Exercises 6

- (1) Solve the following problems in complex number arithmetic. In each case, the answer should be in the form a + bi where a and b are real.
 - (a) (2+3i) + (4+i).
 - (b) (2+3i)(4+i).

 - (b) $(2 + 6i)(4 + 6i)^2$. (c) $(8 + 6i)^2$. (d) $\frac{2+3i}{4+i}$. (e) $\frac{1}{i} + \frac{3}{1+i}$. (f) $\frac{3+4i}{3-4i} \frac{3-4i}{4+4i}$.
- (2) Find the square roots of each of the following complex numbers. (a) -i.
 - (b) $-1 + \sqrt{24}i$.

(c)
$$-13 - 84i$$

- (3) Solve the following quadratic equations.
 - (a) $x^{2} + x + 1 = 0.$ (b) $2x^{2} 3x + 2 = 0.$

 - (c) $x^2 (2+3i)x 1 + 3i = 0.$
- (4) Define the Gaussian integers, denoted by $\mathbb{Z}[i]$, to be all complex numbers of the form m + ni where m and n are integers. A perfect square in $\mathbb{Z}[i]$ is a Gaussian integer that can be written $(a+bi)^2$ for some Gaussian integer a + bi. Prove that if x + yi is a perfect square then x and y form part of a Pythagorean triple (see Section 1.1).
- (5) Express $\cos 5x$ and $\sin 5x$ in terms of $\cos x$ and $\sin x$.
- (6) Prove the following where x is real.¹
 - (a) $\sin x = \frac{1}{2i}(e^{ix} e^{-ix}).$

(b)
$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix}).$$

Hence show that $\cos^4 x = \frac{1}{8} [\cos 4x + 4 \cos 2x + 3].$

(7) Thought provoking. Determine all the values of i^i . What do you notice?

¹Compare (a) and (b) with $\sinh x = \frac{1}{2}(e^x - e^{-x})$ and $\cosh x = \frac{1}{2}(e^x + e^{-x})$.