Exercises 4

- (1) Prove the following using the axioms for \mathbb{R} .
 - (a) $(a+b)^2 = a^2 + 2ab + b^2$.
 - (b) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

 - (c) $a^2 b^2 = (a+b)(a-b)$. (d) $(a^2 + b^2)(c^2 + d^2) = (ac bd)^2 + (ad + bc)^2$.
- (2) Let $a, b, c \in \mathbb{R}$. If ab = ac is it true that b = c? Explain.
- (3) Calculate the discriminants of the following quadratics and so determine whether they have distinct roots, repeated roots, or no real roots.
 - (a) $x^2 + 6x + 5$.
 - (b) $x^2 4x + 4$.
 - (c) $x^2 2x + 5$.
- (4) Solve the following quadratic equations by completing the square.
 - (a) $x^2 + 10x + 16 = 0$.
 - (b) $x^2 + 4x + 2 = 0$.
 - (c) $2x^2 x 7 = 0$.
- (5) I am thinking of two numbers x and y. I tell you their sum aand their product b. What are x and y in terms of a and b?
- (6) Let $p(x) = x^2 + bx + c$ be a monic quadratic with roots x_1 and x_2 . Express the discriminant of p(x) in terms of x_1 and x_2 .