
Soundness 
and Completeness 
for Sentence 
Logic Derivations 

13-1. SOUNDNESS FOR DERIVATIONS: INFORMAL 
INTRODUCTION 

Let's review what soundness comes to. Suppose I hand you a correct der- 
ivation. You want to be assured that the corresponding argument is valid. 
In other words, you want to be sure that an interpretation which makes 
all the premises true also makes the final conclusion true. Soundness 
guarantees that this will always be so. With symbols, what we want to 
prove is 

T5 (Soundness for sentence logic derivations): For any set of sentences, Z, 
and any sentence, X, if ZkX, then Z ~ X .  

with 'k' meaning derivability in the system of sentence logic derivations. 
The recipe is simple, and you have already mastered the ingredients: 

We take the fact that the rules for derivations are truth preserving. That 
is, if a rule is applied to a sentence or sentences (input sentences) which 
are true in I, then the sentence or sentences which the rule licenses you 
to draw (output sentences) are likewise true in I. We can get soundness 
for derivations by applying mathematical induction to this truth preserv- 
ing character of the rules. 

Consider an arbitrary derivation and any interpretation, I, which makes 
all of the derivation's premises true. We get the derivation's first conclu- 
sion by applying a truth preserving rule to premises true in I. So this first 
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conclusion will be true in I. Now we have all the premises and the first 
conclusion true in I. Next we apply a truth preserving rule to sentences 
taken from the premises andor this first conclusion, all true in I. So the 
second conclusion will also be true in I. This continues, showing each 
conclusion down the derivation to be true in I, including the last. 

Mathematical induction makes this pattern of argument precise, telling 
us that if all the initial premises are true in I (as we assume because we 
are interested only in such I), then all the conclusions of the derivation 
will likewise be true in I. 

This sketch correctly gives you the idea of the soundness proof, but it 
does not yet deal with the complication arising from rules which appeal 
to subderivations. Let's call a rule the inputs to which are all sentences a 
Sentence Rub and a rule the inputs to which include a subderivation a 
Subderivation Rub. My foregoing sketch would be almost all we need to 
say if all rules were sentence rules. However, we still need to consider 
how subderivation rules figure in the argument. 

What does it mean to say that the subderivation rule, >I, is truth pre- 
serving? Suppose we are working in the outermost derivation, and have, 
as part of this derivation, a subderivation which starts with assumption X 
and concludes with Y. To say that >I is truth preserving is to say that if 
all the premises of the outer derivation are true in I, then X>Y is also 
true in I. Let's show that >I is truth preserving in this sense. 

We have two cases to consider. First, suppose that X is false in I. Then 
X>Y is true in I simply because the antecedent of X>Y is false in I. 
Second, suppose that X is true in I. But now we can argue as we did 
generally for outer derivations. We have an interpretation I in which X is 
true. All prior conclusions of the outer derivation have already been 
shown to be true in I, so that any sentence reiterated into the subderiva- 
tion will also be true in I. So by repeatedly applying the truth preserving 
character of the rules, we see that Y, the final conclusion of the subderi- 
vation, must be true in I also. Altogether, we have shown that, in this case, 
Y as well as X are true in I. But then X>Y is true in I, which is what we 
want to show. 

This is roughly the way things go, but I hope you haven't bought this 
little argument without some suspicion. It appeals to the truth preserving 
character of the rules as applied in the subderivation. But these rules 
include 3 1 ,  the truth preserving character of which we were in the middle 
of proving! So isn't the argument circular? 

The problem is that the subderivation might have a sub-subderivation 
to which >I will be applied within the subderivation. We can't run this 
argument for the subderivation until we have run it for the sub-subder- 
ivation. This suggests how we might deal with our problem. We hope we 
can descend to the deepest level of subderivation, run the argument with- 
out appealing to >I, and then work our way back out. 

Things are sufficiently entangled to make it hard to see for sure if this 
strategy is going to work. Here is where mathematical induction becomes 
indispensable. In chapter 11 all my applications of induction were trivial. 
You may have been wondering why we bother to raise induction to the 
status of a principle and make such a fuss about it. You will see in the 
next section that, applied with a little ingenuity, induction will work to 
straighten out this otherwise very obscure part of the soundness argu- 
ment. 

EXERCISES 

13-1. Using my discussion of the >I rule as a model, explain what 
is meant by the rule -I being truth preserving and argue informally 
that -I is truth preserving in the sense you explain. 
13-2. Explain why, in proving soundness, we only have to deal with 
the primitive rules. That is, show that if we have demonstrated that 
all derivations which use only primitive rules are sound, then any 
derivation which uses any derived rules will be sound also. 

13-2. SOUNDNESS FOR DERIVATIONS: F O R W L  DETAILS 

The straightforward but messy procedure in our present case is to do a 
double induction. One defines the complexity of a derivation as the num- 
ber of levels of subderivations which occur. The inductive property is that 
all derivations of complexity n are sound. One then assumes the inductive 
hypothesis, that all derivations with complexity less than n are sound, and 
proves that all derivations of complexity n are sound. In this last step one 
does another induction on the number of lines of the derivation. This 
carries out the informal thinking developed in the last section. It works, 
but it's a mess. A different approach takes a little work to set up but then 
proceeds very easily. Moreover, this second approach is particularly easy 
to extend to predicate logic. 

