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15-1. INTERPRETATIONS 

In chapter 2 I introduced the idea of an interpretation for a predicate 
logic sentence, that is, of a case which determines the truth value for 
closed sentences of predicate logic. In the definition of chapter 2 I re- 
quired that every object in the domain of an interpretation have at least 
one name, I included this requirement because with it I could give a sim- , 
ple and intuitive truth definition for existentially and universally quanti- 
fied sentences: I said that an existentially quantified sentence is true in 
any interpretation just in case at least one of its substitution instances is 
true in the interpretation. And I said that a universally quantified sen- 
tence is true in an interpretation just in case all of its substitution instances 
are true in the interpretation. 

Requiring every object to have a name may have been expedient for 
teaching fundamentals, but ultimately the requirement is unsatisfactory. 
Our system of logic should be able to deal with situations in which some 
objects go unnamed. So henceforth, by an interpretation for predicate 
logic, I will mean exactly what I meant in chapter 2, except that I will no 
longer require every object to have a name. I also will streamline the &f- 
inition somewhat by counting atomic sentence letters as Zero Place Predi- 
cates: 

D20: An In&rprehtion consists of a nonempty domain of objects, a list of 
names, and a list of (zero place, one place, two place, and in general many 

place) predicates. The list of names may be empty, but there must be at least 
one predicate. For each name, the interpretation specifies the object in the 
domain which is named by that name; and for each predicate the interpre- 
tation specdies its truth value if it is a zero place predicate (an atomic sen- 
tence letter), or the objects in the domain of which the predicate is true if it 
is a one place predicate, or the ordered lists of objects of which the predicate 
is true if it is a two, three, or many place predicate. If a predicate is not true 
of an object or ordered l i t  of objects, it is false of that object or list of 
objects. 

This definition allows us to consider situations in which there are ob- 
jects without names in the object language. But it makes hash of my def- 
inition of truth in an interpretation for quantified sentences. 

Before we begin, precision requires a comment on notation. Remember 
that '(3u)P(u)' is an expression of the metalanguage ranging over closed 
existentially quantified sentences, with u the existentially quantified vari- 
able. Ordinarily, P(u) will be an open sentence with u the only free vari- 
able, which is the way you should think of 'P(u)' while getting an intuitive 
grasp of the material. But strictly speaking, '(3u)P(u)' ranges over closed 
existentially quantified sentences, the s-substitution instances of which are 
P(s), the expressions formed by substituting s for all free occurrences of 
u in P(u)-if there are any free occurrences of u. This detail accommo- 
dates vacuously quantified sentences, such as '(3x)A1, as discussed in ex- 
ercise 3-3. 

To work toward new truth definitions for the quantifiers, let's think 
through what we want these definitions to do. Intuilively, (3u)P(u) should 
be true in an interpretation iff there is some object in the domain of the 
interpretation of which the open sentence, P(u), is true. When all objects 
in the domain had names, we could express this condition simply by say- 
ing that there is at least one name, s, in the interpretation for which the 
substitution instance, P(s), is true in the interpretation. But now the object 
or objects in virtue of which (3u)P(u) is true might have no names, so this 
strategy won't work. 

We can get around this problem by appealing to the fact that, even if 
the interpretation we are considering does not include a name for the 
object we need, there will always be another interpretation which does 
have a name for this object and which is otherwise exactly the same. 

In more detail, here is how the idea works. Suppose we have an inter- 
pretation, I, and a sentence (3u)P(u). Intuitively speaking, (3u)P(u) is 
true in I when I has an object, o, of which, intuitively speaking, the open 
sentence P(u) is true. We cannot say that (3u)P(u) is true of o by saying 
that o has a name, s, in I such that P(s) is true in I. We are considering 
an example in which o has no name in I. But we get the same effect in 
this way: We consider a second interpretation, If, which is exactly like I. 
except that in I' we assign o a name. We can always do this, because if I 
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is one interpretation, we get a second interpretation, 1',  which has exactly 
the same domain of objects, the same list of predicates, the same specifi- 
cation of what is true of what, but which differs from I only by assigning 
the name s to object o. 

We do also have to require that s not be a name which occurs in 
(3u)P(u). If, in going from I to I f ,  we move a name from one object to 
another, and this name occurs in (3u)P(u), we may disturb some other 
aspect of the truth conditions for (3u)P(u). 

Some new terminology will help in transforming this intuitive idea into 
a precise definition: 

D21: I, is an s-Variant of I iff I, assigns the name s to some object in its 
domain and I. differs from I at most by having name s or by assigning s to 
a different object. 

With the help of the idea of an s-variant, we can say 

D22: (3u)P(U) is true in interpretation I iff, for some name, s, which does 
not appear in (3u)P(u), there is an s-variant, I., of I in which P(s) is true. 

1 EXERCISE 

15-1. Give an example of a sentence and an interpretation which 
shows that D22 would not work as intended if it did not include the 
requirement that s not appear in (3u)P(u). 

The truth definition for the universal quantifier works in exactly the 
same way, except that we use 'all s-variants' instead of 'some s-variant'. 
We want to specify the conditions under which (Vu)P(u) is true in I .  In- 
tuitively, the condition is that P(u) be true of all objects in I. We capture 
this idea with the requirement that P(s) be true in all s-variants of I: 

D23: (Vu)P(u) is true in interpretation I iff, for some name, s, which does 
not appear in (Vu)P(u), P(s) is true in all s-variants of I. 

15-2. Give an example of a sentence and an interpretation which 
shows that D23 would not work as intended if it did not include the 
requirement that s not appear in (Vu)P(u). 

I - 

I hope you will find these new truth definitions for quantifiers to have 
some plausibility. But they are a bit abstract and take some getting used 

to. The only way to become comfortable with them is to work with them. 
We can get the needed practice, and at the same time lay the groundwork . 
for the next sections, by proving some basic lemmas. 

Consider a predicate logic sentence, X, and an interpretation, I. Now 
consider some name which does not occur in X. If we reassign the name 
to some new object in the interpretation, this should make no difference 
to the truth value of X in I .  X does not constrain the referent of the name 
in any way. The same thing goes for a predicate symbol not occurring in 
X. Intuitively, X and the unused predicate have no bearing on each other. 
So what the predicate is true of (or the truth value of a zero place predi- 
cate) should make no difference to the truth or falsity of X: 

L25: Let X be a sentence and I and I' two interpretations which have the 
same domain and which agree on all names and predicates which occur in 
X. Then X is true in I iff X is true in 1'. 

By 'agreeing on all names and predicates which occur in X', I mean that, 
for each name which appears in X, I and I' assign the same object to that 
name, and for each predicate appearing in X, I and I' specify the same 
truth value or the same collection of objects of which the predicate is true. 
For names and predicates not appearing in X, I and I' may make differ- 
ent assignments. 

We prove L25 by induction on the number of connectives in X. For the 
basis case, consider an atomic X and an I and I' with the same domain 
which agree on all names and predicates in X. An interpretation explicitly 
provides the truth values in terms of the extensions of the used predicates 
and names (e.g., 'Pa' is true in I just in case the thing named 'a' is in the 
extension which I assigns to 'P'). Since I and I' agree on the predicates 
and names in X, they assign X the same truth value. 

