A separation logic for a promising semantics
(Technical appendix)

This is the technical appendix accompanying the article “A separation logic for a promising semantics”.
It contains a soundness proof for the SLR logic. The programming language and logic presented in this
appendix extends the programming language and logic presented in the paper with plain accesses. The
programming language has further been extended with compare-and-swap operations and the logic has been
proven sound under the additional memory reduction rules required to support compare-and-swap.

Contents
1 Operational semantics 2
1.1 Simplified operational semantics 6
2 Program logic 7
2.1 Assertion logic 7
2.2 Specification logic L. e 7
3 Semantics of the program logic 9
3.1 Semantic domains e e e 9
3.2 Acquirable resources L. e 12
3.3 Non-promising safety implies promising safety 17
3.4 Adequacy of promising safety 21
4 Soundness 23
4.1 Structural rules oL 23
4.2 View-shift rules L 26
4.3 Rules for release/acquire accesses Lo e 28
4.4 Rules for relaxed accesses e 32
4.5 Rules for plain accesses 34
5 Examples 36
5.1 Random number generator e 36
5.2 Separation e 36
5.3 Non-deterministic write L 37
5.3.1 Example using non-deterministic choice o000 37
5.3.2 Example within the language Lo oo 37
5.4 Coherence L 37
541 CoRW o e 37
54.2 CoWR 38
5.5 Release/acquire 38
5.5.1 Split permission message passing example L Lo 38
552 WRC . . . 39

1 Operational semantics

Programming Language Let Loc be the set of memory locations, Val be the set of values, Tid be the
set of thread identifiers, and Reg be the set of register identifiers.

We assume Loc is the union of two disjoint sets of plain and non-plain memory locations, PLoc and
NPLoc, respectively. Throughout the rest of the document we implicitly assume that all plain accesses are
performed on plain locations and all non-plain accesses on non-plain locations.

e€ Expr == rlei+ea|...

s € Stm r=e
[elotn :=7 | [e]rx =7 | [€]rer :=T
ri= el [7= 6]y [7= e]ag

|

|

| ri,7m2 = casnax(e, r3,74)

| 71,72 = casre(e,r3,4)

| ri,7m2 = casaqle, r3,74)

| r1,T2 = Casacqrel(ear377ﬂ4)
| if e then s else so

| while e do s

| 51582 | skip

The modes for accesses are partially ordered by C as follows:
rel

7 ~
pln — rix acqrel
~ >
acq

Thread store ‘,u € TStore = Reg — Val‘

A thread store, i, is a function assigning a value to every register identifiers.

Thread local state ‘O’ € TLState = TStore x Stm‘

A thread local state, o = (u, s), consists of a thread store and a statement (to be executed by the thread).
Memory actions
Transitions are labelled with memory actions:

a€ MO == 7|Wezv|Rozv|U,zv;ve

7, which stands for a silent action (as opposed to a proper memory action), is elided.

Thread-local state reduction oc—0
lel(w) =T [el () = L [el () = L
(w, if e then s1 else s2) — (1, s1) (11, if e then s; else s2) — (1, s2) (11, while e do s) — (p, skip)
[el(w) =T (1, 81) = (W', 51)
(u, while e do s) — (u, s; while e do s) (1, skip;) — (1,) (p, 813 82) — (1, 813 82)
[el(w) = v e . 02w :
(1, 2] = €) " 24 (p1, skip) (= [2],) *5 (ufr > v], skip)

(p, 7 = €) —> (u[r — v], skip)

o=rlxVo=rel =0 =rlx 0:acq\/o:acqrel:o':acq

R /zv .
(1, 73,74 = caso(x,e1,€2)) == (u[rs — 0,74 — v], skip)

Uo z p(e1) pu(ez) (

(p, 73,74 = caso(z,e1,€2)) wlrs — 1,74 — v1], skip)

Timestamp

Time is an infinite set of timestamps, densely totally ordered by <, with 0 being the minimum element.

Timemap ‘T € Timemap = Loc — Tz'me‘

A timemap is a function T : Loc — Time. The order < is extended pointwise to timemaps.

View ‘ V € View C Timemap X Timemap‘

A wview is a pair V = (Tyn, Trix) of timemaps satisfying Tpin < Trix. We denote by V.pln and V.rlx the
components of V.

Additional notations for timemaps and views | and LI denote the natural bottom elements and
join operations for timemaps and for views (pointwise extensions of the initial timestamp 0 and the Ll—i.e.,
max—operation on timestamps); {x@t} denotes the timemap assigning ¢ to z and 0 to other locations. We
write T for the least timemap that maps every location to 0 and V| for the view (T, T).

Message ‘m € Msg C Loc x Val x Time x Time x View x Tid X Mod‘

A message is a tuple m = (z :2 v, RQ(f,t]), where x € Loc, v € Val, f,t € Time, R € View, i € Tid, and
0 € Mod, such that (i) f <tor f =t=0; (i) R.rix(x) = Rpln(z) = t; and (iii) o = pln iff z € PLoc.
We denote by m.loc, m.val, m.from, m.time, m.view, and m.mod the components of m. Two messages
m = (x :f v, RQ(f,t]) and m’ = (z/ :;?/ o', RQ(f',t']) are called disjoint, denoted m # m/, if either x # 2/,
t<fl<tyort < f<t.

Memory ‘M € Mem C Pp,(Msg) ‘

A memory is a (nonempty) pairwise disjoint finite set of messages. A memory M supports the following
insertions of a message m = (x :? v, RQ(f,t]):

e The additive insertion, denoted by M <> m, is only defined if {m} # M, in which case it is given by
{m}UM.

e The splitting insertion, denoted by M <% m, is only defined if there exists m' = (z :¢ v/, R'Q(f,t'])
with ¢t < ¢ in M, in which case it is given by M\{m'} U {m, (z :¢ v/, R'Q(¢,t'])}.

e The lowering insertion, denoted by M <% m, is only defined if there exists m’ = (z :2 v, R'Q(f, t]) with
R < R'in M, in which case it is given by M\{m'} U {m}.

Notation for restricting a memory:

N\ def

M@i) = {m e M | m.tid =i}
M(z) < {me M| m.loc =z}
M(i,z) < M(i) N M(z)
M(rel) € {m € M | m.mod = rel}
M(rix) € {m € M | m.mod = rix}
M(rel,z) = M(rel) N M(zx)
M(rix,z) = M(rlx) N M(z)
Memory reduction (M, Py ™ (M', P
MEMORY: NEW MEMORY: FULFILL
e {& P P=Pem M=M+m
(M, P) % (M <>m, P) (M, Py =5 (M', P\ {m})

Closed memory Given a timemap 7" and a memory M, we write T' € M if, for every x € Loc, we have
T(x) = m.time for some m € M with m.loc = z. For a view V, we write V. € M if T € M for each
component timemap 7" of V. A memory M is closed if m.view € M for every m € M.

Future memory For memories M, M’, we write M — M’ if M’ € {M & m, M <> m, M <> m} for some
message m, and M’ is closed. We say that M’ is a future memory of M w.r.t. a memory P, if P C M’ and
M —* M.

Global Configuration ‘gconf € GConf= Mem x Mem‘

A global configuration is a tuple gconf = (M, P),where M is a memory and P C M is a memory called
promise memory. We denote by gconf.M and gconf.P the components of gconf. We write gconf, to denote
the empty global configuration, (@, ().

Thread state ’ TS € TLState x View

A thread state is a pair TS = (0, V), where o is a thread local state and V is a view. We denote by T'S.o
and T'S.V the components of TS.

Thread configuration (TS, (M, P))

A thread configuration is a tuple (TS, (M, P)), where TS is a thread state, and (M, P) is a global configu-
ration.

Transition mode

g€ TM := NP |promise

Given a f-labelled relation —, a — b stands for 38. a 2.