This approach turns on a somewhat different way of characterizing the 
truth preserving character of the rules, which I call Rule Soundness, and 
which I asked you to explore in exercises 10-4, 10-5, and 10-6. One 
might argue about the extent to which this characterization corresponds 
intuitively to the idea of the rules being truth preserving. I will discuss 
this a little, but ultimately it doesn't matter. It is easy to show that the 
rules are truth preserving in the sense in question. And using the truth 
preserving character thus expressed, proof of soundness is almost trivial. 
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Here is the relevant sense of rule soundness, illustrated for the case of 
&I. Suppose we are working within a derivation with premises Z. Suppose 
we have already derived X and Y. Then we have ZtX and ZtY. &I then 
licenses us to conclude X&Y. In other words, we can state the &I rule by 
saying 

&I Rule: If ZtX and ZtY, then ZtX&Y. 

There is a fine point here, about whether this really expresses the &I 
rule. The  worry is that 'ZtX' means there exists a derivation from Z to 
X, and 'ZtY' means that there exists a derivation from Z to Y. But the 
two derivations may well not be the same, and they could both differ 
extensively from some of the derivations in virtue of which 'ZtX&Y' is 
true. 

For sentence rules, this worry can be resolved. But it's really not impor- 
tant because, as with rule soundness, this way of stating the rules will 
provide us with all we need for the soundness proof. We proceed by in- 
troducing the sense in which the &I rule is sound. We do this by taking 
the statement of the rule and substituting 'k' for 't': 

L7 (Soundness o f  &I): If  Z ~ X  and Z ~ Y ,  then Z~X&Y.  

Why should we call this soundness of the &I rule? First, it has the same 
form as the rule &I. It is the semantic statement which exactly parallels 
the syntactic statement of the &I rule. And it tells us that if we start with 
any interpretation I which makes the premises Z true, and if we get as far 
as showing that X and Y are also true in I, then the conjunction X&Y is 
likewise true in I. 

In particular, you can show that L7 directly implies that &I is truth 
preserving in the original sense by looking at the special case in which 
Z = {X,Y}. {x,Y}~x and {X,Y}~Y are trivially true. So L7 says that 
{x,Y}~x&Y, which just says that any interpretation which makes X true 
and also makes Y true makes the conjunction X&Y true. 

We treat the other sentence rules in exactly the same way. This gives 

L8 (Soundness of  &E: If z~x&Y, then Z ~ X ;  and if Z ~ X & Y ,  then Z ~ Y .  

L9 (Soundness o f  vI): If ZkX, then Z ~ X V Y ;  and if Z ~ Y ,  then Z ~ X V Y .  

LIO (Soundness o f  vE): If Z ~ X V Y  and Zk-X, then Z ~ Y ;  and if Z ~ X V Y  and 
Zk - Y, then ZkX. 

L11 (Soundness o f  -E): 1f Zk--x, then Z ~ X .  

L12 (Soundness o f  3 E :  If Z ~ X ~ Y  and Z ~ X ,  then Z ~ Y .  

L13 (Soundness o f  =I): If Z ~ X ~ Y  and Z ~ Y ~ X ,  then Z ~ X E Y .  

L14 (Soundness o f  =E): If  Z ~ X E Y ,  then Z ~ X ~ Y ;  and if Z ~ X ~ Y ,  then 
zky3x. 

EXERCISES 

13-3. Prove lemmas L7 to L14. Note that in proving these you do 
not need to deal with t at all. For example, to prove L7, you need 
to show, using the antecedent, that Z~X&Y. So you assume you are 
given an I for which all sentences in Z are true. You then use the 
antecedent of L7 to show that, for this I, X&Y is also true. 
13-4. In this problem you will prove that for sentence rules, such as 
the rules described in L7 to L14, what I have called rule soundness 
and the statement that a rule is truth preserving really do come to 
the same thing. You do this by giving a general expression to the 
correspondence between a syntactic and a semantic statement of a 
rule: 

Suppose that X, Y, and W have forms such that 

( i )  (VI){[Mad(I,X) & Mod(I,Y)] 3 Mod(I,W)}. 

That is, for all I, if I makes X true and makes Y true, then I makes 
W true. Of course, this won't be the case for just any X, Y, and W. 
But in special cases, X, Y, and W have special forms which make (i) 
true. For example, this is so if X = U, Y = UIV, and W = V. In 
such cases, thinking of X and Y as input sentences of a rule and W 
as the output sentence, (i) just says that the rule that allows you to 
derive W from X and Y is truth preserving in our original sense. 

Now consider 

(ii) If Z ~ X  and ZkY, then Z ~ W .  

This is what I have been calling soundness of the rule stated by say- 
ing that if ZtX and ZtY, then ZtW. (ii) gives turnstyle expression to 
the statement that the rule which licenses concluding W from X and 
Y is truth preserving. 

