Exercises 7

- (1) Find the quotient and remainder when the first polynomial is divided by the second.
 - (a) $2x^3 3x^2 + 1$ and x.
 - (b) $x^3 7x 1$ and x 2.
 - (c) $x^4 2x^2 1$ and $x^2 + 3x 1$.
- (2) Find all roots using the information given.
 - (a) 4 is a root of $3x^3 20x^2 + 36x 16$.
 - (b) -1, -2 are both roots of $x^4 + 2x^3 + x + 2$.
- (3) Find a cubic having roots 2, -3, 4.
- (4) Find a quartic having roots i, -i, 1+i and 1-i.
- (5) The cubic $x^3 + ax^2 + bx + c$ has roots x_1 , x_2 and x_3 . Show that a, b, c can each be written in terms of the roots.
- (6) $3 + i\sqrt{2}$ is a root of $x^4 + x^3 25x^2 + 41x + 66$. Find the remaining roots.
- (7) $1 i\sqrt{5}$ is a root of $x^4 2x^3 + 4x^2 + 4x 12$. Find the remaining roots.
- (8) Find all the roots of the following polynomials.
 - (a) $x^3 + x^2 + x + 1$.
 - (b) $x^3 x^2 3x + 6$.
 - (c) $x^4 x^3 + 5x^2 + x 6$.
- (9) Write each of the following polynomials as a product of real linear or real irreducible quadratic factors.
 - (a) $x^3 1$.
 - (b) $x^4 1$.
 - (c) $x^4 + 1$.
- (10) Find the 4th roots of unity as radical expressions.
- (11) Find the 6th roots of unity as radical expressions.
- (12) Find the 8th roots of unity as radical expressions.
- (13) Find radical expressions for the roots of $x^5 1$, and so show that

$$\cos 72^{\circ} = \frac{\sqrt{5} - 1}{4}$$
 and $\sin 72^{\circ} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$.

Hint: Consider the equation

$$x^4 + x^3 + x^2 + x + 1 = 0.$$

Divide through by x^2 to get

$$x^2 + \frac{1}{x^2} + x + \frac{1}{x} + 1 = 0.$$

Put $y = x + \frac{1}{x}$. Show that y satisfies the quadratic

$$y^2 + y - 1 = 0.$$

You can now find all four values of x.

- (14) In the following, express your answers in trigonometric form, and in radical form if possible.
 - (a) Find the cube roots of -8i.
 - (b) Find the fourth roots of 2.
 - (c) Find the sixth roots of 1 + i.