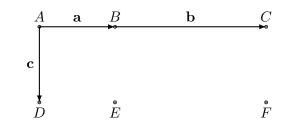
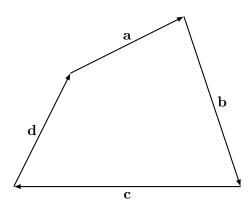
Exercises 10

(1) Consider the following diagram.

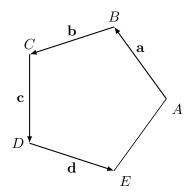


Now answer the following questions.

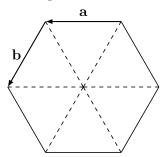
- (a) Write the vector \overrightarrow{BD} in terms of **a** and **c**.
- (b) Write the vector \overrightarrow{AE} in terms of **a** and **c**.
- (c) What is the vector \overrightarrow{DE} ?
- (d) What is the vector \overrightarrow{CF} ?
- (e) What is the vector \overrightarrow{AC} ?
- (f) What is the vector \overrightarrow{BF} ?
- (2) If **a**, **b**, **c** and **d** represent the consecutive sides of a quadrilateral, show that the quadrilateral is a parallelogram if and only if $\mathbf{a} + \mathbf{c} = \mathbf{0}$.



(3) In the regular pentagon \overrightarrow{ABCDE} , let $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{CD} = \mathbf{c}$ and $\overrightarrow{DE} = \mathbf{d}$. Express \overrightarrow{EA} , \overrightarrow{DA} , \overrightarrow{DB} , \overrightarrow{CA} , \overrightarrow{EC} , \overrightarrow{BE} in terms of \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} .



(4) Let **a** and **b** represent adjacent sides of a regular hexagon so that the initial point of **b** is the terminal point of **a**. Represent the remaining sides by means of vectors expressed in terms of **a** and **b**.



- (5) Prove that $\|\mathbf{a}\| \mathbf{b} + \|\mathbf{b}\| \mathbf{a}$ is orthogonal to $\|\mathbf{a}\| \mathbf{b} \|\mathbf{b}\| \mathbf{a}$ for all vectors **a** and **b**.
- (6) Let **a** and **b** be two non-zero vectors. Define

$$\mathbf{u} = \left(rac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}
ight) \mathbf{a}.$$

Show that $\mathbf{b} - \mathbf{u}$ is orthogonal to \mathbf{a} .

- (7) (a) Simplify $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} + \mathbf{v})$. (b) Simplify $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v})$.
- (8) Let **a** and **b** be two unit vectors, the angle between them being $\frac{\pi}{3}$. Show that $2\mathbf{b} - \mathbf{a}$ and **a** are orthogonal.
- (9) Prove that

$$\|\mathbf{u} - \mathbf{v}\|^2 + \|\mathbf{u} + \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2).$$

Deduce that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of all four sides.

- (10) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
 - (a) Calculate $\|\mathbf{a}\|$ and $\|\mathbf{b}\|$.
 - (b) Calculate $\mathbf{a} + \mathbf{b}$.
 - (c) Calculate $\mathbf{a} \mathbf{b}$.
 - (d) Calculate $\mathbf{a} \cdot \mathbf{b}$.
 - (e) Calculate the angle between **a** and **b** to the nearest degree.
 - (f) Calculate $\mathbf{a} \times \mathbf{b}$.
 - (g) Find a unit vector orthogonal to both **a** and **b**.
- (11) Calculate $\mathbf{i} \times (\mathbf{i} \times \mathbf{k})$ and $(\mathbf{i} \times \mathbf{i}) \times \mathbf{k}$. What do you deduce as a result of this?
- (12) Calculate $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$ and $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b})$.
- (13) The unit cube is determined by the three vectors **i**, **j** and **k**. Find the angle between the long diagonal of the unit cube and one of its edges.
- (14) Calculate $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ where $\mathbf{u} = 3\mathbf{i} 2\mathbf{j} 5\mathbf{k}$, $\mathbf{v} = \mathbf{i} + 4\mathbf{j} 4\mathbf{k}$ and $\mathbf{w} = 3\mathbf{j} + 2\mathbf{k}$.