Here is your task. Show that, for all X, Y, and W, (i) holds iff and 
(ii) holds. This shows that for sentence rules (rules which have only 
sentences as inputs) the two ways of saying that a rule is truth pre- 
serving are equivalent. Although for generality, I have expressed (i) 
and (ii) with two input sentences, your proof will work for rules with 
one input sentence. You can show this trivially by letting 
Y = Av-A for rules with one input sentence. 

I have not yet discussed the two subderivation rules, 31 and -I.  Sound- 
ness of these rules comes to 
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L15 (Soundness of >I): 1f ZU{X}~Y, then ZkX>Y. 

L16 (Soundness of -I): 1f ZU{X)~Y and ZU{X}~-Y, then Zk-X. 

In the case of >I and -I there is a more substantial question of 
whether, and in what sense, L15 and L16 also express the intuitive idea 
that these rules are truth preserving. The problem is that the turnstyle 
notion makes no direct connection with the idea of subderivations. Thus, 
if the syntactic counterpart of L15 is assumed (if ZU{X}kY, then ZkX>Y), 
it is not clear whether, or in what sense, one can take this to be a state- 
ment of the >I rule. (The converse is clear, as you will show in exercise 
13-6.) However, this issue need not sidetrack us, since L15 and L16 will 
apply directly in the inductive proof, however one resolves this issue. 

EXERCISES 

13-5. Prove L15 and L16. 
13-6. Prove that if the system of derivations includes the rule >I, 
then if ZU{X}kY, then ZkX>Y. Also prove that if the system 
of derivations includes the rule -I, then if both ZU{X}kY and 
ZU{X}k-Y, then Zk-X. 

We are now ready to prove T5, soundness for derivations. Here is an 
outline of the proof: W; will start with an arbitrary derivation and look 
at an arbitrary line, n. We will suppose that any interpretation which 
makes governing premises and assumptions true makes all prior lines 
true. Rule soundness will then apply to show that the sentence on line n 
must be true too. Strong induction will finally tell us that all lines are true 
when their governing premises and assumptions are true. The special 
case of the derivation's last line will constitute the conclusion we need for 
soundness. 

To help make this sketch precise, we will use the following notation: 

X,, is the sentence on line n of a derivation. Z, is the set of premises and 
assumptions which govern line n of a derivation. 

Now for the details. Suppose that for some Z and X, ZkX. We must 
show that Z ~ X .  The assumption ZkX means that there is some derivation 
with premises a subset of Z, final conclusion X, and some final line num- 
ber which we will call n*. The initial premises are the sentences, Z,., gov- 
erning the last line, n*; and the final conclusion, X, is the sentence on the 
last line, which we are calling X,.. We will show that z,.~x,.. This will 
establish ZkX because X,,. = X and Z,. is a subset of Z. (Remember ex- 
ercise 10-10.) 

We will establish Z,.kX,. by showing that z,kX, for all n, 1 5 n 5 n*. 
And in turn we will establish this by applying strong induction. We will 
use the 

Inductive property: &k&. 

and the 

Inductive hypothesis: ZikX, holds for ail i < n. 

So let's consider an arbitrary line, n, and assume the inductive hypoth- 
esis. What we have to do is to consider each of the ways in which line n 
might be justified and, applying the inductive hypothesis, show that the 
inductive property holds for line n. 

First, X,, might be a premise or an assumption. Notice, by the way, that 
this covers the special case of the first line (n = l) ,  since the first line of 
a derivation is either a premise or, in the case of a derivation with no 
premises, the assumption of a subderivation. But if X,, is a premise or 
assumption, X,, is a member of Z,. Therefore, z,~x,. 

Next we consider all the sentence rules. I'll do one for you and let you 
do the rest. Suppose that X,, arises by application of &I to two previous 
lines, Xi and Xj, so that X,, = X,&X,. By the inductive hypothesis 

4k~i and Zjk% (Inductive hypothesis) 

Since we are dealing with a sentence rule, Xi, Xj, and X,, all occur in the 
same derivation. Consequently, Zi = Zj = Z,. So 

Z,kxi and Z,kxj. 

This is just the antecedent of lemma 7, which thus applies to the last line 
to give z,kX,,. 

EXERCISE 

13-7. Apply lemmas L8 to L14 to carry out the inductive step for 
the remaining sentence rules. Your arguments will follow exactly the 
same pattern just illustrated for &I. 

Turning to the other rules, suppose that X, arises by reiteration from 
line i. That is just to say that X,, = Xi. We have as inductive hypothesis 
that zikxi.  If lines i and n are in the same derivation, Z, = Zi, so that 
z,kX,,, as we require. If we have reiterated Xi into a subderivation, Z, 
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differs from Zi by adding the assumption of the subderivation (or the 
assumptions of several subderivations if we have reiterated several levels 
down). That is, Zi is a subset of Z,. But as you have shown in exercise 10- 
10, if ~ ~ 1 %  and Zi is a subset of Z,, then z,kX,. 