Thread configuration reduction (TS, (M, P)) in (TS',(M', P"))

THREAD: READ

Ro z v

o 25 o mz(m STu, RQ(_) e M

o=pln= Vpln(z) <t A V' =V Upln: L, rix: {z@Qt}]
THREAD: SILENT o=rlx=Virlx(z) <t A V' =V U[pln: {x@t} rix : {z@Qt}]
o— o o=acqg= Virlx(z) <t A V' =V U[pln: {z@t}, rix: {z@Qt}] U

((0,V), (M, P)) =5, (o', V), (M, P)) ((0,V), (M, P)) =5, (o, V'), (M, P))

THREAD: WRITE
Wozv

o 250 (M, P) (M', P") Virlx(z) < t
V' =V ulpln: {zQt}, rix: {zQt}]
o0 C rix = R = [pln: {z@t}, rix: {z@Qt}]
o=rel=R=V' A P(i,z) =0

({0, V), (M, P)) 5 (o', V'), (M, P'))

(x:§v,RQ(_,t])

THREAD: UPDATE
o oL o m = (x5 v, RQ(_, f]) e M

(M, py TEEEED ey () < f
oCrel = V' =V U[pln: {z@t}, rix: {zQt}]
o0Jdacg= V' =V U[pln: {z@t}, rix: {z@t}] U R,
oC acq = Ry = R, U[pln: {zQt}, rix : {zQt}]

o Jdrel = Ry, =V U[pln: {z@t}, rix: {z@Qt}| U R,
odrel = P(i,z) =10

({0, V), (M, P)) 5 (o', V'), (M, P'))

THREAD: PROMISE

m=(z: ,RQ(_,t]) e {85845} P'=P+m M =M+m R = [pln: {z@t}, rix : {z@Qt}]

promlse

(TS, (M, P)) i (TS, (M, P"))

Consistency A thread configuration (TS, (M, P)) is called consistent w.r.t. i € Tid if for every future
memory Mgyture of M w.r.t. P(i) we have (TS, (Mtuture, P)) ﬁi (TS',(M', P")) for some TS', M', P’ such

that P'(i) = 0.

Thread certified reduction (TS, (M >> i (TS', (M, P'))
romlse +
(TS, (M, P)) "= (TS, (M', P")) (TS, (M, P)) =5, (TS',(M’, P'))
(TS, (M',P")) is consistent w.r.t. i (TS, (M, P’)> is consistent w.r.t.
(TS, (M, P)) "5, (TS, (M, P')) (TS, (M, P)) =%, (TS', (M', P'))
Machine state ‘MS = (7S, (M, P)) ‘

A machine state is a tuple MS = (TS, (M, P)), where TS is a function assigning a thread state to every
thread, and (M, P) is a global configuration. The initial state MS° (for a given program) consists of the
function 78° mapping each thread i to its initial state (09, 1) (where 0! is the thread’s initial local state,
and L is the zero view (all timestamps in timemaps are 0), the empty set of promises; the initial memory

MY consisting of one message (z :5** 0, L@(0,0]) for each location .

Machine reduction

(TS(i), (M, P)) P22, (TS(i), (M, P'))
(TS, (M, P)) "2, (TS, (M, P'))

(TS, (M, P)) =5, (TS', (M', P'))

(TS(i), (M, P)) =5, (TS, (M, P"))
(TS, (M, P)) 2=, (TS|i — TS'], (M, P'))

Promise certifications satisfy the following basic property: making a promise and then certifying it leads
to a state that is reachable without performing any promises.

Lemma 1. Whenever ((c,V), (M, P)) promise.
then ({0, V), (M, P)) =5 (0", V'), (M", P")).

1.1 Simplified operational semantics

Memory reduction

E

(M, P) (M &> m, P)

THREAD: SILENT
oc— o

({0, V), (M, P)) 25, (o', V), (M, P))

THREAD: WRITE

o Wo_x>v O'/ <]\47 P> (I?ﬁ)@tb <M’,Pl>
Vi) <t V' =Vixz—ti

0o=rlx = R = {z@Qt}
o=rel=R=V' A P(i,x) =0

({0, V), (M, PY) X5, (0!, V'), (M, P'))

o V), 0 Py X5 (0!, V), (M7, Py and P(i) = 0,

(M, P) 5 (M', P")

méeP
(M, P) =% (M, P\ {m})

THREAD: READ
o ety o (z:5r v, Rat]) € M

Viz) <t

o=rlx=V'=V[z 1

o=acq=V'=Vz—tJUR

(o, V), (M, P)) 5, (o', V"), (M, P))

THREAD: PROMISE
m = (z ;[v, RQt])
M =M &m P =P&m

(TS, (M, P)) 228, (TS, (M', P"))

2 Program logic

The SLR assertion language is generated by the following grammar.

P,QeAssn == L|T|PVQ|PAQ|P=Q|Vz.P|3z. P| Ny = Nz|¢p(N)
| T P+Q|Rel(t,6) | Acalt,d) | O(L,v,1) [W=(£, X) | €5 v | VP | pure(P)
¢ € Pred = Mx.P

Here M, /¢, v, t, m and X all range over a simply-typed term language which we assume includes booleans,
locations, values and expressions of the programming language, fractional permissions, and timestamps, and
is closed under paring, finite sets and sequences. By convention we assume that ¢, v, t, 7 and X range over
terms of type location, value, timestamp, permission and sets of pairs of values and timestamps, respectively.

2.1 Assertion logic

The judgments of the assertion logic include an entailment judgment, P - @, a view shift judgment, - P = Q.
The entailment judgment includes all the usual rules of first-order separation logic, which we elide. In addition
it includes a number of axioms about SLR assertions, which are given below.

Acq(z, Av. ¢1(v) * ¢2(v)) & Acq(z, 1) * Acq(z, do)
Rel(z, ¢) < Rel(x, ¢) * Rel(z, ¢)

W™ (z, X) * (v,t) € X = W™ (2, X) * O(z,v,t)
Wh(z, X) * O(z, a,t) = W'(x, X) * O(x, a,t) * (a,t) € X
W7 (2, X)* (v,t) € X x (v, t') € X xv# v =W (x, X)*t #t
Wz, X)*(,t) e X*x(,t)eX=2W(xg, X)st<t'Vt=t' Vit <t

Wﬂ—lJrﬂ—z(Q?,Xl U X2) - Wﬂ—l (Qf,Xl) * WTQ(LU,XQ)

T +72

T U@Q?Q’U*ZE)B’U

TES 0 %3 Vg = T s U1 KT S Uy % U] = Vg

For all assertions P expressible in the first-order logic fragment of our assertion logic, we have - pure(P).

2.2 Specification logic
The judgment of the specification logic is F {P} s {Q}.

FP=P H{P'}s{Q} FQ'=Q H{P}s{Q} mod(s) N FRV(R) =)
H{P}s{Q} F{P*R}s{QxR}
{P}si{QF {Q} s2 {R} {Pre=T}s{P}
{P} s1;82 {R} {P} whileedo s {PANe= 1}
{Pre=T}si {QF {PAe=1}s{Q} {P} s {Q}
{P} if e then s; else s; {Q} {3z. P} s {3z. Q}

FP=@Q FP=Q FP=@Q FQ=R
FP=Q FPxR=Qx*R FP=R

Plain accesses

"{mze*x@i}[e]pm ZZG{x»i)a}
Fl{e=exaBvba=e, {z D vra=0}

where z is a specification variable.

Release and acquire accesses

F {z =exAcq(z,¢) * O(z, _,t)}
a =[],

{3t > . Aca(w, ¢la ~ T]) * b(a) * O(a, 0, 1)}

F {z =exAcq(z,¢) * W (z, X)}
a:= (€],

{Acq(z, dla — T]) * ¢(a) * W!(z, X) % O(z, a, snd(max(X))) * a = fst(max(X))}

F {z =e1%v=-ey*Rel(z,) * WT(z, X) x ¢(v) }
[el]rel = €2

{3t. W™ (2, X U{(v,1)}) * snd(max(X)) < t}

where z, t, v, m and X are specification variables.

Relaxed accesses

[{;1: =exAcq(z, ¢) * O(x, ,t)}

a:= [6] rix

{3t' > 1. V(¢(a)) * O(z,a,)}

F {z = exAcq(z, ¢) * W(z, X)}
a = [e]rlx

{Acq(z, ¢) * W!(z, X) % (V¢(a)) * O(z, a, snd(max(X))) * a = fst(max (X))}

F {z =e1 v =eyxRel(z,¢) * WT(z, X) x ¢(v) * pure(p(v)) }
[el]rlx = €2

{3t. W™ (2, X U{(v,1)}) * snd(max(X)) < t}

where z, t, v, m and X are specification variables.

3 Semantics of the program logic

3.1 Semantic domains

Predld £ N
PermZ {zcQ|0<z <1}
Perm™ € {zcQ|0<z <1}
PlnPerm = PLoc — 1+ (Perm™ x Val x Time)
WrPerm = NPLoc — {(r, X) € Perm x P(Val x Time) |7 =0= X = 0}
AcqPerm =< NPLoc — P(Predld)
r € M Y PinPerm x WrPerm x AcqPerm
u € MsgRes = Msg — i, (Predld — g, M)
W € World (PLoc — Pred) x (Predld — s, Pred)
p € Prop & World —mon PT(GConf x View x M)
TRes < TId — M

We use r.pln, r.wr and 7.acq to refer to the first, second and third projection of a resource r, respectively.

