QUIZ 2: thought provoking questions

- (1) (a) Prove that the last digit in the square of a positive whole number must be one of 0,1,4,5,6 or 9. Is the converse true?
 - (b) Prove that a natural number is even if and only if its last digit is even.
 - (c) Prove that a natural number is exactly divisible by 9 if and only if the sum of its digits is divisible by 9.
- (2) Inscribe a regular polygon with 2^{m+1} sides inside the circle with radius 1. That is, the vertices of the polygon lie on the circumference of the circle. Show that

$$2^m \underbrace{\sqrt{2 - \sqrt{2 + \sqrt{2 + \dots}}}}_{m \text{ times}}$$

is an approximation to π .

- (3) In how many ways can a committee consisting of 3 Montagues and 2 Capulets be chosen from 7 Montagues and 5 Capulets?
- (4) Define $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. A binary operation \circ defined on \mathbb{N}^* is known to have the following properties.
 - (a) $a \circ b = b \circ a$.
 - (b) $a \circ a = a$.
 - (c) $a \circ (a+b) = a \circ b$.

What is this binary operation?

- (5) Let A be an $n \times n$ matrix such that AB = BA for all $n \times n$ matrices B. Show that $A = \lambda I$ for some scalar λ .
- (6) In this question, we show that the complex numbers could be defined via (real) matrices. Let C be the set of all real matrices that have the following shape

$$\left(\begin{array}{cc}a & -b\\b & a\end{array}\right)$$

- (a) Prove that \mathcal{C} is closed under sum, difference and product.
- (b) Prove that matrix multiplication is commutative in \mathcal{C} .
- (c) Prove that every non-zero matrix in C is invertible and that its inverse also belongs to C.
- (d) Deduce that the set \mathcal{C} with these operations is a field.
- (e) It remains to show how \mathcal{C} is related to \mathbb{C} . Define

$$\mathbf{1} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \text{ and } \mathbf{i} = \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right).$$

Show that we may write our matrices in the form

 $a\mathbf{1} + b\mathbf{i}$ where $\mathbf{i}^2 = -\mathbf{1}$.

(7) Calculate

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}).$

- (8) Prove that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$.
- (9) Let A be an $n \times n$ matrix. The *trace* of A, denoted by tr(A), is defined to be $\sum_{i=1}^{n} (A)_{ii}$. (a) Prove that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

 - (b) Let A be a fixed $n \times n$ matrix. Find all solutions to

$$AX - XA = I$$

where I is the $n \times n$ identity matrix.

(c) Let A be a square real matrix. Let $\varepsilon > 0$ be small so that ε^2 is really small. Prove that $\det(I + \epsilon A) \approx 1 + \varepsilon \operatorname{tr}(A)$ where \approx means approximately equal to.