For the inductive case, assume, as inductive hypothesis, that L25 holds 
for all X with n or fewer connectives and all I and I' agreeing on X, as 
before. We must separately consider each of the connectives. For exam- 
ple, suppose that X has the form Y&W. Then X is true in I iff both Y 
and W are true in I .  But since Y and W both have fewer connectives than 
X, we can apply the inductive hypothesis to conclude that Y is true in I 
iff Y is true in 1';  and W is true in I iff W is true in 1'. Finally, Y and W 
are both true in I' iff X (=Y&W) is true in I t ,  which is what we need to 
show in this part of the argument. 

EXERCISE 

15-3. Carry out the inductive step of the proof of L25 for the other 
sentence logic connectives, modeling your proof on the example just 
given for '82. 
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Now assume that X has the form (3u)P(u). The ideas are not hard, but 
keeping everything straight can be confusing. So let's introduce some fur- 
ther terminology: For I' I will write I(X) to remind us that I(X) is an 
interpretation with the same domain as I and just like I so far as names 
and predicates in X are concerned, but differing arbitrarily from I on 
other predicates and names. In considering the case of X = (3u)P(u), 
instead of writing out I((3u)P(u)), I will write just I(P). Finally, I will write 
I(P,s) for an otherwise arbitrary interpretation agreeing with I on do- 
main, on P, and on s. 

So suppose that (3u)P(u), I ,  and I(P) have been given. Suppose that I 
makes (3u)P(u) true. Definition D22 then tells us that there is a name, s, 
not appearing in (3u)P(u), and an s-variant of I, I,, where P(s) is true in 
I,, Now we change I,. We keep 1,'s assignment of s and of all the names 
and predicates in (3u)P(u), and we change everything else to look just like 
I(P). The  resulting interpretation, I(P,s), is an s-variant of I(P). Further- 
more, the inductive hypothesis applies to tell us that, since P(s) is true in 
I,, P(s) is true in I(P,s). D22 applies to these facts to yield the conclusion 
that (3u)P(u) is true in I(P). 

I have shown that if (3u)P(u) is true in I, it is true in I(P). But exactly 
the same argument works in the reverse-direction-if I(P) agrees with I 
on all vocabulary in (3u)P(u), then I agrees with I(P) on this vocabulary. 
So we may conclude that (3u)P(u) is true in I iff it is true in I(P), as was 
to be shown. (I did not use an iff in the chain of inferences in the pre- 
vious paragraph because doing so makes it harder to keep clear about the 
existential ~uantifiers, 'there is an s' and 'there is an I,'. I will avoid cer- 
tain 'iffs' in the proof of the next lemma for the same reason.) 

EXERCISE 

15-4. Carry out the inductive step of the proof of L25 for the uni- 
versal quantifier. 

Let's move on to another very intuitive fact, but one which is a bit tricky 
to prove. Consider a sentence of the form R(s,t), a perhaps very complex 
sentence in which the names s and t may (but do not have to) occur. Let 
I be a n  interpretation in which s and t refer to the same object. Then it 
should not make any difference to the truth of R(s,t) in I if we replace 
any number of occurrences of s with occurrences o f t  or occurrences of t 
with occurrences of s. In I, s and t are just two different ways of referring 
to the same thing. R(s,t) says something about this thing, and how one 
refers to this thing should not make any difference to the truth of R(s,t) 
in I. (At this point it would be a good idea to review the discussion of 
extensional semantics in section 9-2.) 

L26: Let R(s,t) be a closed sentence in which the names s and t may occur. 
Let I be an interpretation in which the names s and t refer to the same- 
object. Let R'(s,t) arise by replacing any number of instances of s by t or 
instances o f t  by s. then R(s,t) is true in I iff R1(s,t) is true in I. 

I have stipulated that s and t do not have to occur in R(s,t) to cover the 
important case in which all occurrences of s in a sentence P(s) get re- 
placed by occurrences of t .  

" 

EXERCISE 

15-5. Begin the proof of L26 by carrying out the basis step and the 
inductive step for the sentence logic connectives. 

The complications in the inductive step for L26 call for writing it out 
in some detail. In what follows, take care to understand what I mean by 
'r = s'. 'r' and 's' are metavariables over names. So 'r = s' means that the 
name picked out by 'r' is identical to the name picked out by 's', that is, 
that r and s are the same name. 'r = s' does not mean the object referred 
to by the name picked out by 'r' is the same as the object referred to by a 
different name picked out by 's'. 

Now let's assume (inductive hypothesis) that L26 holds for all R(s,t) 
with n or fewer connectives. And let's consider the case of R(s,t) with the 
form (3u)Q(u,s,t). R1(s,t) is then the sentence (3u)Q1(u,s,t). Let interpre- 
tation I be given with names s and t having the same referent. In outline, 
the argument runs as follows: 

( 1 )  Suppose that I makes (3u)Q(u,s,t) true. (Assumption) 
(2) Then there is a name, r, and an r-variant, I, of  I, such that I, makes 

Q(r,s,t) true. (By ( 1 )  and D22) 
(3) Suppose that r f s and r f t. (Assumption, to be discharged) 
(4) Then I, makes Qf(r,s,t) true. (By the inductive hypothesis applied to 

(2) and (3)) 
(5) Then I makes (3u)Qf(u,s,t). (By D22 applied to (4)) 

I want to be sure you understand step (4) and the role of step (3). First, 
you might have thought that D22 guarantees (3). But that happens only 
if both s and t actually occur in (3u)Q(u,s,t). Since we want out proof to 
cover, for example, a sentence in which just t occurs and in which we 
replace all occurrences o f t  with occurrences of s, we have allowed that s 
and t don't have to occur. Next, remember that to apply the inductive 
hypothesis to switch around the names s and t, we need to be considering 
an interpretation in which s and t both refer to the same object. By as- 
sumption, I is such an interpretation. But in step (4) we need this to be 
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true of I,. If r # s and r # t, we're OK. According to D22, I, arises from 
I by at most reassigning r to a new referent. When r # s and r # t, s 
and t still have their mutual referent, so the inductive hypothesis can be 
applied. 

To get ready to discharge the assumption (3), let's see what can go 
wrong if (3) fails. Let's suppose that r = s. In this case, when we apply 
D22 to make I, out of I, we might have the situation pictured for I, in 
figure 15-1. 

In I, s and t both refer to the object 0,. We apply D22, which says that 
there is an r-variant, I,, of I, differing at most from I by assigning a new 
referent, which I'm calling 'oi, to r (or is an object which makes the exis- 
tential quantification true). But if r = s, this means assigning r, that is, s, 
to the object or, which in general will be distinct from q. So in I, we may 
not have available the condition that s and t have the same referent, the 
condition needed to apply the inductive hypothesis. 

To get around this difficulty I will argue by cases. Case 1: Neither s nor 
t actually occurs in (3u)Q(u,s,t). Then there is nothing to prove, since 
there are no occurrences of s and t to switch around. Case 2: s and t both 
occur in (3u)Q(u,s,t). D22 requires that r not occur in (3u)Q(u,s,t). So in 
this case r # s and r # t, we have assumption (3) available, and the proof 
(1)-(5) can proceed. 

Case 3: t but not s actually occurs in (3u)Q(u,s,t). (The case in which 
s but not t occurs is the same.) To remind us that s occurs vacuously, I 
will put parentheses around s, like this: (3u)Q(u,(s),t). If, in this case, r 
happens by luck to be distinct from s, the proof (1)-(5) applies. So I will 
also assume that r = s. In this case we have the situation for I, pictured 
in figure 15-1, and the inductive hypothesis will not apply because s and 
t no longer have the same referent. In addition, we won't be able to apply 

Figure 15-1 

D22 in step (5). When r = s, r, that is, s, will get put in for occurrences 
o f t  when we exchange Q(r,(s),t) for Q1(r,(s),t). Then when we try to apply 
D22 to reform the existential quantification, the u will get put into the 
wrong places. 