Resource monoid o MxM-—-M
e: M

The set of resources, M is a partial commutative monoid with the following composition operator and
monoid unit.

def
r1 079 = (11.pln @51, 2.pln, 7'1.Wr @, T9.Wr, 71.2Cq ®4cq 7'2.8CQ)
e (N inj (%), A_. (0,0),A_.0)

where

Bt ogun hy %2 {)\m. hi(z) ey ho(x) if hl(ac)'#hg(x) for all x € Loc
undefined otherwise

ingq(x) ep =g

x o) i1 () =g

injo(m + mo,v1) i m + 72 <0 and vy =vs

1 otherwise

def

o (1, 01) @p1 injo(ma,v2) = {

undefined otherwise

wr {Ax. fi(@) o folz) if fi(2)#fa(x) for all z
,fl Oy r f2 —

(7T1+7T2,X1UX2) if71'1+71'2§0

e ’X ® (T ,X dZEf
(11, X1) o (m2, X2) {undeﬁned otherwise

aer J Az g1(x) Uga(z) if Va. gi(z) Nga(z) =0
g1 ®acq 92 = .
undefined otherwise

The monotonicity of propositions is with respect to the following ordering on worlds, and subset inclusion
on PT(GConf x View x M).

World ordering ‘ < : P(World x World) ‘

Wi < Wo Z Wi rel = Wa.rel A dom(W.acq) C dom(Ws.acq) A
Vi € dom(Wi.acq). Wi.acq(t) = Wh.acq(t)

The upwards-closure on GConfx Viewx M is with respect to the point-wise extension of the following orders
on resources and global configurations and the previously defined ordering on views.

Resource ordering ‘ < PMx M) ‘

def
7”‘1§7’2:ez|7'3.7’2:7'1.7”3

Configuration ordering ‘ < : P(GConf x GConf) ‘

geonf, < gconf, L geonf’ .M is a future memory of gconf.M w.r.t. gconf'.P
Lemma 2.

geonf.M is closed A (%, gconf) = (X', gconf') = gconf < gconf’

Well-formed configuration Wicont

Wieont (i, gconf, V) = ¥m € geonf.P. m.tid = i = V.rix(m.loc) < m.time

Lemma 3.

(o, V), (M, PY) N8 (0! V'), (M?, P'Y) A P'(3) = 0 = wheons (i, (M, P), V)

Read assertion @
O, v, t) ZLIW. {(gconf,V,r) | Im € geonf.M. m.loc = £ Am.val = v Am.time =t At < V.rix(€)}
Write assertion

Wi, X) =MW, {(gconf,V,r) | In’ > . rur(l) = (x', X) A snd(max(X)) < V.rix(0)}
Acq assertion acq
acq(l, ¢) EIW. {(geonf,V,r) | 3 € dom(W.acq) Nr.acq(f). W.acq(t) = ¢}
Rel assertion

rel(0, ¢) = IW. {(gconf,V,r) | + Yu. ¢(v) = W.rel(£)(v)}

10

Points-to assertion

05 v =AW, {(geonf,V,r) | In’ > m. 3t. rpln(l) =

Assertion interpretation

[LI7 o) 0
[TIOW) & GConf x View x M
[P AQILW) Z [P]) N QDL (W)
[PV QILW) £ [PT(W) u QI (W)
[P = QW) €|
(geonf',V".#") € [P](W
[P+ Q)N OW) < {(gconf,V,r1 e 13) | (geonf,V,r1) € [P](
[¥z. PTIOV) = Nye v [PI T OW)
[32. PIIWV) = Uye o [PII (W)
[Ny = N}, W) € {z | [V, = [NV2]3
[, PYV)T W) Z [P TV T ()
[O(¢, v,] (W) = O[], [v], [E]) (W)
[War (€,)15 OV) = W (4D, [XT;))
[Aca(t,)]}, (W) = acq([4]7,)W)
[Rel(¢,)],(W) = rel([€]}),)(W)
[es o om = qa F p1ov)

" (geonf, V,r) | [P](W

[VPIW) &
[pure(P)J, (W) 2

) # 0}
|VWI > W. Va?l To. T € [[Pﬂn(

11

injy(m’ v, t) At < Vipln(z)}

[-1=

: Assn x T'Store x Env — Prop

/) :>
W)

(gconf,V,r) | Vgconf' > geonf.VV' > V. ¥r' > r. YW > W.
(geonf’, V',r") € [Q (W)}
A (geonf, Vyr2) € [Q] (W)}

") = @z € [PILOV)}

3.2 Acquirable resources

Acquirable messages ‘ canAcq : AcgPerm x MsgRes — P(Msg x Predld) ‘

The canAcq(A, u) function recursively computes the set of messages whose resources we are currently allowed
to acquire from message resource assignment u.

I'UcanAcq(I(,, yeru(m)(c).acq,ull — L1]) if I = canAcqy(A,u) # 0

1] otherwise

canAcq(A,u) < {

canAcqy(A,u) = {(m, 1) | m € dom(u) At € A(m.loc) N dom(u(m))}

The canAcq(A,u) function is defined by recursion using ¥, gom(u)|dom(u(m))| as the size function.

Acquirable resources ‘canAcq : M x MsgRes — M

The canAcq(r,u) function computes the composition of the resources we are currently allowed to acquire
from message resource assignment u.

CanACQ(Ta U,) e H(m,L)ecanAcq(r.acq,u)u(m) (L)

Throughout the rest of the document whenever we write canAcq(r,u) we will implicitly assume that r e
I, dom(u) e dom(u(m))u(m)(¢) is defined and whenever we write canAcq(A, u) that Ae(Il,,c gom(u)ILe dom(u(m))u(m)(t)).acq
is defined.

Lemma 4. canAcqy(A e B,u) = canAcqy(4, u) U canAcq(B, u)
Lemma 5. canAcq(A e B,u) = canAcq(A4, u) U canAcq(B, u)

Lemma 6. For m € dom(u) and ¢ € A(m.loc) N dom(u(m)), we have canAcq(A4, u) = canAcq(A’,) where
A= Aeu(m)(t).A and v’ = u[m, +— €.

Proof.
canAcq(A’,v') = canAcq(A,v') UcanAcq(u(m)(t). A, u’)

(canAcq(A,u) \ canAcq(u(m)(e).A,u)) U canAcq(u(m)(t). A, u)
= canAcq(A4, u)

Lemma 7.

m € dom(u) At € r.acq(m.loc) N dom(u(m)) =
canAcq(r,u) = u(m)(t) e canAcq(r ® u(m)(t), ulm, — ¢l)

Proof. By Lemma 6

= H(m’,L’)EC&nAcq(r.acq,u)u()(L/)
= canAcq(r, u)

12

Lemma 8.

m € dom(u) At € A(m.loc) N dom(u(m)) =
canAcq(A,u) \ {(m,)} = canAcq(A’,)
where A’ = A e u(m)(t).acq and v’ = um, ¢ — L].
Proof.
canAcq(A’,v") = canAcq(A,v') UcanAcq(u(m)(t).acq, u’)
= (canAcq(A, u) \ ({(m,¢)} UcanAcq(u(m)(t).acq,u))) U canAcq(u(m)(t).acq, u)
= canAcq(4,u) \ {(m,)}

Lemma 9.
v € A(x) A/ fresh for A and u =
canAcqy(A’,u') = (canAcqy(A,u) \ {(m,¢) | m.loc = z}) U
{(m,) | mloc = x A v € dom(u(m))}
where v = uft ~, /] and A’ = A[z — A(x)[t ~ !]].
Lemma 10.

v € A(z) AN/ fresh for A and u =
canAcq(A’,u') = (canAcq(A4,u) \ {(m,t) | m.loc = z})U
{(m,!") | m.loc =z A v € dom(u(m))}

where v = uft ~, /] and A’ = A[z — A(x)[e ~ !]].
Lemma 11.

v & r.acq(z) Al fresh for u and r A
(Vm € dom(u). V" € dom(u(m)). v & u(m)(/").A(z)) =

canAcq(r[t ~ 4], ult ~4 1']) = canAcq(r, u)

Proof. Tt follows from the ¢ ¢ r.acq(z) assumption that r = [t ~=, ¢/]. Furthermore, since ¢ & u(m)(.”).A(x)
for any m € dom(m) and "/ € dom(u(m)) it follows that the acquirable resources should be independent
of the current resources associated with the predicate named ¢, since these resources currently cannot be
acquired. 0

Predicate renaming (=)[=~2=] : MsgRes x Predld x Predld — MsgRes
(=)[=~o2=] : M x Predld x Predld — M

u(m)(e) if /" =4 and m.loc =z
1 def ML if ¥ =1 and m.loc=x if m € dom(u)
ufe ~5 U] = A . .
u(m)(¢") otherwise

