
12-2. Soundness and Completeness of the Tree Method: lnfotnral Statement 177 

Soundness and 
Completeness for 
Sentence Logic Trees 

12-1. PRELIMINARIES 

This chapter will explain the soundness and completeness of sentence 
logic for the tree method. Section 12-2 gives an informal statement which 
you will be able to follow without having studied more than the first short 
section of chapter 11, on mathematical induction. Section 12-3 gives full 
details. 

Before getting started, I want to make a general point which will be 
useful in discussing both trees and derivations. I am going to make a 
statement which uses a new bit of notation. 'U' indicates set union. That 
is, ZUW is the set consisting of all the members of the set Z together with 
the members of the set W. Also, if X is a sentence, {X} is the set which has 
X as its only member. Now, to say that the X is valid, that is, that Z ~ X ,  
is to say that every interpretation which makes all the sentences in Z 
true also makes X true. Keep in mind that X is true in an interpretation 
iff -X is false in that interpretation. Consequently 

L1: z ~ X  iff ZU{-X} is inconsistent. 

(The 'L' in 'Ll' stands for 'lemma'. A lemma is a statement which may not 
be of great interest in itself but which we prove because it will be useful 
in proving our main results.) 

L1 shows that validity of an argument comes to the same thing as the 

inconsistency of a certain set of sentences, namely, the premises and ne- 
gation of the conclusion of the argument. You will soon see that Ll's 
equivalent formulation of validity provides a particularly convenient way 
to study soundness and completeness. 

EXERCISE 

12-1. Prove L1 

12-2. SOUNDNESS AND COMPLETENESS OF THE TREE 
METHOD: INFORMAL STATEMENT 

Soundness and completeness tell us that there is an exact correspondence 
between a semantic concept-validity-and a corresponding syntactic con- 
cept-proofs. Let's be explicit about what counts as a proof in the tree 
method: Given some premises and a conclusion, a tree method proof is a 
closed tree (a tree with all its branches closed) which has the premises and 
negation of the conclusion as its initial sentences. Closed trees are the 
syntactic objects which need to correspond to the semantic concept of va- 
lidity. So proving soundness and completeness for the tree method means 
proving that we have the right sort of correspondence between validity 
and closed trees. 

To become clear on what correspondence we need, let's go back to the 
way I introduced the tree method. I said that, given an argument, X, 
the argument is valid just in case it has no counterexamples, that is, no 
interpretations in which the premises, Z, are all true and the conclusion, 
X, is false. I then went on to develop truth trees as a method of looking 
for counterexamples, a way which is guaranteed to find a counterexample 
if there is one. If the whole tree closes, there are no counterexamples, 
and we know the argument is valid. But a closed tree is what counts as a 
proof. So if there is a proof, the argument is valid. If you look back at 
definition D3 in chapter 10, you will see that this is what we call sound- 
ness. 

On the other hand, if there is an open branch (and so no proof), there 
is a counterexample, and thus the argument is invalid. A little thinking 
indicates that the last statement is just completeness: "If no proof, then 
invalid" comes to the same as "If valid, then there is a proof," which is 
completeness, as defined by D4 in chapter 10. I have used the law of 
contraposition: X3Y is logically equivalent to -Y>-X. 

The first time through, this argument is bound to seem very slick. It is 
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also incomplete: I have yet to prove that the truth tree method is guar- 
anteed to find a counterexample if there is one. 

To sort all of this out more carefully, we need to examine the connec- 
tion between a counterexample and lemma L1. A counterexample to the 
argument Z'X is just an interpretation which shows the set of sentences, 
ZU{-X} to be consistent. (Remember that such an interpretation is called 
a model of the set of sentences.) Now, look at lemma L1, and you will 
start to see that all this talk about counterexamples is just another way of 
saying what lemma L1 says. 

EXERCISE 

12-2. Show that lemma L1 is equivalent to the statement that an 
argument is valid iff it has no counterexamples. 

