Properties of Boolean operations

This is a version of Section 3.2.

Key definitions

- Let X be a non-empty set. A binary operation * on X associates with every ordered pair (x, y) of elements of X a single element x * y of X.
- The binary operation * is said to be *commutative* if x*y = y*x for all $x, y \in X$.
- The binary operation * is said to be associative if (x*y)*z = x*(y*z) for all $x, y, z \in X$.
- An *identity* for * is an element e such that e*x=x=x*e for all $x \in X$.
- A zero for * is an element z such that z*x=z=x*z for all $x\in X$.
- The binary operation * is said to be *idempotent* if x*x = x for all $x \in X$.
- If is another binary operation on the set X we say that * distributes over if x*(y•z)=(x*y)•(x*z).

Properties

Let A, B and C be any sets.

- (1) $A \cap (B \cap C) = (A \cap B) \cap C$. Intersection is associative.
- (2) $A \cap B = B \cap A$. Intersection is commutative.
- (3) $A \cap \emptyset = \emptyset = \emptyset \cap A$. The empty set is the zero for intersection.
- (4) $A \cup (B \cup C) = (A \cup B) \cup C$. Union is associative.
- (5) $A \cup B = B \cup A$. Union is commutative.
- (6) $A \cup \emptyset = A = \emptyset \cup A$. The empty set is the identity for union.
- (7) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Intersection distributes over union.
- (8) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Union distributes over intersection.
- (9) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. De Morgan's law part one.
- (10) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$. De Morgan's law part two.
- (11) $A \cap A = A$. Intersection is idempotent.
- (12) $A \cup A = A$. Union is idempotent.