1L otherwise
X[e~] Zifre X then (X \ {t}) U{/'} else X
le g] L r[A(z) = Ao~]

PRl g V) EN € T 7p (1)t~]

13

Lemma 12.

v € A(z) A1/ fresh for A and u =
canAcq(A’,u") = (canAcq(4,u) \ {(m,:) | m € dom(u) A m.loc =z})U
{(m,") | (m,1) € canAcq(A,u) A m.loc = z}

where v = uft ~, /] and A’ = Alz — A(z)[e ~ !]].
Lemma 13.
¢ € r.acq(z) Al fresh for u and r =
canAcq(r,u) = canAcq(r[t ~, U], ult ~4 1])
Proof. Follows from Lemma 12.
Lemma 14.

dom(u) = dom(u") = M(rel) Az € dom(r.acq) A € r.acq(z) A
v’ =r[A(z) — (r.acq(z) \ {t}) U {t1,2}] A
u' =ulm € M(rel,x) — u(m)[t = Lty 1l 19— 72]]
VYm € M(rel,z). u(m)(¢) =rl orZ

v € dom(u(m)) A 1,2 & dom(u(m)) U dom(u’(m)) A
= canAcq(r,u) = canAcq(r’, u’)

14

Write restrictions writeAllowed : P(M x Msg)
writesAllowed : P(M x P(Msg))

writeAllowed(r,m) = (pln(m) A r.pln(m.loc) = (1,)V
(npln(m) A 1 (rwr(m.loc)) > 0)
writesAllowed(r, M) =/ ¥m € M. writeAllowed(r, m)

Ownership ordering ‘ <o : P(M x M) ‘

1 <o T2 Z V. m(riwr(x)) < m(rawr(x)) A

V. ro.pln(z) = ing, (x) = ri.pln(z) = inj, (x) A

V. ri.pln(z) # inj, (%) = w1 (ri.pn(z)) < m(ra.pln(z))
Lemma 15.

1 <oTi Arg <orh =11 019 <o 1) @1
Lemma 16.
writeAllowed(r1,m) A1y <, 1o = writeAllowed(ra, m)

Lemma 17.

t & dom(u(m)) A def(r,u[m — u(m)[e — r3]])
= canAcq(ry, u[m — u(m)t — r]]) <, canAcq(r; e ro, u)

World erasure ‘ | — | : World — World‘

W= (m (W),)

Erasure ‘ |=1,=2,=3]=, : M x MsgRes x World x P(TId) — P(GConf) ‘

lr,u, W] = {(M, P) | closed(M) A
lett = Hte T[d’l"(t) o HmeMHLEdom(u(m))u(m)(L) in
wi(W, u, t.A) A
Va € locs(pln(M)). t.pln(x) # inj,(x) =
last(M(x) \ P).val = t.pln(z).val A
last(M(x) \ P).time = t.pln(z).time A
YV € locs(npln(M)).
{(m.val,m.time) | m € M(x) \ P} = snd(t.wr(z)) A
VM (rix).
(gconf , Vi ,¢e) € [[W.rel(m.loc)(m.val)]]H(|W|) A
VYm € M(rel). t.acq(m.loc) = dom(u(m)) A Ve € dom(u(m)).
(gconf, m.view,u(m)(v)) € [[W.acq(L)(m.val)]]H W) A

validPromisesr (r, u, P)}

15

where

wiW, u, A) = dom(u) = M(rel) A
{t| m e dom(u) A € dom(u(m))} C dom(W.acq) A
Va € NPLoc. Yv. = W.rel(z)(v) = ®,ca(x)W.acq(t)(v)

Valid promises validPromises_ (=) : P(P(TId) x TRes x MsgRes x Mem)
validPromise(—) : P(M x MsgRes x Msg)

def

validPromisesy (r, u, P) = Vm € P. m.tid ¢ T = validPromise(r, u, m)

validPromise(r, u,m) = writeAllowed(r(m.tid) e canAcq(r(m.tid), u),m)

Non-promising safety assertion npsafe (=) : w? x TLState x Prop — Prop

npsafe g .y (o, B)(W) = GConf x View x M

def

npsafe(n+l.,0) (gﬂ B)(W) = (gCO’flf, V7 T) | Vm. (gconf, Va T’) € npsafe(n,m) (07 B)(W)}

def

npsafe,, 1 ,11)(0, B)(W) = {(geonf, Vi,m1) | V(geonf,V.r) > (gconf, Vi, r1).
(0.5 = skip = (gconf,V,r) € vs(B(o.u))(W))
A (Vrp, f,0', geonf' . V' u, i, W > W. geonf € [rpli e flLu, W]y A
{{a, V), gconf) Ll {o", V"), geonf") A wheont (i, gconf, V') A wlcont (i, gconf', V') =
I’ W =W geonf' € [rpli = e flu W iy A
(geonf', V', r") € npsafe,, 1 (0, BYW") A
r’ e canAcq(r’,u') <, r e canAcq(r,u) A

writesAllowed(r, written(gconf, gconf’))}
Lemma 18 (npsafe is downwards-closed.).

VYn,n',m,m’,o, B,W.

(n',m') < (n,m) Anpsafe(,, .\ (o, B)(W) C npsafe,, ., (o, B)(W)

Wrritten messages ‘written : GConf x GConf — Mem‘

written(gconf, geonf') = {m € gconf’ .M | (m ¢& gconf.M vV m € gconf.P) Am & gconf'.P}

View-shift assertion ’vs(—) : Prop — Prop‘

vs(B)(W) d:ef{(gconfl,Vl,rl) | V(geonf,V,r) > (gconfy, Vi,r1). Vi, fyu, T, W > W.
geonf € |rp[ivs 1o flu, W |r Awfeont(i, gconf, V) =
I W > W
(geonf,V,r"y € BOV") A geonf € |rp[i v 1" o fl,u/, W' |1 A
r’ <, r Ar’ecanAcq(r’,u’) <, recanAcq(r,u)}

16

Promising safety assertion ’ safe_ (=) : w x TLState x Prop — Prop

safeq(o, BYW) € GConf x View x M

def

safe,y1(0, BY(W) = {(gconf, Vi,r1) | Y(gconf,V,r) > (geonf,, Vi,r1).
(0.5 = skip = (gconf,V,r) € vs(B(o.u))(W))
A (Vrp, o, geonf' . V' u, W' i. geconf' € |rrli v r],u, W]g A
({0, V), geonf) = (o', V'), gconf') An >0
= I W >W.
geonf’ € |rpli— 1], 4/, W |g A
(geconf', V' ") € safe, (o', BY(W"))}

Lemma 19 (safe is downwards-closed.).

VYn,n',o, B,W.
n' < n Asafe, (o, B)(W) C safe, (o, B)(W)

Interpretation of triples Fnp {A} s {B} s Fp {A} S {B} ' FA=B

o (A} 5 {B} 2 Y, m, 1, W. Au) W) C npsate, (1, 5). BYOW)
Ep {A} s {B} £ Vn, u,W. A(n)(W) C safe,((11,s), B)W).
= A= BE VW A(p)(W) C os(B()(W)

[F (P} s {Q}] V. f=p {e. W [PTLOM)} s { A AW QW) }
[F{P} s {Q™ ZVn. up (D AIW. [PTLOV)} s {2 AW [Q] (W) }
[FP= QI = V. | (Au. AW. [PITOV) = (. IW. [Q]L(W))

3.3 Non-promising safety implies promising safety

Lemma 20.

NP * NP *
<<01,V1>,gconf1> 75 <<a2,V2>,gconf2> i ((03,V3>,gconf3> /\gconfl.P C gconfl.M
= written(gconf, gconfs) C written(gconf, gconfs) U written(geonf, gconfs)

Lemma 21.
geonf € |rp[i— e fl,u, W]y A (geonf,V,r) € npsafe(n_mk)(a, B)(W) A

k
5 (!, V'Y, geonf”)

m € written(gconf, gconf’) A {{o, V), gconf) —,
= writeAllowed(r e canAcq(r, u), m)
Proof. By induction on k.

e Case k = 0: by assumption gconf’.M # gconf.M or gconf'.P # gconf.P which contradicts gconf =
geonf’.

17

e Case k > 0: then there exists ¢, V", and gconf” such that

(o V) geont) B, (0" V"), geonf”) 57 {{o", V"), geonf
From the npsafe assumption there exists r’, v, and W’ > W such that
geonf” € |rpl[i — 1" o fl,u”, W] (i} (geonf" V" 7") € npsafe(n+17k_1)(a”, B)(W")
" e canAcq(r”,u") <, r e canAcq(r, u), writesAllowed (r, written(gconf, gconf”)).
— Case m € written(gconf, gconf’): Then it it follows from the
writesAllowed(r, written(gconf, gconf"))

assumption that writeAllowed(r, m) and thus, by upwards-closure that writeAllowed (recanAcq(r, u), m).