Now suppose that X,, arises by >I.  Then on previous lines there is a 
subderivation, beginning with assumption Xi and concluding with Xj, so 
that X,, = Xi>Xj. By inductive hypothesis, 

zjkxj (Inductive hypothesis for line j) 

The trick here is to notice that the subderivation has one more assump- 
tion than Z,. Though not perfectly general, the following diagram will 
give you the idea: 

Set of Premises and Assumptions 

When we start the subderivation with the assumption of Xi, we add the 
assumption Xi to Z, to get Zi = Z,U{XJ as the total set of premises and 
assumptions on line i. When we get to line n and discharge the assump- 
tion of Xi, moving back out to the outer derivation, we revert to Z, as the 
set of governing premises and assumptions. 

Since Zj = Z,u{Xi), we can rewrite what the inductive hypothesis tells 
us about line j as 

But this is just the antecedent of lemma L15! Thus lemma L15 immedi- 
ately applies to give z,kXi>Xj, or z,~x,, since X, = Xi>Xj. 

13-8. Carry out the inductive step for the case in which X, arises by 
application of -I.  Your argument will appeal to lemma L16 and 
proceed analogously to the case for >I.  

We have covered all the ways in which X,, can arise on a derivation. 
Strong inducton tells us that z,kX,, for all n, including n*, the last line of 
the derivation. Since Z,* is a subset of Z and X,. = X, this establishes ZkX, 
as was to be shown. 

13-3. COMPLETENESS FOR DERIVATIONS: INFORMAL 
INTRODUCTION 

We still need to prove 

T6 (Completeness for sentence logic derivations): For any finite set of sen- 
tences, Z, and any sentence, X, if Z ~ X ,  then ZtX. 

where 'I-' is understood to mean kd, derivability in our natural deduction 
system. The proof in this section assumes that Z is finite. Chapter 14 will 
generalize to the case of infinite Z. - 

The proof of completeness for derivations is really an adaptation of the 
completeness proof for trees. If you have studied the tree completeness 
proof, you will find this and the next section relatively easy. The connec- 
tion between trees and derivations on this matter is no accident. Histori- 
cally, the tree method was invented in the course of developing the sort 
of completeness proof that I will present to you here. 

Begin by reading section 12-1, if you have not already done so, since 
we will need lemma L1 and the notation from that section. Also, do ex- 
ercises 12-1 and 12-2. (If you have not studied trees, you will need to 
refresh your memory on the idea of a counterexample; see section 4-1, 
volume I.) For quick reference, I restate L1: 

L1: Z ~ X  iff ZU{-X} is inconsistent. 

The basis of our proof will be to replace completeness with another 
connection between semantic and syntactic notions. Let us say that 

Dig: Z is Syntactically Inconsirtent iff ZtA&-A. 

Semantic inconsistency is just what I have been calling 'inconsistency', de- 
fined in chapter 10, D7, as (V1)-Mod(1,Z). L1 says that an argument is 
valid iff the premises together with the negation of the conclusion form a 
semantically inconsistent set. Analogously 

L17: ZU{-X}tA&-A iff ZtX. 
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says that -X together with the sentences in Z form a syntactically incon- 
sistent set iff there is a proof using sentences in Z as premises to the 
conclusion X. Together, L1 and L17 show that T6 is equivalent to 

T7: For any finite set of sentences, Z, if Z is semantically inconsistent, then 
Z is syntactically inconsistent; that is, if (W)-Mod(I,Z), then ZkA&-A. 

EXERCISES 

13-9. Prove L17. 
13-10. Using L1 and L17, prove that T6 is equivalent to T7. 

We have boiled our problem down to proving T7. We do this by devel- 
oping a specialized, mechanical kind of derivation called a Semantic Ta- 
bleau Derivation. Such a derivation provides a systematic way of deriving a 
contradiction if the original premises form an inconsistent set. 

If you haven't done trees, it is going to take you a little time and pa- 
tience to see how this method works. On a first reading you may find the 
next few paragraphs very hard to understand. Read them through even 
if you feel quite lost. The trick is to study the two examples. If you go 
back and forth several times between the examples and the text you will 
find that the ideas will gradually come into focus. The next section will 
add further details and precision. 

A semantic tableau derivation is a correct derivation, formed with a 
special recipe for applying derivation rules. Such a derivation is broken 
into segments, each called a Semantic Tableau, marked off with double 
horizontal lines. We will say that one tableau Generates the next tableau. 
Generating and generated tableaux bear a special relation. If all of a gen- 
erated tableau's sentences are true, then all the sentences of previous gen- 
erating tableaux are true also. In writing a derivation, each tableau we 
produce has shorter sentences than the earlier tableaux. Thus, as the der- 
ivation develops, it provides us with a sequence of tableaux, each a list of 
sentences such that the sentences in the later tableaux are shorter. The 
longer sentences in the earlier tableaux are guaranteed to be true if all of 
the shorter sentences in the later tableaux are true. 