To resolve these difficulties, I must accomplish two things. I must show 
that I can pick another name, r', with r '  # s and f t, and assign r' to 0,. 

Then I must reassign s as a name of q. If I do these two things, then s 
and t will again have the same referent, so that I can apply the inductive 
hypothesis in step (4); and I will again be using a name, r' # s and # t, 
so that D22 will unproblematically apply in step (5). 

Once this problem is clearly explained it is easy to solve, with the help 
of lemma L25. I pick a new name, r', not occurring in Q(r,(s),t), # s and 
# t. L25 tells us that Q(r,(s),t) has the same truth value in a new inter- 
pretation, I,., that it had in I,, where I,, is just like I, except that r' has 
been assigned as an additional name of or. Next I apply the inductive 
hypothesis to Q(r,(s),t) and the interpretation I,,. In I,,, r' and r (that is, 
s) both name or. So the inductive hypothesis allows me to replace all oc- 
currences of r with r'. I now have Q(rl,(s),t) true in I,,, with s not actually 
occurring in Q(rl,(s),t). Consequently, I can again apply L25 to tell me 
that Q(rl,(s),t) is also true in 13, an interpretation just like I,, except that 
s has been reassigned to 0,. At this point 13 is an rt-variant of I, r' # s 
and C t, and s and t are both referents of ot so that I can carry out steps 
(4) and (5) of the foregoing proof using 13, instead of I,,. 

We are almost done. I have shown that if I makes (3u)Q(u,s,t) true, 
then I makes (3u)Q1(u,s,t) true. But the argument works in exactly the 
same way in the opposite direction. So we have shown that I makes 
(3u)Q(u,s,t) true iff it makes (3u)Q1(u,s,t) true, completine: this Dart of - " 
the proof of L26. 

EXERCISES 

15-6. In a more advanced logic text, this sort of informal proof 
would be written up much more briefly. I have spelled it out in some 
detail to help you learn how to read and study such a proof. To 
further practice study of an informal proof and to appreciate better 
how complicated it really is, formalize the proof as a natural deduc- 
tion. Use 'Mod(1,X)' for 'X is true in 1', '(3r)' for 'There is a name, 
r', '(31,)' for 'There is an r-variant, I,, of 1', and so on. I suggest that 
you formalize the initial proof (1)-(5), with the undischarged as- 
sumption of step (3), being sure to make explicit the tacit appeal to 
3E. Then fill in the full argument explained in the discussion which 
follows (1)-(5). The most efficient natural deduction may have a sig- 
nificantly different organization than the informal presentation, 
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which was designed to help you see what is going on as opposed to 
presenting the argument in as few steps as possible. 

Students of truth trees may also have fun doing this argument as 
a truth tree proof, although this is less helpful in exposing the struc- 
ture of the informal argument in English. 
15-7. Carry out the inductive step of the proof of L26 for univer- 
sally quantified sentences. You may do this most efficiently by com- 
menting on how to modify the proof for the case of existentially 
quantified sentences. 

Now that I have shown you how to proceed with this kind of argument, 
I am going to ask you to prove the rest of the lemmas we will need. When 
not otherwise specified, P(u) can be any open sentence with u the only 
free variable, I any interpretation, and so on. 

Lemmas L27 and L28 show that the truth definitions for the quantifiers 
are equivalent to conditions which, superficially, look stronger than the 
definitions: 

L27: Let s be any name not appearing in (3u)P(u). Then Mod[I,(3u)P(u)] 
iff there is an s-variant, I., of I such that Mod[I,, P(s)J. 

L28: Let s be any name not appearing in (Vu)P(u). Then Mod[I,(Vu)P(u)] 
iff Mod[I,,P(s)] for all s-variants, I., of I. 

L29: -(Vu)P(u) is logically equivalent to (3u)-P(u) and -(3u)P(u) is logi- 
cally equivalent to (Vu)-P(u). 

15-8. Prove L27 and L28. Apply L25 and L26 to D22 and D23. You 
will not need to do  an induction. 

I EXERCISE 

I 

15-9. Prove L29. Remember that logical equivalence is the semantic 
notion of having the same truth value in all interpretations. You will 
not need to use induction. Instead, simply apply L27 and L28. 

When you have finished your proof of L29, look it over and find the 
places a t  which you used, as informal logical principles applied in the 
metalanguage, just the negated quantifier rules which you were proving 
as generalizations about the object language! It is a noteworthy, and per- 

haps disturbing, fact that we cannot prove anything about the object lan- 
guage formulation of logic without assuming logical principles at least as 
strong in the metalanguage. What, then, do we gain in the process? Pre- - 
cision and clarity. 

L30: Suppose that Mod[I,P(s)]. Then Mod[I,(3u)P(u,s)], where P(u,s) arises 
from P(s) by substituting u for any number of occurrences of s in P(s). 

L31: Suppose that Mod[I,(Vu)P(u)]. Let I' differ from I only in assignment 
of names not occurring in (Vu)Pu, and let s be any name in 1'. Then 
Mod[I1,P(s)]. 

Note that in L31, s may be a name appearing in (Vu)P(u). L31 is a gen- 
eralization of the principle that all substitution instances of a universally 
quantified sentence are true, a generalization we will need in the follow- 
ing sections. 

EXERCISES 

15-10. Prove L30. You will use L26 and D22 and no induction. 
15-1 1.  Prove L31, using L25, L26, and L28. The fact that s may 
appear in (Vu)P(u) may give you trouble in this problem. The trick 
is not to use the name s for the s-variant in D23. Use some other 
name, t, which does not appear in (Vu)P(u) and then apply L25 and 
L26 to s and t. 

L32: Let I be an interpretation in which every object in its domain has a 
name. Then 

a) Mod[I,(3u)P(u)J iff Mod[I,P(s)J for some name, s, that appears in I. 
b) Mod[I,(Vu)P(u)] iff Mod[I,P(s)] for all names, s, that appear in I. 

L32 simply says that the truth definitions for quantifiers given in chapter 
2 work in the special case in which all objects in an interpretation's do- 
main have names. 

EXERCISE 

15-12. Using any prior definitions and lemmas from this section 
that you need, prove L32. 

We are now ready to extend our previous proofs of soundness and 
completeness for sentence logic to predicate logic. Most of the real work 
has been done in the lemmas of this section and in Koenig's lemma from 
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chapter 14. I am only going to outline the proofs and ask you to fill in 
the details. In the next three sections I will only treat predicate logic with- 
out identity or function symbols, and 1 will treat only finite sets of sen- 
tences in the completeness proofs. 

15-2. SOUNDNESS AND COMPLETENESS FOR TREES 

When we extend trees for sentence logic to predicate logic, we add four 
new rules: 3, -3, V, and -V. Roughly speaking, what we need to do is to 
check that these rules are downwardly and upwardly correct. There is, 
however, a complication: infinite trees. 

Before going further, please review section 8-4. In sentence logic every 
tree ends, including all open trees. That is because we need to work on 
each sentence only once, and when working on a sentence the sentences 
on the output list are all shorter than the input sentence. But in predicate 
logic we may have to work on sentences of the form (Vu)(3v)R(u,v) more 
than once. When we instantiate (Vu)(3v)R(u,v) with a name, s, we get an 
existentially quantified sentence, (3v)R(s,v). When we apply 3 to this sen- 
tence, we must use a new name, t, which we must then substitute back 
into (Vu)(3v)R(u,v), producing another existentially quantified sentence, 
which will produce another new name, and so on. 