Lemma L1 tells us that we can forget about validity and talk about con- 
sistency and inconsistency instead. Indeed, conceptually, the tree method 
is really a method for determining whether the initial sentences on a tree 
form a consistent set. It is a method which is guaranteed to find a model 
for a tree's initial sentences if there is one, thereby showing the set of 
sentences to be consistent. Conversely, if a set is inconsistent, it has no 
model, and a tree starting with the sentences in the set is bound to close. 

The real work we have to do is to show that the tree method is guar- 
anteed to find a model for a set of sentences if the set has a model. We'll 
worry later about connecting this up with validity-lemma L1 assures us 
that we will be able to do so. For now, we will connect the semantic con- 
cept of a model with the syntactic concept of an open branch. Remember 
that an open branch always represents an interpretation in which all sen- 
tences on the branch are true. Hence, if there is an open branch, there is 
an interpretation in which all the sentences on the branch, including the 
tree's initial sentences, are true. 

Here is how we proceed: We will show that a finite set of sentences 
is consistent if and only if we always get an open branch on a finished 
tree which starts from the sentences in the set. Equivalently, a set is incon- 
sistent if and only if we always get a closed tree if we start from the 
sentences in the set. This gives us the connection between a syntactic 
concept--open and closed trees-and a semantic concept+onsistency 
and inconsistency. Lemma L1 tells us we will be able to connect the latter 
with validity and invalidity. 

To keep track of how we will carry out this program, let's talk about it 
in terms of an example, say, the tree which results from using as initial 
sentences the sentences in the set {-(DvB), (A&B)v(C>D)}: 

We must first show that tree method is what I will call Downwardly Ade- 
quute. This means that the tree method applied to a consistent set of sen- 
tences always results in at least one open branch. Why is the tree method 
downwardly adequate? Remember that the rules are written so that when 
a rule is applied to a sentence, the rule instructs you to write, on separate 
branches, all the minimally sufficient ways of making the original sentence 
true. In effect, this means that, for any assignment of truth values to 
sentence letters which makes the original sentence true, all the sentences 
of at least one of the resulting stacksbf sentences will be true also for the 
same assignment of truth values. 

This fact is easiest to grasp by example. In applying the rule v to line 
2, we produce two branches, on line 5. Suppose that we have an assign- 
ment that makes line 2 true. This can only be because it makes at least 
one of the two disjuncts true. But then, on this assignment, at least one 
of the sentences on the two branches of line 5 will be true for the same 
assignment. 

Or consider application of the rule -V to line 1, and suppose that we 
have a truth value assignment which makes line 1 true. A negated dis- 
junction can be true only if both disjuncts are false. Consequently, an 
assignment which makes line 1 true will make lines 3 and 4 true. 

As I introduced the rules, I made sure that they are all, as in these two 
examples, what I will call Downwardly Correct. In outline, the downward 
correctness of the rules works to show that the tree method is downwardly 
adequate as follows: Suppose that the initial sentences on a tree are con- 
sistent, so that there is an interpretation, I, which assigns truth values to 
sentence letters making all the initial sentences true. N ~ W  apply a rule to 
one of the sentences. The downward correctness of the rules means that - -  - 

applying the rule will result in at least one branch on which all the new 
sentences are true in I. Of course, all the former sentences along this " 
branch were true in I. So at this stage we have at least one branch along 
which all sentences are true in I. Now we just do the same thing over 
again: Apply one of the rules to a sentence on this branch. We get at least 
one extension of the branch on which all sentences are true in I. 
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This process will eventually come to an end because each application of 
a rule produces shorter sentences. At the end we have at least one branch 
on which all the sentences are true in I. But this branch must be open. 
Since all the sentences along the branch are true in I, no sentence and its 
negation can both appear on the branch! In sum, if the original sentences 
are consistent, there will be an open branch. 

We are half done. We must still show that the tree method is Upwardly 
Adequate, that is, that if there is an open branch, then the set of initial 
sentences is consistent. So now let us suppose that we have a tree with an 
open branch. Since an open branch never has both a sentence and its 
negation, I can consistently assign the truth value t to all atomic sentences 
on the branch and the truth value f to all those atomic sentences whose 
negations occur on the branch. Call this assignment I. I will also make the 
longer sentences on the branch true. 