— Case m ¢ written(gconf, gconf”): Then by Lemma 20, m € written(gconf”, gconf’). By Lemma
16 it suffices to prove that

writeAllowed(r” e canAcq(r”, u’"), m)

which follows from the induction hypothesis.

Lemma 22.
pln(m) = Ya € PLoc. last(M(z) \ P) = last(M < m)(z) \ (P < m))

where o€ {5 45 (B},

Proof.

e Case < then M' =M <> m =M U{m}, PP =P <> m=PU{m}, {m}#M and {m}#P. Hence,
last(M'|, \ P') = last(M|, \ M).

e Case <*: then there exists m/,m” such that M' = M <= m = (M \ {m'}) U{m,m"}, PP =P <+ m=
(P\ {m'}) U{m,m"}, where m" € M N P and m.loc = m/.loc = m”.loc. Hence, last(M’|, \ P’) =
last(M|, \ M).

e Case <>: then there exists an m’ such that M' = M <~ m = (M \ {m'})U{m}, P =P <~ m =
(P\ {m'}) U{m}, where m’ € M N P and m.loc = m/.loc. Hence, last(M'|, \ P’) = last(M|, \ M).

O
Lemma 23.
(M,P) € |rp,u, W]y Apln(m) = (M <= m,P < m) € |rp,u, V]
where <—¢€ {2 <5 B}
Proof. Follows from 22. O

Lemma 24.

(M, P) € |rp,u, W]g A m.mod = rlx A validPromise(rp, u,m) A
(geonf, , Vi, e) € PV.rel(m.loc)(m.val)];(|W])
= (M',P) € |rp,u, W]y

where =€ {2 <&} M’ = M <> m and P = P < m.

18

Proof. By case-analysis of <.

e Case ¢ then M' = M <~ m = MU {m}, P =P <> m = PU{m}, {m}#M and {m}#P. From
the validPromise assumption it follows that validPromisesy(rg,u, P’). It follows by upwards-closure in
the observations component that all existing relaxed messages satisfy the required predicate. It thus
remains to prove that newly promised message does as well and that the corresponding predicate is
pure, which follows directly from the assumptions.

e Case <*: then there exists m’,m” such that M’ = M < m = (M \ {m'}) U {m,m"}, P/ = P <
m = (P\ {m'}) U {m,m"}, where m" € M N P, m.loc = m'.loc = m”.loc, m’.val = m”.val,
m/.view = m/ .view, m.tid = m’.tid = m”.tid, and m.mod = m/.mod = m’ .mod = rix.

It follows from the erasure assumption that

(gconf , Vi ,e) € [W.rel(m'.loc)(m .val)](|W])
from which it follows that

(gconf, , Vi, e) € [W.rel(m”.loc)(m” .val)](|W))

It follows that all the assertions associated with relaxed messages hold.

It thus remains to prove that all outstanding promises are valid. Validity for m follows from the lemma
assumptions and validity of m” follows from validity of m’ which follows from the erasure assumption.

e Case «%: then there exists m’ such that M' = M <~ m = M\ {m'})U{m}, PP = P < m =
(P\ {m'}) U{m}, where m" € M N P, m.loc = m'.loc, m.val = m/.val, m.view = m’.view and
m.tid = m/.tid.

It follows directly from the lemma assumptions that the m promise is valid and that the assertion
associated with m holds.

O
Lemma 25 (Non-promising safety implies safety).
Vn, o, B,W. npsafe, 1 o) (o, B)(W) C safe, (o, B)(W)

Proof. By induction on n. The n = 0 case holds by definition. Suppose that the claim holds for n, and let
o, such that (gconf,V,r) € npsafe,_, g)(c, B)(W). We show that (gconf,V,r) € safe,1(o, B)(W) holds.
The first conjunct holds since (gconf, V,r) € npsafe,, 1 1 (o, B)(W).

For the second conjunct, assume gconf’ € |rgli — r],u, W|g, gconf < geonf’ and

(0, V), geonf") =5, (o', V"), geonf")

e Case 3 = promise: then there exists an m such that o/ = o, V' =V, ((¢/, V'), gconf") is consistent
w.r.t. ¢ and

geconf” .M = gconf' .M +— m gconf” .P = gconf'.P < m m.tid =1
e {5 Y
Hence, by the definition of consistency there exists ¢, V", and gconf” such that gconf"’.P(i) = () and
’ oyt m NP* "oy "
<<O',V>,g00ﬂf > — <<O’ aV >,gCO’ﬂf >

It follows by Corollary 1 that there exists a k such that

k
{{o, V), gconf") E&' {o", V"), gconf"")

19

Since m € geonf” .M, gconf"'.P(i) = 0 and m.tid = i it follows that m € written(gconf’, gconf"").

By downwards-closure in the step-index and upwards-closure in gconf it follows that
(geonf',V,r) € npsafe,, 1 x41) (o, B)(W)

and by promise weakening it follows that gconf’ € |rpli — r],u,W]y;. Hence, by Lemma 21,
writeAllowed(r e canAcq(r, u), m).

Pick v/ = u, W =W and ' = r. It remains to prove that
geonf” € |rpli — 7], u, W]y (gconf”, V,r) € safe, (o, B)(W)
The second proof obligation follows from the induction hypothesis.

— Case m.mod = rlx: we proceed using Lemma 24, which requires us to prove that the promise
is allowed: validPromise(rg[i — r],u, m) and that the assertion associated with the write holds:

geonf, , Vi, e) € [W.rel(m.loc)(m.val T(wl). We have already shown that the promise is al-
[
lowed.

Applying the npsafe assumption k-times it follows that there exists r’,u’ W’ > W such that
geonf" € [rpli — r'],u/, W' | ;1. Thus,

(geonf, , Vi ,¢e) € [[W'.rel(m.loc)(m.val)]]H(|W'|)
By world ordering it follows that W.rel(loc) = W'.rel(loc) and |W| = |W'| and thus
(gconf , Vi ,¢e) € [[W.rel(m.loc)(m.val)]]H(|W|)

as required.
— Case m.mod = pln: by Lemma 23 and the fact that writeAllowed(r e canAcq(r, u), m).
— Case m.mod = rel: contradiction, as release write promises cannot be fulfilled.

e Case 3 = NP: then there exists a gconf” such that ((¢/, V'), gconf") is consistent w.r.t. i, such that
geonf” .M = gconf""" .M, gconf”.P = gconf".P, and

+
{{o, V), gconf") E&' {{o", V"), gconf"")
By the definition of consistency it follows that there exists o/, V", gconf””, ki, and ks such that
geconf"" .P(i) = () and

ki1+1

k
{{o, V), gconf") E@ (o, V"), gconf"") R

K2

<<U//, V”>, gconf//l/>
By downwards-closure of npsafe it follows that

(gconf/v Vir) € npsafe(n+1,k1+k2+2)(g7 B)(W)

It follows by k1 + 1 applications of npsafe that there exists v/, u’ and W’ > W such that

"

geonf"" € [rpli = '], u’, W'] 1; (geonf"" V' 1) € npsafe(n+17k2+1)(a’, B)Y(W')

By downwards-closure of npsafe and the induction hypothesis, it thus follows that (gconf” , V' 7") €
safe,, (o/, B).

It thus remains to show that promisesAllowedy(rr[i — r'],u’, gconf"".P). Let m € gconf"".P.

20

— Case m.tid = i: then we have to prove that

validPromise(r’, u', m)

This follows from Lemma 21, since m € written(gconf”’, gconf").

— Case m.tid # i: then the conclusion follows from

promisesAllowed;y (rpli — '], 4, gconf™ . P).

3.4 Adequacy of promising safety
Lemma 26.
VI € Ppn(TId). Vr, V, B.
geonf € |rpfi € I — r;],u, W]g A
Viel (gconf, ‘/1;7Ti) € US(BZ)(W)
= I W >W.
geonf € |rpli € I = 1], u/, W |y A
Vi € I. (geonf,V;,ri) € B;(W')
Proof. By induction on |I|.

e Case |I| = 0: follows trivially by picking ' =r, v/ = u and W' = W.

e Case |I| > 0: pick a j € I. From the assumption that (gconf,Vj,r;) € vs(B;)(W) it follows that there

exists r}, u’ and W' > W such that
geonf € [(rplj = ri])li € I\ {j} = ri],u’, W]y (geonf , Vj,r5) € B;(W)

Furthermore, by upwards-closure in the world component we have that

Vi € I\ {j}. (gconf,Vi,ri) € vs(B;)(W')
From the induction hypothesis it thus follows that there exists r”, u” and W’ > W such that

geonf € [(rr[j = ri])li € I\ {5} = ri],u", W]y
and
Vi e I\ {j}. (gconf,Vi,ri) € B;(W")
The conclusion now follows by picking v’ = u”, W = W, and
¥ = i € I\ (7)o)

since (geonf, Vi, 7}) € B;j(W") by upwards-closure.