A tableau derivation works to show that if a set, Z, of sentences is se- 
mantically inconsistent, then it is syntactically inconsistent. Such deriva- 
tions accomplish this aim by starting with the sentences in Z as its prem- 
ises. The derivation is then guaranteed to have 'A&-A' as its final 
conclusion if Z is (semantically) inconsistent. 

To see in outline how we get this guarantee, suppose that Z is an arbi- 
trary finite set of sentences, which may or may not be inconsistent. (From 
now on, by 'consistent' and 'inconsistent' I will always mean semantic con- 

sistency and inconsistency, unless I specifically say 'syntactic consistency' 
or 'syntactic inconsistency'.) A tableau derivation, starting from Z as prem- 
ises, will continue until it terminates in one of two ways. In the first way, 
some final tableau will have on it only atomic and/or negated atomic sen- 
tences, none of which is the negation of any other. You will see that such 
a list of sentences will describe an interpretation which will make true all 
the sentences in that and all previous tableaux. This will include the orig- 
inal premises, Z, showing this set of sentences to be consistent. Further- 
more, we will prove that if the initial sentences form a consistent set, the 
procedure must end in this manner. 

Consequently, if the original set of sentence forms an inconsistent set, 
the tableau procedure cannot end in the first way. It then ends in the 
second way. In this alternative, all subderivations end with a contradic- 
tion, 'A&-A'. As you will see, argument by cases will then apply repeat- 
edly to make 'A&-A' the final conclusion of the outermost derivation. 

Altogether we will have shown that if Z is (semantically) inconsistent, 
then Z!-A&-A, that is, Z is syntactically inconsistent. 

To see how all this works you need to study the next two examples. 
First, here is a tableau derivation which ends in the first way (in writing 
lines 3 and 4, I have omitted a step, '-B&-C', which gives 3 and 4 by 
&E): 

You can see that this is a correct derivation in all but two respects: I have 
abbreviated by omitting the step '-B&-C', which comes from 1 by DM 
and gives 3 and 4 by &E; and I have not discharged the assumptions of 
the subderivations to draw a final conclusion in the outer derivation. 

1 
2 

3 
4 
5 

Each tableau is numbered at the end of the double lines that mark its 

-(BvC) P 
BvD P 

1 
-B 1, DM, &E 
-C 1, DM, &E 

BvD 2, R 

6 

7 
8 
9 A&-A 6, 7, CD 

X 
3 

11 
12 -C 4, R 

4 
+ 
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end. A tableau may generate one new tableau (Sequential Generation): In 
this example tableau 1 generated tableau 2 by applying the rules DM, &E, 
and R. Or a tableau may generate two new tableaus (Branching Genera- 
tian): In the example tableau 2 generated tableaux 3 and 4 by starting two 
new subderivations, each using for its assumption one of the disjuncts, 'B' 
and 'D' of 'BvD' on line 5, and each reiterating the rest of tableau 2. 

Tableau 3 ends in a contradiction. It can't describe an interpretation. 
We mark it with an ' x '  and say that it is Closed. Tableau 4, however is 
Open. It does not contain any sentence and the negation of the same sen- 
tence; and all its sentences are Minimal, that is, either atomic or negated 
atomic sentences. Tableau 4 describes an interpretation by assigning f to 
all sentence letters which appear negated on the tableau and t to all the 
unnegated sentence letters. In other words, the interpretation is the truth 
value assignment which makes true all the sentences on this terminal tab- 
leau. 

Note how the interpretation described by tableau 4 makes true all the 
sentences on its generator, tableau 2. The truth of '-B' and '4' carries 
upward simply because they are reiterated, and the truth of 'D' guaran- 
tees the truth of 'BvD' by being a disjunct of the disjunction. You should 
check for yourself that the truth of the sentences in tableau 2 guarantees 
the truth of the sentences in tableau 1. 

Examine this example of a tableau derivation which ends in the second 
way: 

1 
2 

3 
4 
5 

6 

7 
8 
9 

10 

11 
12 
13 

14 

-(BvC) 
BvC 

1 - B 
-C 

BvC 

-C 
A&-A 

P 
P 

1, DM, &E 
1 ,  DM, &E 
2, R 

A 

3, R 
4, R 
6, 7, CD 

In this example, all terminal tableaux (3 and 4) close, that is, they have 
both a sentence and the negation of the same sentence, to which we apply 

the rule CD. We can then apply AC to get the final desired conclusion, 
'A&-A'. 

Again, here is the key point: I am going to fill in the details of the 
method to guarantee that a consistent initial set of sentences will produce 
a derivation like the first example and that an inconsistent set will give a 
result like the second example. More specifically, we will be able to prove 
that if there is an open terminal tableau, like tableau 4 in the first exam- 
ple, then that tableau describes an interpretation which makes true all its 
sentences and all the sentences on all prior tableaux. Thus, if there is an 
open terminal tableau, there is an interpretation which constitutes a 
model of all the initial sentences, showing them to form a consistent set. 
Conversely, if the original set is inconsistent, all terminal tableaux must 
close. We will than always be able to apply argument by cases, as in the 
second example, to yield 'A&-A' as a final conclusion. But the last two 
sentences just state T7, which is what we want to prove. 

