Solutions 9

(1) (a) This is a consistent system of equations with infinitely many solutions. The solution set is

$$\left\{ \left(\begin{array}{c} \frac{1}{3} \\ \frac{1}{3} \\ 0 \end{array} \right) + \lambda \left(\begin{array}{c} \frac{2}{3} \\ -\frac{1}{3} \\ 1 \end{array} \right) : \lambda \in \mathbb{R} \right\}.$$

- (b) This is an inconsistent system that has no solutions.
- (c) This is a consistent system with the unique solution

$$\left(\begin{array}{c} -\frac{3}{5}\\ \frac{14}{5}\\ -\frac{7}{5} \end{array}\right).$$

(d) This is a consistent system with the unique solution

$$\left(\begin{array}{c}1\\2\\3\end{array}\right).$$

(e) This is a consistent system with a unique solution

$$\left(\begin{array}{c} -6\\5\\-1\end{array}\right).$$

(f) This is a consistent system with infinitely many solutions The solution set is

$$\left\{ \left(\begin{array}{c} -3\\2\\0 \end{array}\right) + \lambda \left(\begin{array}{c} -1\\2\\1 \end{array}\right) : \lambda \in \mathbb{R} \right\}.$$

- (2) (a) 5.
 - (b) 0.
 - (c) 5.
 - (d) 2.
 - (e) -1200.
 - (f) 33.
 - (g) 4.
 - (h) 0.
- (3) We have that (1-x)(3-x) 8 = 0. Thus $x^2 4x 5 = 0$. Hence (x+1)(x-5) = 0. It follows that x = -1 or x = 5.
- (4) x.
- (5) (a) $\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

(b)
$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
.
(c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$.
(d) $\begin{pmatrix} \frac{1}{5} & \frac{1}{5} & -\frac{2}{5} \\ 1 & -1 & -1 \\ -\frac{2}{5} & \frac{3}{5} & \frac{4}{5} \end{pmatrix}$.
(e) $\begin{pmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$.
(f) $\begin{pmatrix} \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \\ \frac{2}{9} & \frac{1}{9} & -\frac{2}{9} \\ \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \end{pmatrix}$.

(6) (a) By definition,
$$AA^{-1} = I$$
. Thus by properties of determinants $det(A) det(A^{-1}) = 1$.

It follows that $\det(A) \neq 0$ if and only if $\det(A^{-1}) \neq 0$, and that in this case $\det(A^{-1}) = \det(A)^{-1}$.

(b) By properties of determinants, $\det(A) = \det(A^T)$. Thus $\det(A) \neq 0$ if and only if $\det(A^T) \neq 0$. Now $AA^{-1} = I = A^{-1}A$ and so $(A^{-1})^T A^T = I = A^T (A^{-1})^T$ from properties of the transpose. But these equations say that the inverse of A^T is $(A^{-1})^T$ and we have proved the result.

$$(7)$$
 (a)

$$C^{-1} = \left(\begin{array}{rrr} 3 & -2 & -2 \\ -1 & 1 & 1 \\ 2 & -1 & -2 \end{array}\right).$$

(b)

$$\left(\begin{array}{rrrr} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{array}\right)$$

- (8) (a) The characteristic polynomial is $x^2 5x + 4$. The eigenvalues are 1 and 4.
 - (b) The characteristic polynomial is $-x^3 + 6x^2 3x 10$. The eigenvalues are 2, -1 and 5.

 $\mathbf{2}$