The overall tree strategy still works as before: We make longer sen- 
tences true by making shorter sentences true, until we get to minimal 
sentences which describe an interpretation. The process may now go on 
forever, but we can still think of infinite open paths as describing inter- 
pretations in which all sentences on the paths are true. 

Because trees can be infinite, we need to reconsider what is involved in 
a finished tree. We do not need to revise our definition, D9, but we do 
need to make sure that if a tree does not close in a finite number of steps 
that it can be finished in the sense given by D9. That is, we must make 
sure that there is some systematic way of applying the rules which guar- 
antees that, for each sentence to which a rule can be applied, eventually 
the rule is applied. 

Here's a system which supplies the guarantee. We segment our work 
on a tree into stages. At stage n we work only on sentences that appear 
on lines 1 through n. Stage n continues until all sentences on lines 1 
through n which can be checked have been checked and until all names 
occurring in lines 1 through n have been substituted into all universally 
quantified sentences occurring in lines 1 through n. Of course, at the end 
of stage n, the tree may have grown to many more than n lines. But that 
does not matter. Every checkable sentence occurs by some line, n, and so 
will eventually get checked by this process, and every name and every 
universally quantified sentence occurs by some line n, so every universally 

quantified sentence will eventually be instantiated by every name. Of 
course, this system is not efficient. But efficiency is not now the point. We 
want to show that there is a system which is guaranteed not to leave any- 
thing out. 

The next point to establish is that if a tree is infinite it has an infinite 
open branch. Koenig's lemma tells us that if a tree is infinite, it has an 
infinite branch, and since closed branches are finite, this infinite branch 
must be open. 

Open branches, infinite or finite, describe interpretations in pretty 
much the way they do for sentence logic. Given an open branch, collect 
all the names that occur on the branch and set up a domain of objects, I 

each one named by one of the names on the branch, with no two names 
assigned to the same object. Then let the minimal sentences on the branch 
specify what is true of what. Atomic sentence letters are treated as in 
sentence logic. If an atomic sentence of the form P(s) appears on the 
branch, in the branch's interpretation P is true of s. If an atomic sentence 
of the form -R(s,t) appears, then in the branch's interpretation R is false 
of the pair of objects named by s and t (in that order). And so on. The 
minimal sentences will generally fail to specify all atomic facts. The un- 
specified facts may be filled in arbitrarily. 

For sentence logic we formulated rule correctness in terms of any inter- 
pretation: Any interpretation which makes an input sentence true makes 
at least one output list true. And any interpretation which makes an out- 
put list true makes the input sentence true. This won't work for quanti- 
fied sentences. 

For upward correctness of the V rule, consider some sentence, 
(Vu)P(u), and some interpretation, I, in which there are more objects than 
are named on an open branch. Even if all of the output sentences of the 
V rule-that is, even if all of the substitution instances of (Vu)P(u) which 
appear on this branch-are true in I, (Vu)P(u) might not be true in I. To 
be true in I, (Vu)P(u) must be true for all objects in I, whether the object 
concerned has a name or not. 

For downward correctness we need the following: Given an interpreta- 
tion in which the first n lines of a branch are true, there is an interpreta- 
tion which makes true all of these sentences as well as the sentences in an 
output list resulting from applying a rule. But for the 3 rule, not just any 
interpretation in which the first n lines, including (3u)P(u), are true will 
serve. Such an interpretation might not have a name for an object which 
makes (3u)P(u) true. Worse, the interpretation might have such a name 
but the resulting substitution instance might conflict with another sen- 
tence already on the branch. 

This last problem is what necessitated the new name rule, and it is es- 
sential that you understand how that requirement fits in here. Suppose 
that our branch already has '(3x)Bx' and '-Ba' and that the interpreta- 
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tion, I, which makes these two sentences true has just one name, 'a', and 
two objects, the first, named by 'a', which is not B and the second, which 
has no name in I and is B. This I is a consistent interpretation for '(3x)Bx' 
and '-Ba', but we cannot use it in forming a substitution instance which 
shows '(3x)Bx' to be true. We must extend or change our interpretation 
by assigning a new name, 'b', to the unnamed object. Then the truth of 
'(3x)Bx' is made explicit by including 'Bb' on the branch. 

The new name feature of the 3 rule ensures that we always proceed in 
the way just described. When it comes time to describe downward cor- 
rectness of the 3 rule, the downward correctness must be given a corre- 
sponding description. As in the last example, the I which makes the initial 
sentences on the branch true may not have the required new name. Or I 
may have the name but, since the name does not occur in any of the 
sentences so far considered on the branch, the name could refer to the 
wrong object. (Think of lemma 25 in making sure you understand this 
last point.) For lack of the right name referring to the right object, the I 
which makes true the first n sentences on a branch may not also make 
true the substitution instance which comes by applying the 3 rule with its 
new name requirement. But there will always be an s-variant of I, I,, re- 
sulting by assigning the new name s to the right object, which will make 
true (3u)P(u)'s substitution instance, P(s). Since s is new to the branch, 
lemma 25 guarantees that all the prior sentences in the branch will still 
be true in I,. 

The foregoing remarks should motivate the following revisions of Dl5 
and Dl 6: 

D15': A tree method rule is Downwardly Correct iff it meets the following 
condition for all interpretations, I, and all line numbers, n: Suppose that I 
is an interpretation which makes true all sentences along a branch from lines 
1 through n. Suppose that the input sentence for the rule lies on this 
branch, on one of the lines 1 through n, and the sentences on the output 
lists lie on the lines immediately succeeding n. Then there is an s-variant of 
I which makes true all of the sentences on the original branch, lines 1 
through n, and also all of the sentences on at least one of the output lists. 

D 16': A tree method rule is Upwardly Cmect iff in any interpretation, I, 
which is described by an open branch, if all the sentences on an output list 
on that branch are true in I, then the input sentence is true in I. 

Note that upward correctness concerns only interpretations which are de- 
scribed by the open branch in question. 

Before checking rule correctness, we need to clarify what is to count as 
the output list for an application of the V rule. For upward correctness, 
the output list resulting when V is applied to (Vu)P(u) includes all the 
substitution instances of (Vu)P(u) on the finished branch. For downward 
correctness the output list includes only those substitution instances on 
the branch as it exists just after the V rule is applied to (Vu)P(u) but 
before any further rules are applied. 

You can now proceed to check downward and upward correctness of 
the quantifier rules. 

EXERCISES 

15-13. Using lemma L29, show that the rules -3 and -V are down- 
wardly and upwardly correct according to D15' and D16' (though, 
for these two rules, the difference with Dl5 and Dl6 is inessential). 
15-14. Prove that the 3 rule is upwardly correct. You only need 
apply definition D22. 
15-15. Prove that the V rule is upwardly correct. You need to apply 
lemma L32. 
15-16. Prove that the 3 rule is downwardly correct. You need lem- 
mas L25 and L27. Note carefully the role of the new name require- 
ment in your proof. 
15-17. Prove that the V rule is downwardly correct. You need 
lemma L31. Don't forget to treat the case in which V applies to a 
sentence on a branch with no names. This case will require L25. 

We have now done all the real work in proving downward and upward 
adequacy: 

T10: The truth tree method for predicate logic is downwardly adequate. 

T11: The truth tree method for predicate logic is upwardly adequate. 