Lemma 27 (Adequacy). If
1. (gconf,3(7).V,r(3)) € satep41(X(i).0, B;)(W) for all i € dom(X),
2. geonf € |r,u, W]y,

21

3. (X, geonf) =" (X', gconf'),

4. Vi € dom(X'). ¥'(i).s = skip
then there exists 7', v’ and W’ > W such that

1. geonf’ € v, u', W' |p,

2. and (geonf’, X'V (i),r'(i)) € [Bils ()., (W) for all i € dom(X').
Proof. By induction on n.

e Case n = 0: then (X, gconf) = (X', gconf’) and we can simply pick 7 = r, v/ = u and W = W. Since
¥(i).s = skip for every i € dom(X) it follows from the assumed safety that (gconf’,%(i).V,r(i)) €
vs(B;)(W) for all i € dom(3). The conclusion now follows from Lemma 26.

e Case n > 0: then there exists X" and gconf” such that

(2, geonf) = (X", gconf) =""1 (X, gconf’)

From the safety assumption it follows that there exists r/, u/ and W’ > W such that gconf’ €
[r[i — r'],u/, W]y and

(geonf” 2" (i).V,7") € safe,_1(X"(i).0, B;)(W')

The conclusion follows by the induction hypothesis and upwards-closure of safety and erasure in the
world component and upwards-closure of safety in gconf.

O

22

4 Soundness

In this section we prove soundness of the syntactic proof system with respect to the non-promising semantics.

4.1 Structural rules

Lemma 28 (Soundness of sequential composition).
VYn,m. P(n,m)
where P(n,m) is defined as follows

vrl),LLl)SlaSQ)Wl-
(Vha, Wa > Wh. B(p2)(Wa) C npsafe,) ((12, s2), C) (W)
= npsafel(‘n,m) ((IU/la 81)7 B)(Wl) c npsafe(n,m)((iu’h 813 82)7 C) (Wl)

Proof. By induction on (n,m).
Assume P(n’,m’) holds for all (n’,m’) < (n,m).
e Case n = 0: then P(n,m) holds vacuously.
e Case n > 0 and m = 0: then we can assume that
Vk. (geonf,V,r) € npsafe(,,_q 1 ((p1, 51), B)(Wr)
and
Vg, YWo > Wh. Vk. B(u2)(W2) C npsafe(,,_y i ((p2, s2), C)(W2)

and must prove Vk. (gconf,V,r) € npsafe(,_ y)((p1, 815 82),C). This follows easily by the induction
hypothesis.

e Case n > 0 and m > 0: Assume
(geonf,V,r) € npsafe,, ., ((11, 1), B)(Wh)

and
Vo, Wa > Wi. B(u2)(W2) C npsafe,,) (12, s2), C)(Wa).

Since s1;s2 # skip it suffices to consider the case where gconf € |rp[i— re fl,u, W]y, W > Wy,
Wfcont (1, gconf, V'), wWteont (i, gconf’, V') and

<<(:u17 515 52)’ V>’ gconf> EH <<(MI7 Sl)? V/>’ gconf’})

— Case s1 = skip: then p/ = py, s = so, V! = V and gconf’ = gconf. Hence, (gconf,V,r) €
vs(B(p1))(W). There thus exists 7/, u' and W' > W such that

(geonf,V,r') € B(u)W') geonf € [rpfi— "o fl.u/, W |y ' <or 1" ecanAcq(r’,u') <, r e canAcq(r, u)

and thus (geonf,V,r') € npsafe, ,,.,((1',s"),C)(W’). The conclusion now follows by picking 7',
u' and W', since written(gconf, gconf') = 0.

23

— Case s1 # skip: then there exists an s} such that

(1, 51), V), geonf) “on; (1!, 4), V"), geonf”)
and s’ = s); so. Hence, by the assumed safety for s; there exists an v/, v’ and W’ > W such that
geonf' € |rp[i 1" o flu', W]y (geonf', V' 7') € npsafe,, ., 1) (1, 51), BYW')
and
r’ e canAcq(r’,u’) <, r e canAcq(r, u) writesAllowed (7, written(gconf, gconf’))
By downwards-closure and the induction hypothesis, it follows that
(geonf', V' 1) € npsafe(n,mfl)((;/, sh582), C)OW').

Now the conclusion follows easily by picking 7/, «’ and W'.

Lemma 29 (Soundness of while-rule).
[F{PANe=T}s{P}"™ = [F{P}whileedos{PAre=L}]"

Proof. Assume [{P Ae= T} s {P}]"". We will prove that ¥n, m. P(n,m) holds by induction on (n,m),
where P(n,m) is defined as follows.

P(n,m) =, n,W. [P](W) C npsafe,) ((1, while e do s), \u. AW. [P Ae= L] (W))(W)

Assume P(n',m’) holds for all (n;m’) < (n,m). To show that P(n,m) holds, assume (gconf,V,r) €
[PT,OV).

e Case n = 0: trivial.
e Case n > 0 and m = 0: follows directly from the induction hypothesis.

e Case n >0 and m > 0: assume gconf € |[rp[i > r e f],u, W]y and

({(11, while e do s), V'), geonf) ~o; (((1','), V"), geonf")
Then p =/, V' =V, and geonf’ = gconf.
— Case [e], = T: then s’ = s;while e do s. By assumption, P(n,m — 1) and thus, by Lemma 28,
psafe 1) (11 5). M. M. [PTLOV)OW)
C npsafe, ,,_1)((¢, s; while e do s), A\ \W. [P Ne= J_]]Z(W))(W)
Furthermore, from the assumed triple for the loop body it follows that
(geonf,V,r) € npsafe(, ,,_1)((1, 5), Ape. AIW. [P](WV))(W).

Now the conclusion follows easily by picking r, v and W.
— Case [e],, = L: then s’ = skip and the conclusion follows easily as (gconf,V,r) € [P Ae= L]} (W) C
vs(AW. [P Ne= J_]]Z(W))(W)

O

24

Lemma 30 (Soundness of precondition strengthening).
= AS AN ey {A'} s {BY =y {4} 5 {B)
Proof. Assume
(geonf,V,r) € A()W) geonf € |rpfi > rel,u, {itlw (((1,5), V), geonf) == (o', V"), geonf")

From the assumed view-shift it follows that there exists r/, v’ and W’ > W such that v’ <, r, (geonf,V,r') €
[A],(OV"), and

geonf € |rpfi— "o fl,u', W |1, r" e canAcq(r’,u') <, r e canAcq(r, u)

Hence, from the assumed triple it follows that there exists 7/, u” and W" > W’ such that (gconf’,V',r") €
npsafe,, .., (o', B)(W"),

geonf' € |rpfi— " o flu" W' |15 r"" o canAcq(r’,u") <, r’ e canAcq(r’,u’)
and writesAllowed(r’, written(gconf, gconf’)). Since <, is transitive it follows that
r’" e canAcq(r”,u") <, r e canAcq(r, u).

It thus remains to prove that writesAllowed (r, written(gconf, gconf’)). This follows from 7’ <, r by Lemma
16 and the fact that writesAllowed(r’, written(gconf, gconf’)). O

Lemma 31.

YW. vs(vs(B))(W) C vs(B)(W)
Proof. Follows from transitivity of <, and the order on worlds. O
Lemma 32.

VYW. npsafe,, ,,,) (o, A vs(B(p)))(W) C npsafe,, ., (o, B)(WV)

Proof. By well-founded induction, using the induction hypothesis for reduction steps and Lemma 31 for the
skip case. O

Lemma 33.

(Y, W. p() W) € q(n)(W)) =
Vn, m, o, W. npsafe,, ,,\(d,p)(W) C npsafe, (o, q)(WV)

Lemma 34 (Soundness of postcondition weakening).

VB,B'. =B = B =
Vn, m,o, W. npsafe,, . (d, B')(W) C npsafe,, ., (a, B)(W)

Proof. By Lemmas 33 and 32 and the definition of viewshifts it follows that

npsafe,, (7, B')(W) C npsafe,, .\ (0, A vs(B())) (W)
C npsafe,, ,, (a, B)(W)

as required. O
Lemma 35.

