Exercises 2

- (1) Let $A = \{ \clubsuit, \diamondsuit, \heartsuit, \clubsuit \}, B = \{ \clubsuit, \diamondsuit, \clubsuit, \heartsuit \}$ and $C = \{ \clubsuit, \diamondsuit, \clubsuit, \heartsuit, \clubsuit, \diamondsuit, \heartsuit, \clubsuit \}$. Is it true or false that A = B and B = C? Explain.
- (2) Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Write down the following subsets of X.
 - (a) The subset A of even elements of X.
 - (b) The subset B of odd elements of X.
 - (c) $C = \{x \colon x \in X \text{ and } x \ge 6\}.$
 - (d) $D = \{x : x \in X \text{ and } x > 10\}.$
 - (e) $E = \{x \colon x \in X \text{ and } x \text{ is prime}\}.$
 - (f) $F = \{x : x \in X \text{ and } (x \le 4 \text{ or } x \ge 7)\}.$
- (3) (a) Find all subsets of $\{a, b\}$. How many are there? Write down also the number of subsets with, respectively, 0, 1 and 2 elements.
 - (b) Find all subsets of $\{a, b, c\}$. How many are there? Write down also the number of subsets with, respectively, 0, 1, 2 and 3 elements.
 - (c) Find all subsets of the set $\{a, b, c, d\}$. How many are there? Write down also the number of subsets with, respectively, 0, 1, 2, 3 and 4 elements.
 - (d) What patterns do you notice arising from these calculations?
- (4) Write down the elements of the set $\{A, B, C\} \times \{a, b\}$.
- (5) If the set A has m elements and the set B has n elements how many elements does the set $A \times B$ have?
- (6) If A has m elements, how many elements does the set A^n have?
- (7) Let $S = \{4, 7, 8, 10, 23\}, T = \{5, 7, 10, 14, 20, 25\}$ and $V = \{2, 5, 10, 20, 30, 36\}$. Determine the following.
 - (a) $S \cup (T \cap V)$.
 - (b) $S \setminus (T \cap V)$.
 - (c) $(S \cap T) \setminus V$.
- (8) Let $A = \{a, b, c, d, e, f\}$ and $B = \{g, h, k, d, e, f\}$. What are the elements of the set $A \setminus ((A \cup B) \setminus (A \cap B))$?
- (9) Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. What is the set

 $(A \times B) \setminus ((\{1\} \times B) \cup (A \times \{c\}))?$

- (10) Prove that two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$.
- (11) Given a set A define a new set $A^+ = A \cup \{A\}$. Calculate in succession the sets

$$\emptyset^+, \emptyset^{++}, \emptyset^{+++}$$

which are obtained by repeated application of the operation +. Write down the cardinalities of these sets.