To help you get the pattern of the argument, here is a grand summary 
which shows how all our lemmas and theorems connect with each other. 
We want to show T6, that if ZkX, then ZkX. We will assume ZkX, and to 
take advantage of lemmas L1 and L17, we then consider a semantic tab- 
leau derivation with the sentences in ZU{-X} as the initial tableau. Then 
we argue 

( 1 )  Z ~ X .  (Assumption) 
(2) If Z ~ X ,  then ZU{-X} is inconsistent. (By L1) 
(3) If some terminal tableau is open, then ZU{-X} is consistent. (By L18, 

to be proved in the next section) 
(4) If ZU{-X} is inconsistent, then all terminal tableaux close. (Contrapo- 

sitive of (3)) 
(5) If all terminal tableaux close, then ZU{-X}l-A&-A. (L20, to be proved 

in the next section) 
(6) If ZU{-X}l-A&-A, then Zl-X. (By L17) 

Now all we have to do is to discharge the assumption, (I), applying it to 
(2), (4), (5), and (6), giving 

T6: If Z ~ X ,  then Zl-X. 

In the next section we carry out this strategy more compactly by proving 
T7 (corresponding to (4) and (5) above), which you have already proved 
to be equivalent to T6. 

13-4. COMPLETENESS FOR DERIVATIONS: FORMAL DETAILS 

To keep attention focused on the main ideas, I'm going to restrict consid- 
eration to sentences in which '-' and 'v' are the only connectives used. 
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Once you understand this special case, extension to the other connectives 
will be very easy. As I mentioned, I will also carry out the proof only 
under the restriction that the initial set of sentences, Z, is finite. Chapter 
14 will generalize the result to infinite sets, Z. 

To help fix ideas, I'll start with a slightly more extended example. Skip 
over it now and refer back to it as an illustration as you read the details. 

The method of semantic tableau derivations constitutes a way of testing 
a finite initial set of sentences for consistency. Here are the rules for gen- 
erating such a derivation: 

R1 Znicial Tabbau: The method begins by listing the sentences in the set 
to be tested as the premises of the derivation. This initial list constitutes the 
initial tableau. 

Lines 1 and 2 in the example are an initial tableau. 
Each further tableau (the Generabd Tableau) is generated from some 

prior tableau (the Generating Tableau) by one of two methods: 

R2 Sequatial generation 

a) Each line of the generated tableau is a new line of the same derivation 
as the generating tableau. 

b) If a sentence of the form --X occurs on the generating tableau, enter 
X on the generated tableau. 

C) If a sentence of the form -(XVY) occurs on the generating tableau, 
enter -X and -Y as separate lines on the generated tableau. - 

d) Reiterate all remaining sentences of the generating tableau as new lines 
of the generated tableau. 

Tableaux 2 and 3 in the example illustrate sequentially generated 
tableaux. c) is illustrated in the example by lines 3, 4, 6, 7, 8, and 9. d) is 
illustrated by lines 5 and 10. Note that the rule I apply for c), which I 
have called '-v', is a new derived rule, constituted by simply applying DM 
followed by &E. 

R3 Branching generation: 

a) If a sentence of the form XVY occurs on the generating tableau, start 
two new subderivations, one with assumption X and the other with as- 
sumption Y. 

b) Reiterate all the remaining sentences of the generating tableau on each 
of the subderivations. 

c) Each of the (initial parts of) the subderivations started by steps a) and 
b) constitutes a generated tableau. 

Branching generation is illustrated in the example by tableaux 4, 5, 6, 7. 
Tableaux 4, 6, and 7 illustrate what happens when both a sentence and 

the negation of a sentence appear on a tableau. No interpretation will 
make all the sentences on such a tableau true. So such a tableau will never 
provide an interpretation which will prove the original sentences consis- 
tent. We record this fact by extending the tableau by applying CD to de- 
rive 'A&-A'. We say that such a tableau is Closed and mark it with an ' x '. 

We have applied CD to draw the explicit contradiction, 'A&-A', on 
closed tableaux because this contradiction will be helpful in deriving 
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'A&-A' in the outermost derivation. We will see that, if the original set 
of sentences is inconsistent, then all chains of tableaux will terminate with 
a closed tableau. Argument by cases will then allow us to export 'A&-A' 
from subderivations to outer derivations, step by step, until we finally get 
'A&-A' as the final conclusion of the outermost derivation. 

We make these ideas more precise with two further instructions: 

R4: If both a sentence and the negation of the same sentence appear on a 
tableau, apply CD to derive 'A&-A' as the last line of the tableau, and mark 
the end of the tableau with an ' X  ' to indicate that it is Closed. Do not gen- 
erate any new tableaux from a closed tableau. 

R5: If 'A&-A' appears on two subderivations, both generated by the same 
disjunction in the outer derivation, apply AC to write 'A&-A' as the final 
conclusion on the outer derivation. 

Look again at tableaux 4, 6, and 7, as illustrations of R4. Lines 30 and 31 
illustrate R5. 