Look, for instance, at the open branch in the last example. Reading up 
from the bottom, this branch specifies the assignment 'C', 'B', and 'D' all 
false. Call this assignment I. If 'C' is false, that is, if '-C' is true in I, then 
'C>D' is true in I. In turn, 'C>D' being true in I will make line 2, 
'(A&B)v(C>D)' true in I. Likewise, lines 3 and 4, '-D' and '-B', true in I 
will make line 1, '-(DvB)', true in I. 

All the rules have the property just used, called Upward Correctness: If I 
makes true the sentence or sentences which a rule produced from a pre- 
vious sentence, I makes that previous sentence true also. Upward cor- 
rectness will apply to any open branch in any tree just as it did in the 
example. Choose an interpretation, I, as the one which makes all the 
atomic sentences on the open branch true and all the negated atomic sen- 
tences false. Apply upward correctness again and again. You can see that, 
finally, all the sentences along the open branch are true in I. So the open 
branch provides an interpretation, I, which makes all the sentences along 
the branch true, including the initial sentences. So if there is an open 
branch there is a model for the initial sentences, which is to say that the 
initial sentences form a consistent set, which is just what we mean by up- 
ward adequacy. 

Let's pull the threads together. The tree method is downwardly ade- 
quate. That is, if the initial sentences are consistent, then there is an open 
branch. By contraposition, if there is no open branch, that is, if there is a 
proof, then the initial sentences form an inconsistent set. Lemma 1 tells 
us that then the corresponding argument is valid. This is soundness. 

The tree method is also upwardly adequate. If there is an open branch, 
and so no proof, then the initial set of sentences is consistent. By contra- 
position, if the set of initial set of sentences is inconsistent, then there is a 
proof. Lemma 1 then connects the inconsistency with validity: If the cor- 
responding argument is valid, there is a proof. This is completeness. 

If you are starting to see how soundness and completeness work for 
trees, this section is doing its job. Doing the job fully requires further 
precision and details, presented in the next section. If in the next section- 
you start to feel lost in a forest of definitions (as I often do) reread this 
section, which contains all the concepts. Reviewing the intuitively pre- 
sented concepts will help you to see how the following formal details fit 
together. 

12-3. SOUNDNESS AND COMPLETENESS FOR SENTENCE 
LOGIC TREES: FORMAL DETAILS 

In this section I am going to make a very natural simplifying assumption: 
I will restrict discussion to U t e  sets of sentences Z. This restriction is 
natural because intuitively we think of arguments as only having finitely 
many premises anyway. Generalization to the case of infinite sets of sen- 
tences involves a complication which would only distract us from the main 
line of argument. Chapter 14 will take care of the generalization. 

For precision and efficiency of statement, we need the following defi- 
nitions: 

D8: A Minimal Sentence is a sentence which is either atomic or the negation 
of an atomic sentence. 

D9: A truth tree is Finished iff each branch is either closed or has all appli- 
cable rules applied to all nonminimal sentences. 

D10: 'Tr', 'Op', and 'Cl' are predicates of the metalanguage (abbreviations 
in English) which are defined as 

a) Tr(T,Z) iff T is a finished tree with all the sentences in Z its initial 
sentences. 

b) Op(T) iff the tree T is open, that is, if T has an open branch. 
c) Cl(T) iff -Op(T), that is, if T is closed, that is, if all of T's branches 

are closed. 

A proof of Z\X is just a closed tree which starts with sentences in Z and 
the sentence -X. Expressed with our abbreviations, this is 

D l  1: A tree, T, is a proofofx from Z iff Tr(T,ZU{-X}) and CI(T). 

Next, recall that ZkX just means that there exists a proof of X using 
premises in Z, where here a proof just means a tree as described in Dl 1. 
So applying Dl 1 to the definition of l-, we have 

L2: For finite sets, Z, Zl-X iff (3T)[Tr(T,ZU{-X}) & CI(T)]. 
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Of course, throughout this section 'k' means kt, that is, derivability accord- 
ing to the tree method. 