Given the revised definitions of upward rule correctness, the proof of 
upward adequacy works pretty much as it does for sentence logic. Down- 
ward adequacy requires some change, in ways which I have already indi- 
cated. Suppose that an initial set of sentences has a model. For sentence 
logic we showed that each time we applied a rule there is at least one 
extension of the initial segment of a branch all the sentences of which are 
true in the original model. Now we show instead that each time we apply 
a rule there is at least one extension of the initial segment of a branch all 
the sentences of which are true in an s-variant of the model for the prior 
branch segment. D15' has been designed to make the inductive proof of 
this statement straightforward. 

. EXERCISES 

15-18. Prove downward adequacy for predicate logic trees. 
15-19. Prove upward adequacy for predicate logic trees. T o  extend 
the proof of section 12-2, you will need to revise the definition of 
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'length of a sentence'. The natural alternative is to let the length of 
a predicate logic sentence be the number of predicates and connec- 
tives. But on this definition the input and output sentences of the 
-3 and -V rules have the same length. With a little care you can 
still do the induction with this definition. Or you can define length 
by letting an initial negation followed by a quantifier count as three 
units of length and letting each occurrence of '=' count as two units. 

T10 and T11, downward and upward adequacy, immediately give 

T12: The truth tree method for predicate logic is sound. 

and 

T13: The truth tree method for predicate logic is complete. 

in exactly the way they do for sentence logic. 

15-3. SOUNDNESS FOR PREDICATE LOGIC DERIVATIONS 

To extend the proof for sentence logic, we need to prove rule soundness 
for the four new predicate logic rules. Two are easy applications of defi- 
nitions and lemmas given in section 15-1: 

L33 (Soundness for 31): If Zk~(s) ,  then Zk(3u)~(u,s),where (3u)P(u,s) is an 
existential generalization of P(s), that is, P(u,s) results from P(s) by replacing 
any number of occurrences of s with u. 

L34 (Soundness for VE): If z~(vu)P(u), then ZkP(s), where P(s) is a substi- 
tution instance of (Vu)P(u), that is, s is substituted for all free occurrences 

( EXERCISES 

15-20. Apply lemma L30 to prove lemma L33. 
15-2 1. Apply lemma L3 1 to prove lemma L34. 

Let's look at VI in a bit more detail. We want to prove 

L35 (Soundness for VI): Assume that the name s does not occur in Z or in 
(Vu)P(u). On this assumption, if ~kP(s) ,  then Zk(Vu)P(u), where (Vu)P(u) is 
the universal generalization of P(s), that is, P(u) results by replacing all oc- 
currences of s in P(s) with u. 

Let's consider an arbitrary interpretation, I, in which all the sentences in 
Z are true. What will it take for (Vu)P(u) to be true also in I? Lemma L28 
tells us that given any name, s, not appearing in (Vu)P(u), we need only 
show that P(s) is true in all s-variants of I. What we need to do is squeeze 
the conclusion that P(s) is true in all the s-variants of I out of the assump- 
tion that Z~P(S) and the hypothesis that Mod(1.Z). 

But this is easy. The assumption that s does not occur in Z allows us to 
apply lemma L25 as follows: I is a model for Z. Since s does not occur in 
Z, L25 tells us that any s-variant of I is also a model of Z. Then the 
assumption that ~ k P ( s )  tells us that any s-variant of I makes P(s) true. 

You should carefully note the two restrictions which play crucial roles 
in this demonstration. In order to apply lemma L25, s must not appear 
in Z. Also, in order to apply lemma L28, s must not appear in (Vu)P(u). 
The latter restriction is encoded in the VI rule by requiring that (Vu)P(u) 
be the universal generalization of P(s). 

In a similar way, the restrictions built in the 3E rule play a pivotal role 
in proving 

L36 (Soundness for 3E): Assume that s does not appear in Z, in (3u)P(u), 
or in X. Then if ZU{(~U)P(U) ,P(~))~X,  then ZU{(~U)P(U)}~X. 

You will immediately want to know why the restrictions stated in L36 
are not the same as the restriction I required of the 3E rule, that s be an 
isolated name. If you look back at section 5-6, you will remember my 
commenting that requiring s to be an isolated name involves three more 
specific requirements, and that other texts state the 3E rule with these 
three alternative requirements. These three requirements are the ones 
which appear in the assumption of L36. Requiring that s be an isolated 
name is a (superficially) stronger requirement from which the other three 
follow. Since we are proving soundness, if we carry out the proof for a 
weaker requirement on a rule, we will have proved it for any stronger 
requirement. You can see this immediately by noting that if we succeed 
in proving L36, we will have proved any reformulation of L36 in which 
the assumption (which states the requirement) is stronger. 

Of course, by making the requirement for applying a rule stronger (by 
making the rule harder to apply), we might spoil completeness-we might 
make it too hard to carry out proofs so that some valid arguments would 
have no corresponding proofs. But when we get to completeness, we will 
check that we do not get into that problem. 

Let's turn to proving L36. The strategy is like the one we used in prov- 
ing L35, but a bit more involved. Assume that I is a model for Z and 
(3u)P(u). Since s does not appear in (3u)P(u), there is an s-variant, I, of 
I, such that P(s) is true in I,. Since s does not appear in (3u)P(u) or in Z, 
and since I and I, differ only as to s, lemma L25 tells us that (3u)P(u) and 
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Z are also true in I,. The hypothesis, that ZU{(~U)P(U),P(S)}~X, then tells 
us that X is true in I,. Finally, since s is assumed not to appear in X and 
I and I, differ only as to s, lemma L25 again applies to tell us that X is 
true in I. 

The soundness of the quantifier rules immediately gives us 

T14 (Soundness for predicate logic derivations): For any set of sentences, Z, 
and sentence, X, if ZkX, then Z ~ X .  

The proof is a trivial extension of the proof for sentence logic, but to fix 
the ideas you should carry out this extension. 

EXERCISE 

15-22. Prove T14. You only need to extend the inductive step in the 
proof of T 5  to cover the cases of the four quantifier rules. 

15-4. COMPLETENESS FOR PREDICATE LOGIC DERIVATIONS 

For completeness, we also follow the same overall strategy as we did for 
sentence logic. Starting with an initial tableau of sentences, we generate a 
new tableau the sentences of which make the sentences on the original 
tableau true. The sentences on the generated tableau are, on the whole, 
shorter than on the generating tableau. Roughly speaking, we eventually 
get down to minimal sentences which characterize an interpretation on 
which all the sentences of ancestor tableaux are true. But there will be 
some new wrinkles. 

We have to say how quantified and negated quantified sentences will be 
treated on a tableau. For negated quantified sentences, we apply the rules 
of logical equivalence for negated quantifiers, pushing the negation sign 
through the quantifier and switching the quantifier. That will leave us 
with only quantified sentences, with no negation signs in front, with which 
we have to deal. 

We will make a universally quantified sentence true by making all its 
substitution instances true. We will make an existentially quantified sen- 
tence true by making one substitution instance true. But we will have to 
make this substitution instance the assumption of a new subderivation so 
that we will be able to apply the 3E rule to contradictions to get 'A&-A' 
as the final conclusion of the outermost derivation. 

