C can correct upto t errors. Prove the *Hamming bound*

$$M(1+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{t}) \le 2^n$$

- (c) Show that for the Hamming codes the above inequality is in fact an equality. Codes such as this are said to be *perfect*.
- (d) Is there a linear code with the parameters (21, 14, 5)?
- (e) A college wants to issue ID numbers in the form of binary strings n bits long to 100 students. Students are likely to make errors when typing these ID's and so it has been decided that a 2-error correcting code should be used. What is the smallest value of n for which this is possible?