EXERCISE 

12-3. In chapter 10 I specified that ZkX means that there is a proof 
of X using any number of sentences in Z, but not necessarily all of 
them. (I did this to accommodate the eventual generalization to in- 
finite sets.) But Dl 1 defines T as being a proof of X from Z in terms 
of Tr(T,ZU{-XI), which specifies a tree, T, which has dl the sen- 
tences of ZU{-X} as its initial sentences. 

Prove L2, taking care to deal with this apparent difficulty. Use the 
fact that L2 is stated with the existential quantifier, '(3T)'. 

Now remember how we used L1 to show that we could exchange the 
study of validity and invalidity for the study of the consistency and incon- 
sistency of a certain set of sentences, namely, the premises together with 
negation of the conclusion. Our next step is to connect the consistency of 
this set with the syntactic notion of an open branch. We do this with the 
idea of upward and downward adequacy of the tree method. Downward 
adequacy says that if the set Z is consistent, that is, if there is a model for 
Z, then the tree starting from Z has an open branch. Using definitions 
D5 and D6, this becomes 

D12: The tree method is Downwardly Adequate iff for all finite, nonempty 
sets of sentences Z, if (3I)Mod(I,Z), then (VT)[Tr(T,Z) 3 Op(T)]. 

Upward adequacy is the converse: If there is an open branch, the initial 
set is consistent: 

D13: The tree method is Upwardly Adequute iff for all finite, nonempty sets 
of sentences Z, if (VT)[Tr(T,Z) 3 Op(T)], then (3I)Mod(I,Z)]. 

A detail in Dl2 and Dl3 requires comment. If we start a tree with the 
sentences in Z, we can come up with more than one tree because we can 
apply the rules in different orders. So when I give a formal definition of 
upward and downward adequacy, I must make a choice whether to define 
these in terms of dl open trees starting from Z or some open tree starting 
from Z. 

In terms of the proof of upward and downward adequacy, I could do 
either because, in essence, the proof will show that, for a given set of 
initial sentences, one tree is open iff all are. I choose to define upward 
and downward adequacy in terms of all open trees for the following rea- 
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son: When we connect adequacy with soundness and completeness, I will 
be taking a converse. This will introduce a negation sign, and when the 
negation sign gets pushed through the quantifier, 'all' turns into 'some'. 
At that point I will be talking about "some closed tree". That is just what 
we will need to get a smooth fit with derivability, which is defined in terms 
of "there is some proof', where a proof is just a closed tree. If I had 
defined upward and downward adequacy in terms of some instead of all 
open trees, it would be a mess to make the connection with soundness 
and completeness. 

1 2 4 .  Assume (as we will prove shortly) that if a tree has at least one 
open branch, then the initial sentences of the tree form a consistent 
set. Also assume downward adequacy. Prove that for all the finished 
trees starting from the same set of initial sentences, one is open iff 
all are. 

The next step is to show that upward adequacy is equivalent to sound- 
ness and downward adequacy is equivalent to completeness. The connec- 
tion will not sink in unless you do the work! But I will break the job down 
into several steps. 

First we define a version of soundness and completeness for the tree 
method: 

D3': The tree method is Sound iff for all finite, nonempty sets of sentences 
Z, if (3T)[Tr(T,Z) & CI(T), then (V1)-Mod(1,Z). 

D4': The tree method is Complete iff for all finite, nonempty sets of sentences 
Z, if (V1)-Mod(I,Z), then (3T)[Tr(T,Z) & Cl(T)]. 

Now it is not hard to prove that downward adequacy is soundness and 
upward adequacy is completeness in the form of four new lemmas: 

L3: The tree method is sound according to D3 iff it is sound according to 
D3'. 

L4: The tree method is complete according to D4 iff it is complete according 
to D4'. 

L5: The tree method is sound according to D3' iff it is downwardly ade- 
quate. 