These ideas get incorporated by extending the rules for sequential and 
branching generation: 

R2' Sequential generation: Extend the statement of the rule with the following 
steps (to be applied before the instruction to reiterate remaining sentences). 

a) If a sentence of the form -(3u)P(u) appears on the generating tab- 
leau, enter (Vu)-P(u) on the generated tableau. 

b) If a sentence of the form -(Vu)P(u) appears on the generating tab- 
leau, enter (3u)-P(u) on the generated tableau. 

c) If a sentence of the form (Vu)P(u) occurs on the generating tableau, 
enter on the generated tableau all the substitution instances formed 
with names which appear on the generating tableau. If no names 
appear on the generating tableau, pick one name arbitrarily and use 
it to form a substitution instance entered on the generated tableau. 
Also reiterate (Vu)P(u) on the generated tableau. 

We must reiterate (Vu)P(u) on the generated tableau because, as you 
will soon see, new names can arise on later tableaux. These new names 
must be substituted into (Vu)P(u) to make (Vu)P(u) true for all its substi- 
tution instances. So we must carry (Vu)P(u) along on each tableau to have 
it for forming substitution instances any time that a new name arises. 

R3' Branching generation: If any sentence of the form XVY occurs on the 
generating tableau, apply R3 exactly as stated. If no XVY occurs but there 
is a sentence of the form (3u)P(u) on the generating tableau, pick a New 
Name, that is, a name which does not appear anywhere on the generating 
tableau. Use the new name to form a substitution instance of (3u)P(u), and 
use this substitution instance as the assumption starting a new subderivation. 
Reiterate all other sentences on the generating tableau in the subderivation 
to complete the generated tableau, just as in R3. 

As students of the tree method already know, these rules create a prob- 
lem. Suppose that a sentence of the form (Vu)(3v)R(u,v) appears on a 
tableau. R2' tells us to enter at least one substitution instance, (3v)R(s,v), 
on the next tableau and to reiterate (Vu)(3v)R(u,v) itself. R3' will then 
tell us to start a new subderivation with R(s,t), t a new name. Of course, 
(Vu)(3v)R(u,v) also gets reiterated onto the subderivation. But now we 
will have to do the same thing all over again. The new name, t, will have 
to go into (Vu)(3v)R(u,v), giving a new existentially quantified sentence, 

. (3v)R(t,v), which will call for a new subderivation with yet another new 
name, which will have to go back into the reiterated (Vu)(3v)R(u,v). We 
are off and running in a chain of subderivations that will never end. 

A first impulse is to wonder if the generation rules couldn't be written 
better, so as to avoid this problem. They can be written so as to avoid 
exactly this form of the problem, but it turns out that no matter how the 
rules are written, some problem with essentially the same import will 
arise. Indeed, proving this is a further important fact about logic. 

Here is an overview of what the problem involves. The semantic tableau 
procedure provides a mechanical method for searching for a derivation 
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which establishes the validity of a given argument, or equivalently, a me- 
chanical method for searching for an interpretation of a given finite set 
of sentences. In sentence logic, the method is guaranteed to terminate. A 
method which thus terminates is guaranteed to give a definite yes or no 
answer to the original question ('Is the argument valid?' or 'Is the initial 
set of sentences consistent?'). Such a method, guaranteed eventually to 
turn,up a yes or no answer, is called a Decision Procedure. 

Now, here is the general form of our current problem. Given an ex- 
ceedingly plausible assumption about what will count as a mechanical de- 
cision procedure, one can prove that there is no decision procedure for 
predicate logic. In our formulation we fail to get a decision procedure 
because we may get an infinite sequence of sub-sub . . . -sub-derivations. 
If our tableau procedure has failed to close at some stage, we may not be 
able to tell for sure whether that is because we just haven't pursued it far 
enough, or because it will go on forever. This is not just a weakness of 
our rules. One can prove that any sound and complete system of predi- 
cate logic will suffer in the same way. Roughly speaking, the problem 
arises from the requirement on the 3E rule, which we must have in order 
to ensure soundness. 

Since there is no point in searching for better rules, we will have to see 
what we can make of our R2' and R3' in fashioning a completeness proof. 

Consider a set of sentences, for example, just the sentence 
(Vu)(3v)R(u,v) for which our tableau procedure generates an infinite se- 
quence of tableaux. We will need the fact that we can then, so to speak, 
draw an  unending path through the nested sequence of subderivations. 
Koenig's lemma assures us that we can always do so. Refer back to the 
tree structure at the beginning of chapter 14 and imagine that each node 
represents a subderivation, beginning with the outermost derivation at 
the top node. Moving from one node to two nodes beneath represents the 
process of starting two new subderivations by working on a sentence of 
the form XVY. When we start one new subderivation by working on a 
sentence of the form (3u)P(u), we start one new node, that is, a "branch" 
with one rather than two new forks. When a subderivation closes, the 
corresponding path on the tree structure closes. Koenig's lemma tells us 
that if such a tree structure is infinite, then there is an infinite open path 
through the tree. 

We now know that if a tableau derivation does not close (is infinite or 
does not have all its terminal tableaux closed) then there is an open path 
of subderivations through the derivation. The path might be finite or it 
might be infinite. Each such path provides an interpretation, which we 
will again call a Terminal Interpretation. But we want to characterize the 
idea of a terminal interpretation so that it will work for infinite as well as 
finite cases. Since an infinite path through a derivation has no terminal 
tableau, we cannot let the terminal interpretation simply be one provided 
by the terminal tableau. 

Here's the recipe for the terminal interpretation represented by an in- 
finite path. Collect all the names that occur on the path, and set up _a 
domain of objects, each one named by one of the names on the path, with 
no two names assigned to the same object. Then look at all the minimal 
sentences which appear on the path. If an atomic sentence letter appears, 
the interpretation will make it true. If an atomic sentence letter appears 
negated, the interpretation will make the atomic sentence letter false. If 
an atomic sentence of the form P(s) appears, the interpretation will make 
the predicate P true of the object named by s. Similarly, if -P(s) appears, 
the interpretation will make P false of the object named by s. Two and 
more place predicates are treated similarly. If this recipe fails to specify 
all the atomic facts of the interpretation, fill in the missing facts arbitrar- 
ily. In sum 

D24: A Terminal Interpretation represented by an open path has as its names 
all the names which occur on the path and as its domain a set of objects, 
each named by exactly one of the names. The interpretation assigns truth 
values to atomic sentence letters and determines which predicates are true 
of which objects (pairs of objects, and so on) as described by the minimal 
sentences on the path. Any facts not so specified by the minimal sentences 
may be filled in arbitrarily. 

Note, incidentally, that this recipe gives a consistent interpretation. 
Since the path is open, it cannot contain both an atomic sentence and its 
negation. So this recipe will not make an atomic sentence both true and 
false. That is, it will not both say and deny that a predicate is true of an 
object. 

The main work we need to do is to prove the analogy of lemma 18, 
namely 

L37: The sentences of the initial tableau are all true in a terminal interpre- 
tation represented by an open path. 

We prove this by proving that a terminal interpretation makes true all the 
sentences in all the tableaux along its path, arguing by induction on the 
length of the sentences. 

We need to take a little care in saying what the length of a sentence is. 
To  keep things initially simple, let us first consider a special case-analo- 
gous to our procedure in section 13-4: Suppose that 'v', '-', and the 
quantifiers are the only connectives occurring in any of the initial sen- 
tences. Then we can take the length of a sentence simply to be the num- 
ber of connectives occurring in the sentence. 

