Solutions 7

- (1) (a) The quotient is $2x^2 3x$ and the remainder is 1.
 - (b) The quotient is $x^2 + 2x 3$ and the remainder is -7.
 - (c) The quotient is $x^2 3x + 8$ and the remainder is -27x + 7.
- (2) (a) We are given that 4 is a root and so we know that x 4 is a factor. Dividing out we get 3x² 8x + 4. This is a quadratic and so we can find its roots by means of completing the square. We get 2 and ²/₃. Thus the roots are 4, 2, ²/₃.
 - (b) We are given that -1 and -2 are roots and so (x + 1)(x + 2) is a factor. Dividing out we get $x^2 x + 1$. The roots of this quadratic are $\frac{1}{2}(1\pm i\sqrt{3})$. Thus the roots are $-1, -2, \frac{1}{2}(1\pm i\sqrt{3})$.
- (3) The required cubic is $(x-2)(x+3)(x-4) = x^3 3x^2 10x + 24$.
- (4) The required quartic is $(x-i)(x+i)(x-1-i)(x-1+i) = x^4 2x^3 + 3x^2 2x + 2$.
- (5) By assumption $x^3+ax^2+bx+c = (x-x_1)(x-x_2)(x-x_3)$. Multiplying out the RHS we get

$$x^{3} - (x_{1} + x_{2} + x_{3})x^{2} + (x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3})x - x_{1}x_{2}x_{3}.$$

Now equate with the coefficients of the LHS to get

$$a = -(x_1 + x_2 + x_3), b = x_1x_2 + x_1x_3 + x_2x_3, c = -x_1x_2x_3.$$

- (6) The polynomial in question has real coefficients and so the complex roots come in complex conjugate pairs. It follows therefore that $3-i\sqrt{2}$ is also a root. Thus $(x-3-i\sqrt{2})(x-3+i\sqrt{2}) = x^2-6x+11$ is a factor. Dividing out we get $x^2 + 7x + 6$. This factorizes as (x+1)(x+6) and so its roots are -1 and -6. Thus the roots are $-1, -6, 3 + i\sqrt{2}, 3 i\sqrt{2}$.
- (7) The polynomial in question has real roots and so $1 + i\sqrt{5}$ is another root. Thus $(x - 1 - i\sqrt{5})(x - 1 + i\sqrt{5})$ is a factor. Dividing out by $x^2 - 2x + 6$ we get $x^2 - 2$. This factorizes as $(x - \sqrt{2})(x + \sqrt{2})$. Thus the roots are $1 + i\sqrt{5}, 1 - i\sqrt{5}, \sqrt{2}, -\sqrt{2}$.
- (8) (a) -1 is a root and so x+1 is a factor. We can write the polynomial as the product $(x+1)(x^2+1)$. The roots are therefore -1, i, -i.
 - (b) -2 is a root and so x + 2 is a factor. We can therefore write the polynomial as $(x + 2)(x^2 3x + 3)$. The roots are therefore $-2, \frac{1}{2}(3 + i\sqrt{3}), \frac{1}{2}(3 i\sqrt{3})$.
 - (c) 1 is a root and so we get a first factorization of our polynomial as $(x-1)(x^3+5x+6)$. -1 is a root of x^3+5x+6 . We may therefore factorize $x^3+5x+6 = (x+1)(x^2-x+6)$. The quadratic has the roots $\frac{1}{2}(1\pm i\sqrt{23})$. The roots are therefore $1, -1, \frac{1}{2}(1+i\sqrt{23}), \frac{1}{2}(1-i\sqrt{23})$.

- (9) (a) Show that 1 is a root and then divide by x-1 to get the required factorization $(x-1)(x^2+x+1)$. Observe that x^2+x+1 has complex roots and so cannot be factorized further in terms of real polynomials.
 - (b) This is a difference of two squares and so a first factorization is $(x^2+1)(x^2-1)$ and thus the required factorization is (x-1)1) $(x + 1)(x^2 + 1)$. Observe that $x^2 + 1$ has complex roots and so cannot be factorized further in terms of real polynomials.
 - (c) Put $y = x^2$ and Solve $y^2 + 1 = 0$. The solutions are $\pm i$. Thus $x^2 = i$ or $x^2 = -i$. Taking square roots, yields $x = \frac{1}{\sqrt{2}}(1 + i)$ $i), \frac{-1}{\sqrt{2}}(1+i), \frac{1}{\sqrt{2}}(-1+i), \frac{1}{\sqrt{2}}(1-i).$ Now we collect together complex conjugate pairs, to get $(x - \frac{1}{\sqrt{2}}(1+i))(x - \frac{1}{\sqrt{2}}(1-i)) =$ $x^{2} - \sqrt{2}x + 1$, and $x^{2} + \sqrt{2}x + 1$. Thus $x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)$ 1) $(x^2 + \sqrt{2}x + 1)$. [A student made a nice observation that leads to a much quicker solution to this question. Observe that $x^{4} + 1 = (x^{2} + 1)^{2} - 2x^{2}$. How does this help?]
- (10) 1, i, -1, -i.
- (11) Let $\omega = \frac{1}{2} (1 + i\sqrt{3})$. Then the roots are $1, \omega, \omega^2, \omega^3, \omega^4, \omega^5$. (12) Let $\omega = \frac{1}{\sqrt{2}} (1 + i)$. Then the roots are $1, \omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega^6, \omega^7$.
- (13) This question shows the sorts of insights that are needed to calculate explicit radical expressions for nth roots.
- (14) (a) The cube roots are

 - $2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = 2i.$ $2(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}) = -\sqrt{3} i.$ $2(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}) = \sqrt{3} i.$
 - (b) The fourth roots are
 - $\sqrt[4]{2} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = i \sqrt[4]{2}.$
 - $\sqrt[4]{2}(\cos \pi + i\sin \pi) = -\sqrt[4]{2}.$
 - $\sqrt[4]{2} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) = -i \sqrt[4]{2}$
 - $\sqrt[4]{2}(\cos 2\pi + i\sin 2\pi) = \sqrt[4]{2}.$
 - (c) Observe that $1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$. The sixth roots are

 - $\frac{12}{2}\left(\cos\frac{\pi}{24} + i\sin\frac{\pi}{24}\right)$. $\frac{12}{2}\left(\cos\frac{9\pi}{24} + i\sin\frac{\pi}{24}\right)$. $\frac{12}{2}\left(\cos\frac{9\pi}{24} + i\sin\frac{9\pi}{24}\right)$. $\frac{12}{2}\left(\cos\frac{17\pi}{24} + i\sin\frac{17\pi}{24}\right)$. $\frac{12}{2}\left(\cos\frac{25\pi}{24} + i\sin\frac{25\pi}{24}\right)$. $\frac{12}{2}\left(\cos\frac{33\pi}{24} + i\sin\frac{32\pi}{24}\right)$. $\frac{12}{2}\left(\cos\frac{41\pi}{24} + i\sin\frac{41\pi}{24}\right)$.

 $\mathbf{2}$