L6: The tree method is complete according to D4' iff it is upwardly ade- 
quate. 
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1 EXERCISES 

12-5. Prove lemmas L3 and L4. You will need to use lemmas L1 
and L2. 
1 2 4 .  Prove lemmas L5 and L6. You will need to use contraposition 
and the laws of logical equivalence for negated quantifiers as laws 
applied to statements in the metalanguage. 

We have reduced the problem of proving soundness and completeness 
to that of proving that the tree method is downwardly and upwardly ad- 
equate, which the last section indicated we would do by appealing to the 
downward and upward correctness of the rules. Some further terminol- 
ogy will enable us to state rule correctness more clearly. 

When we apply a truth tree rule to a sentence, the rule instructs us to 
write one or two branches and on each branch one or two new sentences. 
For example, the = rule is 

We will call the sentence to which the rule is applied, X=Y in the exam- 
ple, the Input Sentence. The rule instructs you to write one or two lists of 
sentences (each "list" containing one or two sentences). We will call each 
such list an Output List. In the example, X,Y is one output list and -X,-Y 
is the second output list. The rule 

has only one output list, namely, X,Y. In summary 

D14: The sentence to which a tree method rule is applied is called the Input 
Sentence. The sentence or (sentences) along one branch which the rule di- 
rects you to write is (are) called an Outjmt List of Sententes. 

Here is what we must require of a correct truth tree rule. Suppose that 
I give you an interpretation (an assignment of truth values to sentence 

letters) which makes true the input sentence of a rule. Then that same 
interpretation must make true all the sentences on at least one (but per- 
haps not all) output lists. This is downward correctness. And suppose f 
give you an interpretation which makes all the sentences on one output 
list true. Then that same interpretation must make the input sentence 
true. This is upward correctness. 

D15: A tree method rule is Downwardly Correct iff any interpretation which 
makes the input sentence true also makes true all the sentences of at least 
one output list. 

D16: A tree method rule is Upwardly Correct iff any interpretation which 
makes all the sentences of one output list true also makes the input sentence 
true. 

EXERCISES 

12-7. Show that all of the truth tree rules for sentence logic are 
downwardly and upwardly correct. 
12-8. Consider the following two proposed truth tree rules: 

Determine which of these is downwardly correct and which is up- 
wardly correct. In each case show correctness or failure of correct- 
ness. 

We are now ready to prove 

T1: The truth tree method for sentence logic is downwardly adequate. 

(The 'T' stands for 'theorem'.) Suppose we are given a finite nonempty 
set of sentences, Z, and a tree, T, which has the sentences of Z as its initial 
sentences. Now suppose that there is a model, I, of the sentences in Z. 
What we will do is to look at successively larger initial segments of one 
branch of T and show that all these initial segments of the branch are 
open. 

Start with just the sentences in Z, that is, the initial sentences of T. This 
initial segment of a branch must so far be open. Why? Well, a branch 
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closes only if it contains both a sentence and the negation of that same 
sentence. But Z can't contain a sentence and its negation. This is because 
there is a model, I ,  of all the sentences in Z. That is, I makes all the 
sentences in Z true. But no sentence and its negation can both be true in 
the same interpretation! If I makes one sentence true, it makes its nega- 
tion false. So far we have an initial segment-let's call it the first seg- 
ment--of a branch, all the sentences of which are true in I, and which 
consequently is (so far) open. 

Next, in constructing the tree T, we apply a rule to one of the sentences 
in this first initial segment of our so far open branch. The input sentence 
for this rule is true in I. By the downward correctness of the rules, there 
will be at least one output list all the sentences of which are true in I. Pick 
one such output list (say, the left one if there are more than one). Look 
at the extension of the first segment of our branch extended by this out- 
put list. Call this extension the second initial segment. This second seg- 
ment now has all its sentences true in I. 

You can see the handwriting on the wall. We just do the same thing 
over and over again. At the nth stage we start with a branch all the sen- 
tences of which are true in I. The tree grows by application of some rule 
to some sentence on the nth initial segment. Downward correctness guar- 
antees that at least one output list will have all its sentences true in I also. 
We pick the leftmost such output list as the extension of the nth initial 
segment to the n + 1st initial segment. Then the n + 1st initial segment 
has all its sentences true in I ,  and we can start all over again. 