To  carry out the inductive argument, suppose that we have an open 
path and a terminal interpretation, I, represented by that path. By the 
definition of a terminal interpretation, all atomic and negated atomic sen- 
tences, and so all sentences of length 0 or 1, along this path are true in I. 
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For the inductive hypothesis, suppose that all sentences of length no 
greater than n along the path are true in I. Let X be a sentence of length 
n + 1. Suppose that X has the form -(YvZ). Then rule R2 for sequential 
generation tells us that -Y and -Z will both be on the path, since they 
will be on the tableau generated by the tableau on which -(YvZ) occurs. 
-Y and -Z are both shorter than -(YvZ), and the inductive hypothesis 
tells us that -Y and -Z are both true in I. Hence -(YvZ), that is, X, is 
true in I. When X has the form --Y the argument goes quite like the 
case of -(YvZ). 

Next, we must consider X of the form YvW. Such X gives rise to two 
generated tableaux, one including Y and one including W. One of these 
generated tableaux must be on the open path. Suppose it is the one with 
Y. Since (by the inductive hypothesis) all sentences along this path with n 
or fewer connectives are true, Y, and so YvW, are true. If W rather than 
Y is on the path, the same argument applies. 

Suppose that X has the form (3u)P(u). Then rule R3' specifies that 
there is a subderivation along the path that includes a substitution in- 
stance, P(s), which the inductive hypothesis tells us is true in I. Definition 
D22 applies to tell us that then (3u)P(u), that is, X, is true in I. 

Now suppose that X has the form (Vu)P(u). Rule R2' specifies that, for 
each tableau in which (Vu)P(u) appears, all its substitution instances 
formed with names in that tableau appear in the next sequentially gen- 
erated tableau. (Vu)P(u) is also reiterated, so that any name which comes 
up  will eventually get instantiated along the path. By the inductive hy- 
pothesis, all these substitution instances are true in I. Remember that in a 
terminal interpretation there is exactly one object named by each name, 
and we have just seen that all of these names eventually get used to form 
true substitution instances of (Vu)P(u). So lemma L32 applies to tell us 
that (Vu)P(u), that is, X, is also true in I. 

Make sure that you understand how this last step in the inductive proof 
makes essential use of the fact that (Vu)P(u) is always reiterated, to ensure 
that when new names come up in later tableaux, they will always be used 
to instantiate (Vu)P(u). 

We still need to consider sentences of the form -(3u)P(u) and 
-(Vu)P(u). Rule R2' applies to such sentences to produce sentences, re- 
spectively, of the form (Vu)-P(u) and (3u)-P(u). There might seem to 
be a problem here because -(-Ju)P(u) and (Vu)-P(u) have the same num- 
ber of connectives, as do -(Vu)P(u) and (3u)-P(u). But we can still com- 
plete the inductive step. Suppose that -(-Ju)P(u) has n + 1 connectives 
apd appears on the path. R2' tells us that (Vu)-P(u), also having n + 1 
connectives, also appears on the path. But we have already seen that the 
inductive hypothesis ensures us of the truth of (Vu)-P(u) in the terminal 
interpretation, I. Lemma L29 then tells us that -(3u)P(u) is also true in 
1. Of course, the case for -(Vu)P(u) works the same way. 

T o  complete the proof of L37 we must lift the restriction and allow 

sentences to include all the sentence logic connectives. This creates a new 
difficulty. For example, R2 instructs us to generate (X&Y)V(-X&-Y) 
from X=Y. But (X&Y)v(-X&-Y) has four more connectives than X=Y 
rather than fewer. 

We can resolve this impasse by assigning weights to the connectives. I - ' ,  

'v', and the quantifiers are each worth one "point," '3' and '&' each get 
three "points," and '=' gets six "points." The length of a sentence is now 
just the number of these "points" added up  for all the connectives in the 
sentence. (This technique can also be applied to arrange for -(3u)P(u) 
and -(Vu)P(u) to be longer than (Vu)-P(u) and (3u)-P(u).) 

EXERCISE 

15-23. Complete the inductive step of the argument for lemma L37 
with all of the sentence logic connectives. 

We have proved L37, the analogue of L18 needed for proving com- 
pleteness for sentence logic derivations. The proof for sentence logic der- 
ivations also used L20, which says that if all terminal tableaux close, then 
'A&-A' appears as the derivation's final conclusion. We must reformulate 
the statement ever so slightly because, with the possibility of infinite deri- 
vations, some paths might not have terminal tableaux. So we will say 

D25: a semantic tableau derivation is Closed if all sequences of subderivations 
terminate in a closed tableau. 

You will then prove the analogy of L20: 

L38: If a semantic tableau derivation is closed, then 'A&-A' appears as the 
derivation's final conclusion. 

The key to L20 is the inductive step, L21. Again, we only need to refor- 
mulate to accommodate our more specific definition of a closed tableau 
derivation: 

L39: Let D be a closed semantic tableau derivation. Then, if all of D's sub- 
derivations of level i have 'A&-A' as their final conclusion, so do all the 
subderivations of level i + 1. 

EXERCISE 

15-24. Prove L39. You only need to check the inductive step for 
rule R3', involving subderivations started with a substitution instance 
of a sentence of the form (3u)P(u). Be sure you see how the new 
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name requirement in the statement of R3' functions~crucially in 
your proof. 

If you now go back and read the short paragraph proving T7 and 
change just the words 'L18' and 'L20' to 'L37' and 'L38', you will see that 
we have a proof of T7, where the set of sentences Z may now include 
predicate logic sentences. T7 applies exactly as it did in section 12-3 to 
establish 

T15 (Completeness for predicate logic derivations): For any finite set of sen- 
tences, Z, and any sentence X, if Z ~ X ,  then ZkX. 

15-5. COMPACTNESS, IDENTITY, AND FUNCTIONS 

In this section I am going to get started in cleaning up some details. But 
I am going to let you do most of the work. Students of truth trees and of 
derivations will be able to apply the material of this section appropriately 
to what they have learned. 

My completeness proofs for predicate logic assumed a finite set of sen- 
tences, Z. T o  get a full statement of completeness, where Z can be infinite, 
we need to show that the compactness result, T8, which we proved in 
chapter 14, also holds for predicate logic. To accomplish this we need to 
modify the idea of a tree of truth value assignments. 

Here's what we do. We can consider all possible closed atomic sentences 
written out in some definite order: the first atomic sentence letter, the 
second, the first one place predicate with the first name, the second . . . : 
'A', 'B', 'Pa', 'Pb', 'Raa'. . . . To make sure that this is possible, again con- 
sider that we could write each such description of the atomic sentences in 
English and order them as in a dictionary. 

Say the closed atomic sentences are XI, X2, XS, . . . Then we can dia- 
gram all possible truth value assignments to these atomic sentences in the 
form of a tree: 

The third line will catalogue the alternative truth values for X; under- 
neath all the possibilities covered in lines 1 and 2, and so on. 

Note that each path through this tree represents an interpretation, in- 

deed, just the sort of interpretations represented by open paths on a truth 
tree or semantic tableau derivation. We have seen. in the com~leteness 
proofs, how there must be at least one such interpretation for each con- 
sistent finite set of sentences. We now proceed very much as we did in 
predicate logic. Let Z be an infinite set of sentences all of the finite subsets 
of which are consistent. We list the sentences in some definite order, and 
consider the initial finite segments of this ordering: Z,, Zp, 5, . . . As we 
work down the lines of the tree, we close branches which conflict with 
some sentences in one of the 2;. Since all of the Z; are consistent. for each 
line of the tree, there will be an open branch reaching down to that line. 
Koenig's lemma tells us that there is then an infinite path through the 
tree. But (if you make the right sort of arrangement of when paths get 
closed) you will see that this infinite path represents an interpretation 
which makes true all the sentences in all the Zi. That is, this interpretation 
is a model of Z. 