We now need to prove that semantic tableau derivations do what they 
are supposed to do. Here is the intuitive idea. We start with a set of sen- 
tences. The tableau procedure constitutes a way of determining whether 
or not this set is consistent. This works by systematically looking for all 
possible ways of making the original sentences true. If the systematic 
search turns up a way of making all the original sentences true (a model), 
then we know that the original set is consistent. Indeed, we will prove that 
if the original set is consistent, the procedure will turn up such an inter- 
pretation. Thus we know that if the procedure fails to turn up such an 
interpretation, the original set must be inconsistent. This is signaled by all 
chains of tableaux terminating with a closed tableau. 

The procedure accomplishes these aims by resolving the original sen- 
tences into simpler and simpler sentences which enable us to see what 
must be true for the original set to be true. Each new tableau consists of 
a set of sentences, at least some of which are shorter than previous sen- 
tences. If all of the generated tableau's sentences are true, then all of the 
sentences on the generating tableau will be true. For a sequentially gen- 
erated tableau, the new sentences give us what has to be true for the 
sentences on the generating tableau to be true. When we have branching 
generation, each of the two new tableaux gives one of the only two pos- 
sible ways of making all sentences of the generating tableau true. In this 
way the procedure systematically investigates all ways in which one might 
try to make the original sentences true. Attempts that don't work end in 
closed tableaux. 

We need to work these ideas out in more detail. We will say that 

A tableau is a Tenninul Tableau if it has not generated any other tableau, and 
no rule for tableau generation applies to it. 

It can happen that no rule applies to a tableau for one of two reasons: 

The tableau can be closed. Or it might be open but have only minimal 
sentences (atomic or negated atomic sentences). We will discuss these two - 
cases separately. 

First we will prove 

L18: An open terminal tableau describes an interpretation in which all sen- 
tences of the initial tableau are true. 

An open terminal tableau has only minimal sentences, none of which is 
the negation of any other. The interpretation such a tableau specifies is 
the one which makes all its sentences true, that is, the assignment of t to 
all the tableau's unnegated atomic sentences and f to the atomic sentences 
which appear negated on the tableau. Let's call such an interpretation a 
Tminul  Interpretation, for short. 

Our strategy will be to do an induction. Suppose we are given an open 
terminal tableau, and so the terminal interpretation, I, which it specifies. 
The fact that all the sentences of the terminal tableau are true in 1 pro- 
vides our basis step. For the inductive step you will show that instructions 
for constructing a tableau derivation guarantee that if all the sentences of 
a generated tableau are true in an interpretation, then all the sentences 
of the generating tableau are true in the same interpretation. Thus all the 
sentences of the tableau which generated the terminal tableau will be true 
in I. In turn, that tableau's generator will have all its sentences true in I. 
And so on up. In short, induction shows that all the Ancestors of the open 
terminal tableau are true. 

To fill in the details of this sketch, you will first prove the inductive 
step: 

L19: If tableau Tp is generated from tableau TI and all sentences of T, are 
true in interpretation I, then all the sentences of TI are also true in I. 

EXERCISE 

13-11. Prove L19. 

Since the proof of L18 will be inductive, we need to specify more clearly 
the sequence of cases on which to do the induction: 

A terminal tableau's generator will be called the tableau's first Ancestor. In 
general, the i + 1st ancestor of a terminal tableau is the generator of the 
ith ancestor. 

We will do the induction starting from a 0th case, namely, the terminal 
tableau. The ith case will be the terminal tableau's ith ancestor. 



208 Soundness and Completeness for Sentence Logic Derivations 1 3 4 .  Completeness for Derivations: Formal Details 209 

We are now ready to prove L18. Suppose we are given a semantic tab- 
leau derivation, with an open terminal tableau. This tableau specifies an 
interpretation, I, in which all the terminal tableau's sentences are true. 
The inductive property is: The nth ancestor of the terminal tableau has 
all its sentences true in I. The terminal tableau provides the basis case. By 
L19, if the nth ancestor of the terminal tableau has all its sentences true 
in I, then so does the n + 1st ancestor. Then, by induction, all the ter- 
minal tableau's ancestors have all their sentences true in I, which includes 
the derivation's initial tableau, as required to prove L18. 

I have now said all I need about tableau derivations which terminate 
with one or more open tableaux. What happens if all the terminal tab- 
leaux are closed? In a word, rule R5 applies repeatedly until, finally, 
'A&-A' appears as the final conclusion of the outermost derivation: 

L20: If in a semantic tableau derivation all the terminal tableaux are closed, 
then 'A&-A' appears as the derivation's final conclusion. 

We will prove this with another induction. 
We need a sequence of cases on which to do the induction. The natural 

choice is the level or depth of subderivations, as measured by the number 
of nested scope lines. But we want to start with the deepest level of sub- 
derivation and work our way back out. So we need to reverse the order- 
ing: The first level of subderivations will be the deepest, the second will 
be the subderivations one level less deep, and so on. More exactly defined 

Given a tableau derivation, let k be the largest number of nested scope lines 
on the derivation (including the outermost scope line). The Inverted Level of 
each subderivation is k less the number of scope lines to the left of the 
subderivation. 