In a sentence logic tree, the sentences get shorter with each application 
of a rule, so this process must eventually end. When it does, we have a 
branch all the sentences of which are true in I. For exactly the same rea- 
son that the first initial segment must be open, this final branch must be 
open also: All its sentences are true in I, and no sentences and its nega- 
tion can both be true in the same interpretation. 

EXERCISE 

12-9. Formulate the foregoing argument sketch into an explicit use 
of mathematical induction to prove T1. There are many correct 
ways to apply induction. For example, begin by supposing that you 
are given a finite, nonempty set of sentences, Z, a model I of Z, and 
a finished tree, T, with initial sentences Z. Break the tree up into 
stages: The nth stage of the tree includes all lines written down in 
the first through nth application of a rule. Your inductive property 
will be: There is a branch through the nth stage of the tree all the 
sentences of which are true in I. Or you can similarly organize the 
inductive property around the number of lines to be checked: The 

first line to be checked, the first and second lines to be checked, and 
so on. Be sure to show explicitly how the results from the induction 
establish downward adequacy. 

I have suggested a formulation for this proof which I hope you 
will find to be relatively intuitive, but the logical form of the sug- 
gested proof is actually a bit convoluted. In this formulation you use 
both universal introduction and induction. That is, for an arbitrary, 
finite, nonempty set Z, model I of Z, and tree T with initial sentences 
in Z, you show how induction gives the desired result in that case. 
Then, since you have assumed nothing else about the Z, I, and T, 
what you have shown is true for all such Z, 1, and T. In addition, 
the induction is a finite induction. In a specific case it runs only from 
the first through the number of stages in the tree in question. 

Logicians prefer a more abstract but "pure" way of doing this kind 
of problem. In the inductive step you assume that in any tree with n 
stages (or n checked sentences) and interpretation I which makes all 
initial sentences true, there is a path all the sentences of which are 
true in I. You then use downward rule correctness to show that the 
same is true in any n + 1-stage tree. To do this you consider an 
arbitrary n + 1-stage tree and the n-stage tree (or trees) which result 
by deleting the first sentence to which a rule was applied in the orig- 
inal n + 1-stage tree. The downward rule correctness of the applied 
rule shows that if the inductive hypothesis holds of the subtree, it 
holds of the full n + 1-stage tree. 

But I will leave the details to you and your instructor! 

Let's turn to 

T2: The truth tree method for sentence logic is upwardly adequate. 

The proof works similarly to that for downwardly adequate, differing 
in that we use upward correctness of the rules and we look at successively 
longer and longer sentences on a branch instead of successively longer 
and longer initial segments of a branch. 

Suppose we are given a tree with an open branch. Take one open 
branch (say, the leftmost). Because this branch is open, and so has no 
sentence and its negation, we can consistently assign the truth value t to 
all the atomic sentence letters which appear on the branch and the truth 
value f to all atomic sentence letters the negation of which appear on the 
branch. This constitutes an interpretation I-an assignment of truth val- 
ues to sentence letters. We are going to show that all the sentences along 
this branch are true in I. 

By the Length of a sentence let us understand the total number of con- 
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nectives and sentence letters that appear in the sentence. So far, all mini- 
mal sentences along the branch are true in I-that is, all sentences of 
length 1 or 2. Now, consider any sentence along the branch (if there are 
any) of length 3. When a rule was applied to such a sentence, the rule 
produced an output list the sentences of which are each shorter than the 
input sentence; that is, each has fewer total connectives plus sentence let- 
ters. (You should check this.) But all such shorter sentences of the branch, 
that is, sentences of length 1 or 2, are already known to be true in I. 
Upward rule correctness then tells us that the sentence of length 3 is true 
in I. The same goes for any length 3 sentence on the branch. So now we 
know that all sentences of length 1, 2, and 3 on the branch are true in I. 