EXERCISE 

15-25. Following the suggestions. of the argument sketch given in 
the last paragraph, give a detailed proof of compactness for predi- 
cate logic. 

Actually, we have done the work to prove the Lowenheim Skolem Tho- 
rem, a much stronger result, of fundamental importance in logic and set 
theory. In all my discussion of infinite interpretations, I have not men- 
tioned the fact that there are different kinds of infinities. The infinity of 
the integers is the smallest, called, for obvious reasons, a Countable Infinity. 
However, other infinities are, in a certain sense, "larger." Consider, for 
example, the infinity of the real numbers (numbers representable by a 
finite or an infinite decimal fraction, such as 27.75283 . . .). The infinity 
of the real numbers is larger, or Uncountable, in the sense that there is no 
one-to-one correspondence between the integers and the real numbers. 
We cannot list the real numbers with the integers the way we can an infi- 
nite set of sentences. 

The Lijwenheim Skolem theorem says that if a set of sentences has a 
model with a finite, countable, or uncountable domain, then it has a finite 
or a countable model. For finite sets of sentences, these models are gen- 
erated by open paths on a truth tree or semantic tableau derivation. If a 
finite set has a model (finite, countable, or uncountable) then there is an 
open path. But then the open path represents a finite or countably infi- 
nite model. The compactness theorem then shows how the same is true 
of infinite consistent sets of sentences. (If our object language does not 
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include identity, then there is always a countable model. But '=' allows us 
to write a sentence which, for example, is only true in an interpretation 
with exactly one object. Can you produce such a sentence?) 

My soundness and consistency proofs assumed that our object language 
contained neither identity nor function symbols. For the moment, let's 
consider just identity. To begin with, we must refine the characterization 
of an interpretation with requirements which should seem natural if '=' 
really means 'identity': 

D20' (Interpretations for languages with identity): An interpretation is as 
described in D20 with the following two additional requirements: 

a) A sentence of the form s = t  is true in an interpretation iff s and t 
name the same object. 

b) For all atomic sentences of the form R(s,t), if s = t  is true in an inter- 
pretation, then R(s,t) and R1(s,t) have the same truth value in the 
interpretation, where R1(s,t) arises from R(s,t) by replacing any num- 
ber of occurrences of s with t or o f t  with s. 

Clause b) covers sentences such as 'Qab': If 'a=c' is true in an interpre- 
tation, then 'Qab' and 'Qcb' have the same truth value in the interpreta- 
tion. 

A good many of the semantical facts surrounding identity turn on the 
following lemma, which simply generalizes clause b) to the case of any 
closed sentence: 

L40: Let I be an interpretation for predicate logic with identity. Then, for 
all sentences of the form R(s,t), if s = t  is true in I, R(s,t) and R1(s,t) have 
the same truth value in I, where R1(s,t) arises from R(s,t) by replacing any 
number of occurrences of s with t or o f t  with s. 

/ 

I 1 

1 15-26. Prove LAO. I 
You are now in a position to examine how our soundness proofs need 

to be modified if our language includes identity. Identity involves new 
rules, the roles of which need to be checked in the proofs. 

15-27. (Trees) Show that the truth tree = rule is downwardly cor- 
rect. T o  treat the f rule, note that we can reconstrue it in the fol- 
lowing way: Whenever a sentence of the form s f  s appears on a 

branch, also write the sentence s =  s on that branch. Explain why this 
rule comes to the same as the # rule as stated in chapter 9. Prove 
that the rule in this form is downwardly correct. 
15-28. (Derivations) State and prove rule soundness for the two der- 
ivation rules for identity. Comment on whether and, if so, how these 
rules require any changes in the inductive proof of soundness for 
derivations. 

We can turn now to completeness. For semantic tableau derivations we 
must add two new parts to the rules for sequential generation, corre- 
sponding exactly to the = I  and = E rules: Whenever a name s occurs on 
a tableau, include the sentence s = s on the sequentially generated tableau. 
And if two sentences of the form s = t  and R(s,t) appear on a tableau, 
include the sentences Rt(s,t) on the sequentially generated tableau. Then, 
for both trees and semantic tableau derivations, we change how we read 
an interpretation off an open branch. Before, every name was assigned a 
distinct object. Now each name will be assigned a distinct object unless a 
sentence of the form s = t  appears on the branch. Then s and t are as- 
signed the same object. This corresponds to clause a) in D20'. Clause b) 
in D20' is already ensured by the identity rules for trees and for tableau 
generation. 

EXERCISES 

15-29. (Trees) Show that clause b) of D20' will be satisfied in the 
interpretation represented by an open branch. Comment on the sta- 
tus of lemma L40 in describing an open branch. That is, note the 
way in which, in effect, proof of upward adequacy automatically cov- 
ers the work done by lemma L40. Then check that the tree method 
with identity is upwardly adequate. Though intuitively quite clear, a 
formal proof requires care, since the input and output sentences for 
the = rule all have the same predicates and connectives, so that 
none of our prior methods of attributing lengths to sentences will 
apply here. 
15-30. (Derivations) Show that clause b) of D20' will be satisfied in 
the interpretation represented by an open branch. Comment on the 
status of lemma L40 in describing an open branch. That is, note the 
way in which, in effect, proof of lemma L37 automatically covers the 
work done by lemma L40. Then check that lemma L37 is still cor- 
rect. Just as with the case for trees, proof requires care, since none 
of our prior means of assigning lengths to sentences will work here. 
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Finally, let's take a brief look at function symbols. Again, we must ex- 
tend the definition of an interpretation: 

D20" (Interpretations for languages with function symbols): An interpreta- 
tion is as described in D20 or D201, with the following addition: For each 
function symbol, f, and each object, o, in the domain of the interpretation, 
the interpretation assigns a unique object o' = f(o), as the value off  applied 
to o. If s is a closed term referring to object o*, then f(s) is a term referring 
to f(o*). 

T h e  last sentence in D20" constitutes a recursive definition. If s is a name, 
referring to  o, then f(s) refers to f(o), ff(s) refers to ff(o), and so on. 

As with identity, once we have made this extension of the notion of an 
interpretation, mbst of the work is done. 

EXERCISES 

15-31. (Trees) Check the downward correctness of the quantifier 
rules when the language includes function symbols. 
15-32. (Derivations) Check the proof of rule soundness for the 
quantifier rules when the language includes function symbols. 
15-33. (Trees) Check that the proof of upward adequacy works 
when interpretations are read off open branches in accord with def- 
inition D20". 
15-34. (Derivations) Check lemma L37 when interpretations are 
read off open branches in accord with definition D20". 

r - 

156. CONCLUSION 

You have worked hard trying to understand these proofs of soundness 
and completeness. I too have worked hard, first in understanding them 
and then in  my efforts to write them u p  in a clear and accessible form. 
Working o n  the strength of the presentations of others, I will be very 
happy if I have made some small contribution to improving the accessi- 
bility of soundness and completeness and if I have avoided both horns of 
the dilemma of too much complication versus inaccuracies in the proofs. 
Whatever I have accomplished, I am sure that my presentation can be 
improved. I welcome your comments and suggestions. In  the meantime, 
you should not be discouraged if you have found part I1 of this text to 
be very difficult. Soundness and completeness are substantial mathemati- 

cal results. If you understand them only in a fragmentary way, you can 
greatly improve your grasp by patiently going over these chapters again. 
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