(I will henceforth omit the word 'inverted' in 'inverted level'.) 
The key to the proof will be the inductive step: 

L21: Let D be a semantic tableau derivation in which all terminal tableaus 
are closed. Then, if all of D's subderivations of level n have 'A&-A' as their 
final conclusion, so do all the subderivations of level n + 1. 

(I construe 'subderivation' broadly to include the outermost derivation, a 
sort of null case of a subderivation.) 

EXERCISE 

13-12. Prove L2 1. I 

We are now ready to prove L20. Let D be a semantic tableau derivation 
in which all terminal tableaux are closed. Our inductive property will be: 
All the subderivations of level n have 'A&-A' as their final conclusion. Ai 
level 1 all subderivations have no sub-subderivations. So all of the subder- 
ivations must end in terminal tableaux. By assumption, all of these are 
closed. So the inductive property holds for level 1. L21 gives the inductive 
step. By induction, the derivations at all levels conclude with 'A&-A', 
which includes the outermost derivation. 

We are at long last ready to prove T7. Suppose that Z, a finite set of 
sentences, is inconsistent. (Note that, if inconsistent, Z must have at least 
one sentence.) Make the sentences of this set the first tableau of a seman- 
tic tableau derivation. Suppose that the derivation has an open terminal 
tableau. Then, by L18, there is an interpretation which makes true all the 
sentences in Z. But this is impossible since Z is supposed to be inconsis- 
tent. Therefore all terminal tableaux are closed. Then L20 tells us that 
the derivation terminates with 'A&-A', so that ZkA&-A, as was to be 
shown. 

We have one more detail to complete. My proof of T7 is subject to the 
restriction that 'v' and '-' are the only connectives which appear in any of 
the sentences. We easily eliminate this restriction by exchanging sentences 
with other connectives for logical equivalents which use 'v' and '-' instead. 
At each stage we deal only with the main connective or, for negated sen- 
tences, with the negation sign and the main connective of the negated 
sentence. We rewrite rule R2 for sequential generation to read: 

R2 Sequential generation: 

Each line of the generated tableau is a new line of the same derivation 
as the generating tableau. 
If a sentence of the form --X occurs on the generating tableau, enter 
X on the generated tableau. 
If a sentence of the form -(XvY) occurs on the generating tableau, 
enter both -X and -Y as separate lines on the generated tableau. 
If a sentence of the form X&Y occurs on the generating tableau, enter 
both X and Y as separate lines on the generated tableau. 
If a sentence of the form X>Y occurs on the generating tableau, enter 
-XvY on the generated tableau. 
If a sentence of the form XEY occurs on the generating tableau, enter 
(X&Y)v(-X&-Y) on the generated tableau. 
If a sentence of the form -(X&Y) occurs on the generating tableau, 
enter -XV-Y on the generated tableau. 
If a sentence of the form -(X>Y) occurs on the generating tableau, 
enter both X and -Y as separate lines on the generated tableau. 
If a sentence of the form -(X=Y) occurs on the generating tableau, 
enter (X&-Y)v(-X&Y) on the generated tableau. 
Reiterate all remaining sentences of the generating tableau as new lines 
of the generated tableau. 
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We could provide a more complicated version of R2 which would pro- 
duce more efficient tableau derivations, but it's not worth the effort since 
true efficiency is only obtained with the truth tree method. In the next 
exercises you will show that the proof for the special case, using only the 
connectives 'v' and '-', extends to the general case covered by our refor- 
mulated R2. 

EXERCISES 

Generalizing the proof of T7 only requires checking three points. 
13-13. I argued that a tableau derivation always comes to an end 
because each new tableau shortens at least one sentence of the pre- 
vious tableau. This argument no longer works, at least not as just 
stated. Show that tableau derivations, with sentences using any sen- 
tence logic connectives and the new rule R2, always come to an end. 
13-14. Check that when all terminal tableaux close, a tableau deri- 
vation created using the new rule R2 is a correct derivation. You will 
have to prove two new derived rules, one for biconditionals and one 
for negated biconditionals. 
13-15. Reprove lemma L19 for our fully general tableau deriva- 
tions. 
13-16. Explain why the proof of completeness in this section shows 
that the primitive sentence logic derivation rules of chapter 5 (vol- 
ume I) are complete for sentence logic. 

I CHAPTER CONCEPTS 

As a check on your mastery of this material, review the following 
ideas to make sure you understand them clearly: 

a) Rule Soundness 
b) Sentence Rule 
C) Subderivation Rule 
d) Semantic and Syntactic Inconsistency 
e) Semantic Tableau Derivation (or Tableau Derivation) 
f) Tableau 
g) Initial Tableau 
h) Generating Tableau 
i) Generated Tableau 
j) Sequential Generation 
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k) Branching Generation 
I) Derived Rule -v 

m) Closed Tableau 
n) Minimal Sentence 
o) Terminal Tableau 
p) Terminal Interpretation 
q) Ancestors of a Tableau 