Again, you can see how this will go: We do the same thing over and 
over again. At stage n we know that all sentences of the branch of length 
n or less are true in I. Consider any sentence of length n + 1. The rule 
applied to it produced shorter sentences, already known to be true in I. 
By upward correctness of the applied rule, the sentence of length n + 1 
is then also true in I. The same goes for any sentence of length n + 1 on 
the branch, so that we now have shown that all of the branch's sentences 
of length n + 1 are true in I. Ultimately, the process shows that all the 
sentences in the branch are true in I. This includes the initial sentences, 
which are the initial sentences of the tree. 

EXERCISE 

12-1 0. Formulate the foregoing argument sketch into an explicit in- 
ductive argument. That is, given a tree and an open branch on the 
tree, show that there is an interpretation which can be shown by 
induction to make all sentences (and hence the initial sentences) 
along the branch true. 

Comments exactly parallel to those on your proof of T1, about 
the logical "purity" of the proof, also apply here. Just as for T1, one 
can also do the induction on the "size" of the tree. In the inductive 
step, you assume that all open trees with no more than n checked 
sentences have the desired characteristic-that open paths represent 
interpretations which make all the sentences on the path true-and 
you then use upward rule correctness to show that all trees with 
n + 1 checked sentences also have this characteristic. In outline, the 
idea is that any tree with n + 1 checked sentences has one or more 
subtrees with no more than n checked sentences-namely, the tree 
or trees obtained by deleting the first checked sentence in the origi- 
nal tree. You then apply the inductive hypothesis assumed to hold 
for the shorter trees. 

We have shown that, given some tree with an open branch, there is an 
interpretation, I, in which all of the tree's initial sentences are true. How 
does this show upward adequacy? Suppose we are given a finite, nom 
empty set of sentences, Z. Assume the antecedent in the statement of up- 
ward adequacy. That is, assume that any tree starting from Z is open. 
There is always at least one tree, T, starting from Z. Since all such trees 
are being assumed to be open, T is open, that is, T has an open branch. 
But in the previous paragraphs we have shown that this open branch 
provides an interpretation in which all initial sentences of T, that is, all 
the sentences in Z, are true. 

We have now completed the proof of T2. 
T1 and T2, with the help of lemmas L3, L4, L5, and L6, complete our 

proof of soundness and completeness for the tree method. As you can 
check in a moment, T1, L3, and L5 immediately give 

T3: The tree method for sentence logic is sound. 

T2, L4, and L6 immediately give 

T4: The tree method for sentence logic is complete. 

EXERCISES 

12-1 1. This exercise makes precise the work you did informally in 
exercises 10-14 and 10-15. Recall that when I refer to consistency 
and inconsistency without qualification, I always mean semantic con- 
sistency and inconsistency. We want a notion of Syntactic Consistency 
and Inconsistency, that is, a syntactic notion which will work as a test 
for semantic consistency and inconsistency. These are 

D17: Z is Syntactically Consistent iff (VT)[Tr(T,Z) 3 Op(T)]. 

D18: Z is Syntactically Inconsistent iff (3T)[Tr(T,Z)&Cl(T)]. 

(Throughout this problem, be sure to assume that Z is finite and 
nonempty.) 

a) Show that a set of sentences is syntactically consistent according to 
D l 7  iff it is not syntactically inconsistent according to D18. 

b) Show that Z is syntactically consistent iff ZYA&-A. 
c) Show that Z is syntactically inconsistent iff ZkA&-A. 
d) Show that Z is syntactically inconsistent iff for any X, ZkX. 
e) Reexpress lemma L2 and definitions D12, D13, D3', and D4' in 

terms of semantic and syntactic consistency. 



CHAPTER CONCEPTS 

To check your understanding of this chapter, make sure that you 
understand all of the following: 

Input Sentence of a Rule 
Output Sentence of a Rule 
Downward Rule Correctness 
Upward Rule Correctness 
Downward Adequacy 
Upward Adequacy 
Minimal Sentence 
Finished Tree 
Tr(TZ) 
oPo 
cw7 
Tree T is a proof of X from Z 
Syntactic Consistency 
Semantic Consistency 