(YW.p(W) C q(W)) = YW. vs(p)(W) C vs(q)(W)

25

4.2 View-shift rules
Lemma 36 (Splitting of acquire permissions).
[Aca(z, \v. 61(0) % 6 (v)) = Aca(z, é1) * Aca(x, 6)]
Proof. Assume (gconf,,V1,r1) < (gconf,V,r) and
(geonfy, Vi,m1) € [Acq(z, Mv. d1(v) * ¢2(v))[; (W) geonf € |rpli— 1o flu,W]r
Then there exists an ¢ € dom(W.acq) Nr.acq([z]}]) such that
W.acq(t) = Av. ¢1(v) * ¢o(v).

Hence, for every m € geonf.M(rel, [z]}}) we have that

(geonf,m.view,u(m)(1)) € [W.aca(s)(m.val)] (W) =

[$1(m.va) gz (m.va)] (W)

Hence, there exists <r7171)m€gconf.M(rel,m) and (r%m)megconf.M(rel,ﬂx]]Z) such that
(m.view,r}) € [[cbl(m.val)]]H(W) (m.view,r2) € [[qﬁg(m.val)]]H(W)
and u(m)(t) = rl er2 for all m € npln(gconf.M(x)).

Pick fresh ¢1, 12 & dom(W.acq) and let
W' =Wl = b1,12 = b2
u' = u[m € npln(geonf.M(x)) — u(m)[t = L 11— 1L 10 r2]]
r" =rlacq(z) — (racq(z) \ {¢}) U {1, 2}]
It remains to show that
(geonf,V,r") € [Acq(z, ¢1) * Acq(z, ¢2)] (W) geonf € [rp[iv 1" o fl,u W |1

and 7’ e canAcq(r’,u’) <, r e canAcq(r,u), 1’ <, r.
The first proof obligation is easily seen to hold. The second proof obligation reduces to proving that
promisesAllowedr (rgrli — r' o f],u', gconf.P). Since v € rp(j).acq for all j # ¢ this reduces to proving that

Vm € geonf.P. m.tid =i Ai & T = writeAllowed(r’ e canAcq(r’,u’), m)

This follows from the promisesAllowedr(rp[i — r o f],u, gconf.P) assumption since canAcq(r’,u’) =
canAcq(r,u), by Lemma 14.

From canAcq(r’,u') = canAcq(r, u) it also follows that r’ e canAcq(r’, u') <, r e canAcq(r, u).

It thus remains to prove that v’ <, r. This follows easily as r.pln = r’.pln and r.wr = r’.wr. O

Lemma 37.
[F W' (z, X) % O(z,a,t) = W' (z, X) x O(z,a,t) * (a,t) € X]

Proof. Assume (gconf,,Vi,rm1) € [W(z,X) xO(z,a, t)]]Z(W), (geonf,V,r) > (gconf,,Vi,r1), W > W,
geonf € |rpfi— reo flLu, W |{i} and wfcont(, gconf, V).

Hence, there exists an m € gconf .M such that m.val = [a]}, m.time = [t]}}, m.loc = [z]}}, rwr([2]}}) =
(L, [X]}), and snd(max([X]}})) < V.rix([«]},). Hence, by erasure, {(m.val,m.time) | m € seq(gconf.M([z]})\
gconf.P)} = X. Tt thus suffices to prove that m & gconf.P.

If m € gconf.P and m.tid # i then it follows by erasure that validPromise(rg, u, m). Hence, snd((rp(m.tid)e
canAcq(rp(m.tid, u)))wr([[xﬂﬁ)) > 0, which is a contradiction since snd(r.wr([[x]]Z)) =1. If m € gconf.P and
m.tid = i then it follows by the Wfcons assumption that Vorix([z]}) < m.time, which is a contradiction. [

26

Lemma 38.

Vﬁl,’ﬂ'Q,Xl,XQ.W1+7T2 <IANO<S<mTm <IANODO<m<1=
[Wa, (2, X71) * W, (2, X2) F Wy 4y (2, X1 U X2)] A
[[Wﬂ-lJrﬂ-z (.’E,Xl U XQ) [\Nﬂ-1 (.CL‘,X]_) * V\/ﬂ-2 (LI',‘, Xg)ﬂ

Proof. Follow directly from the monoid definition. O
Lemma 39.
[FW™(z, X) * (v,t) € X * (v, 1) € Xxv#0 =W (2, X)xt #1]

Proof. Assume (geonfy, Vi,r1) € [W™(2, X) * (v,t) € X % (¢v/,t') € X xv #V']|(W), (gconf,V,r) > (geonfy, Vi, 1),
W' > W, geonf € |rpli = e fl,u, W]y and wicone (i, gconf, V).
By erasure, [X]} C gconf.M([2]},) and the conclusion now follows from the definition of a memory. O

Lemma 40.
[FWi(z,X)«(_,t)eXx(,t)eXSW (g, X)xt<t'Vt=tVt <t
Proof. Follows from the assumption that the timestamp order is total. O
Lemma 41.
[FW™(z,X) * (v,t) € X = W™ (z, X) * O(x, v,t)]

Proof. Assume (gconfy,Vi,r1) € [W™(z, X) * (v,t) € X];(W), (geonf,V.r) > (geonfy, Vi, 1), W' = W,
geonf € [rp[i—r r e fl,u, W |y and wfcont(i, gconf, V). By erasure, [[X]]Z - gconf.M([[z]]Z). O

27

4.3 Rules for release/acquire accesses

Lemma 42.

L € rp(t).A(x) N dom(W) A geonf € |rp,u, W]|r A fresh for u and rp
= geonf € |rp[t =g U] ule e W = W()a = T

Proof. Should follow from Lemmas 13 and 11. O
Lemma 43.

m € dom(u) At € rr(t).A(x) N dom(u(m)) AW(t)(m.val) = T A
geonf € |rp,u, W|r A fresh for u and rp
= geonf € [rp[t = rp(t) e u(m)()], ulm, e — e, W]r

Lemma 44 (Soundness of acquire read).
[[I— {z =exAcq(z,¢) * O(x, _,t)} a:= [e],, {3t' > t. Acq(z, dla — T]) * ¢(a) * O(x, a,t’)}]] v

where = and ¢t are assumed to be specification variables.

Proof. Let (gconf,V,r) € [z = e * Acq(x, ¢) * O(x, _,)]} (W). Since a := [e],, # skip it suffices to consider

the case where

acq

(10 = [elyeq)s V), geonf) 5 (o, V'), geonf"),

and gconf € |rp[i— o flu, W, W >W.

By the THREAD: READ rule it follows that there exists an m = (n(x) :§ v, Vn,@Q(_,ty,]) € M such
that V.rix(n(z)) < tm, geconf .P = gconf.P, gconf'.M = gconf.M, V' = V U [pln : {n(z)Qt,,}, rlz :

{n(z)Qt,,}] UV,, and ¢’ = (u[a — v], skip).

From the (gconf,V,r) € [z = e * Acq(z, $) * O(z, _,t)],(W) assumption it follows that there exists an
t € dom(W.acq) Nr.acq(n(x)) such that W.acq(t) = ¢ and n(t) < Virix(n(z)). Hence, n(t) < t,.

e Case o = rlx: it follows from the definition of erasure that (gconf, , V&) € [W. rel(m.loc)(m.val)]]H (IW').

Pick an ¢/ that is fresh for v and W'. Pick v/ = u[t ~y g /], 7" = [t ~p@) /] and W' = W[/ —
¢[v — T]]. Then it remains to prove that gconf’ € [rp[i — " o fl,u’',|W"|| 1,

(geonf', V' r") € [Bt' > t. Rel(z, ¢la > T]) * ¢(a) * O(x,a,t)]", (IW"])

o’

and ' e canAcq(r’,u’) <, r ® canAcq(r, u) and writesAllowed(r’, written(gconf, gconf’)).

The erasure obligation follows by upwards-closure and Lemma 42. The two last obligations follow easily
as r’ecanAcq(r’,u') = r’ecanAcq(r,u) <, recanAcq(r,u) by Lemma 13 and written(gconf, gconf’) = 0.

It thus remains to prove that
(geonf', V', 1) € [3t' > t. Rel(z, pla — T]) * ¢(a) x O(x, a,t’) Z,.M(W").
It follows from the erasure assumption that

Yo EW.rel(n(x))(v) = ®,ct.acq(n(z)) YW-aca(t)(v)

28

where ¢ is the composition of rg[i — r e f] and the resources from u. So, in particular, ¢ € t.acq(n(z))
since by assumption ¢ € r.acq(n(z)) and thus,

FW.rel(n(x))(v) = ¢(v)

It follows that (gconf ,V,,e) € [[gb(m.val)]]H(\W’D. By upwards-closure and the definition of the
interpretation it follows easily that

(geonf', V' r'") € [3t' > t. Rel(x, ¢p[a — T]) * ¢(a) * O(x, a,t") Z,.#(W”).

e Case o = rel: from the definition of erasure it follows that
(geonf, Vim, u(m)(1)) € [6(v)]J V)

since W.acq(t) = ¢, m.view = V,,, and m.val = v.

