
Solutions 3

(1) (a) Let A be the set of starters, B the set of main courses, and
C the set of drinks. Then an element of the set A × B × C
consists of a starter, followed by a main course, followed by a
drink. Thus the set A × B × C is the set of all possible such
dinners. The cardinality of this set is 2 · 3 · 4. Thus there are 24
such dinners.

(b) The argument is the same as for (1) above. The number of
possible dates is therefore 31 · 12 · 3000 = 1, 116, 000.

(c) This is a question about permutations. The answer is 10!.
(d) This is the same as the previous answer.
(e) This is a question about 3-permutations. The answer is 8·7·6 =

336.
(f) This is a question about combinations. The answer is

(
52
13

)
.

(g) This is a question about combinations. The answer is
(
10
4

)
.

(h) Order matters but repetition is not allowed and so this is a
question about 3-permutations. The answer is is 9×8×7 = 504
ways. I should add that order is implicit in stating the rôles:
chairman, secretary and treasurer.

(i) Since order is not important and repetitions are not allowed,
this is a question about combinations and so the solution is(

49

6

)
= 13, 983, 816.

(j) We are just counting sequences and so the solution is 54 = 625.
(2) Think of a novel as one long string of symbols. This string has length

250× 45× 60 = 675, 000.

But each symbol can be one of 100 possibilities and so the number
of possible novels is

100675,000.

It’s more convenient to write this as a power of 10 and so we get

101,350,000

possible novels. For comparison purposes, the number of atoms in
the universe is estimated to be 1080.

(3) (a) This is an important result. I would be happy with a simple
counting argument using Venn diagrams (the intersection gets
counted twice). A more formal answer uses the fact that if X
and Y are disjoint sets then |X ∪ Y | = |X|+ |Y |. Observe that

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A)
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where the union on the RHS is disjoint. Thus

|A ∪B| = |A \B|+ |A ∩B|+ |B \A| .
Now A = (A \B) ∪ (A ∩B), which is a disjoint union, and so

|A| = |A \B|+ |A ∩B| .
Similarly

|B| = |B \A|+ |A ∩B| .
Thus

|A \B| = |A| − |A ∩B|
and

|B \A| = |B| − |A ∩B| .
Substituting this in the our first expression for |A ∪B| gives the
result.

(b) To prove the second claim, we calculate as follows. We use the
properties of the Boolean set operations. First,

|(A ∪B) ∪ C| = |A ∪B|+ |C| − |(A ∪B) ∩ C| .
We can appeal to our result above to get

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |(A ∪B) ∩ C| .
Finally, we deal the last term by writing (A ∪ B) ∩ C = (A ∩
C) ∪ (B ∩ C). We therefore get

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C| .