Pick an ¢/ that is fresh for u and W'. Pick u' = (ult ~p)])[m, 0" = €], ' = [t ~op)] @ u(m) (1)
and W = W[/~ ¢[v — T]]. Then it remains to prove that gconf’ € |rp[i — 1" e fl,u',W" |1,

(geonf', V', r") € [3t' > t. Rel(z, pla — T)) * ¢(a) x O(x, a,t') Z,,M(W”)

and ' e canAcq(r’,u’) <, r @ canAcq(r, u) and writesAllowed(r, written(gconf, gconf’)).
The writesAllowed obligation follows trivially as written(gconf, gconf’) = () and the
(geonf', V',r") € [3t' > t. Rel(z, ¢a = T]) ¢(a) * O(x, a, "), , (W)

obligation follows by upwards-closure and the definition of the interpretation.

By Lemmas 7 and 11,

r" e canAcq(r’,u") = r[v ~, '] @ canAcq(r[L ~ 4], uft ~,)

[t~ '] @ canAcq(r, u)

<, 7 e canAcq(r, u)

It remains to prove that gconf’ is in the erasure: gconf’ € |rp[i — 1" e f],u/,W"](;;. By Lemma
42 it follows that gconf’ € |rp[i v (re f)[t ~g V)], ult ~4 ', W]y and by Lemma 43, gconf’ €
lrrli = 1" e fl,u', W]y as required.

O

Lemma 45.

geonf € [rpfi— re fl,u, W]y Arwr(m.loc) = (1, X) A
m(max(X)) < Virlx(m.loc) < m.time A m € gconf.M N
Wlcont (4, gconf, V U [rix : {m.loc@m.time}]) =

m.val = 7 (max(X))

Proof. Since (1, X) is only composable with (0, §) it follows by the definition of erasure that gconf.M (m.loc)\
geonf.P = X. If m & gconf.P it follows from the assumptions that m € X and thus max(X) =
(m.val,m.time). Otherwise, m € gconf.P. If m.tid # i it follows from erasure that validPromise(rg,u, m).
Hence, 1 (rp(m.tid) e canAcq(rp(m.tid,u))).wr(xz) # 0, which is a contradiction since r.wr(z) = (1, X). If
m.tid = ¢ then it follows by the wf.o.r assumption that m.time < m.time which is a contradiction. O

29

Lemma 46 (Soundness of acquire read for an exclusive writer).

Fnp {2 = ex Acq(a, ¢) * WH(z, X) } a := [e], { B}

where x and X are specification variables and B is the assertion
Acq(z, ¢pla — T)) * p(a) * W (z, X) * O(z, a, snd(max(X))) * a = fst(max(X)).

Proof. The same as Lemma 44, but using Lemma 45 to conclude that we read the last fulfilled write as
specified by the write permission. O

Lemma 47.

r=ryellcart, ANt/ =ulm— [a € A 1] Am & dom(u)

= 11 ® canAcq(ry,u’) <, r e canAcq(r, u)
Lemma 48.
(P,M) ™ (P, M’y A P(m.tid,m.loc) =0 = P’ = PAM' = M &m
Lemma 49 (Soundness of release write).
[F{z =e1 *v=-esxRel(z,¢) * W (z, X) x ¢(v) x O(z,v0,t0)} [e1]rer := €2 {Tt. W™ (2, X U {(v,t)}) xtg < t}]""
where z, v, m, and X are assumed to be specification variables.

Proof. Let (gconf,V,r) € [z = e1 % v = ez * Rel(z, ¢) * W (, X) * (v) * O(x, v, to)[, (W). Since [e1]rel :=
eo 7 skip it suffices to consider the case where

(1 [ea)ver = €2), V), geonf) ~55; (", V"), geonf”),

and gconf € |rp[i— r e fl,u, W] .
By THREAD: WRITE it follows that gconf’ = (P', M'), o' = (u, skip), and

(P,M) ™ (P, M) Virix(n(z)) <t V' =V Ulpln: {n(x)at}, rix: {n(z)at}

and V' = R, P(i,n(z)) = 0 where gconf = (P, M) and m = (n(z) :I** n(v), RQ(_,t]). It follows by Lemma
48 that P’ = P and M' = M 4> m.

From the definition of separating conjunction there exists r; and 74 such that r = 1 erg with (geonf,V,ry) €
[Rel(z,) * Wx (2, X)[}(W) and (geonf,V,r2) € [¢(a)];(WV). It follows that there exists an « € dom(W.rel)
and 7’ such that F ¢ = W.rel(t) and ri.wr(n(z)) = (7', n(X)) with = < 7.

Let t denote 7 @ IT,c rrq\ i} 7F (t) ® Ilnenr e dom(u(m))w(m)(¢). From the definition of erasure it follows
that = W.rel(:)(n(v)) = ®,ct.acq(n(x)VW-aca(t)(n(v)) and thus that there exists (7,),ct.acq(n(z)) Such that

72 = I e acq(n(z))T and (geonf,V,r,) € [[W.acq(L)(n(v))]]H (W) for all ¢ € t.acq(n(x)).
Pick v = u[m — (A € taacq(n(z)). r,)], v’ = rrwr[n(z) — (7', {(n(v),)} Un(X))] and W = W. Then
it remains to show that

—_

. geonf' € [rplirs 1o [l W gy,

o

(geonf', V' ') € [Ft. Wa(x, X U{(v,t)}) ¥ty < tho, OV,

it

" @ canAcq(r’,u") <, r e canAcq(r, u),

4. and writesAllowed(r, written(gconf, gconf’)).

30

Starting with the last proof obligation, writesAllowed (r, written(gconf, gconf’)): since written(gconf, gconf’) =
{m}, the writesAllowed(r, written(gconf, gconf')) proof obligation reduces to proving that writeAllowed(r, m).
This is easily seen to hold since 71 (r.wr(n(z))) > 0.

The second-to-last proof obligation, r’ e canAcq(r’,u’) <, r e canAcq(r,u) follows from Lemma 47.

The second proof obligation follows easily by the assertion semantics since to < Virlx(n(z)) < t.

It remains to prove that gconf’ € [rp[ir 1" o fl,u/,W'](y: Since M/ = M ¢ m it follows that
M'(n(x)) \ P = (M(n(z)) \ P)U{m}. Furthermore, since V. < R and gconf < gconf’ it also follows
that

Vi € dom(u'(m)). (geonf’, R,u'(m)(1)) € [[W.acq(L)(m.val)]]H (W'

as required, by upwards-closure. O

31

4.4 Rules for relaxed accesses
Lemma 50.
v € dom(W.acq) Nr.acq(m.loc) A geconf € [rp[i — e fl,u, W] Am € geonf M =
(geonf Vi, ¢e) € [[V(W.acq(L)(m.val))]]H (W)
Lemma 51 (Soundness of relaxed read).
[F{z = exAcq(z,9) x Oz, ,t)}a:=[e], {Acq(z,d)* 3t >t. V(¢(a)) * O(x,a,t')}]™
where z and ¢ are specification variables.
Proof. Let (geonf,V,r) € [x = e x Acq(z, ¢) * O(z, _, t)]]Z(W) It suffices to consider the case where

(1,0 1= [e]), V), geonf) “5; ({0, V"), geonf'),

and gconf € |rp[i = 7o flu, W, W >W.
By the THREAD: READ rule it follows that there exists an m = (n(x) :? v, Vi, @(_,t,,]) € M such that

V.rix(n(z)) < tm, geonf'.P = gconf.P, gconf' .M = gconf .M, V' =V U [pln: {n(z)Qt,,}, rix: {n(z)Qt,,}]
and ¢’ = (ula — v], skip).

From the (gconf,V,r) € [Acq(z,) * O(z, _,t)](W) assumption it follows that there exists an ¢ €
dom(W.acq) Nr.acq(n(z)) such that W.acq(r) = ¢ and n(t) < V.rix(n(x)) < t,,. Hence, by Lemma 50,

(geonfy, Vi €) € [V (6(o))] V)
Pick ' = r, ' = w and W” = W'. It thus remains to prove that
(geonf', V' r") € [Acq(z, ¢) * 3t > t. V(¢(a)) * O(x, a,t’) Z,'N(W”)
which follows easily from the definition of the interpretation. O
Lemma 52 (Soundness of relaxed read for an exclusive writer).
[F {2z =exAcq(z, ¢) * W' (2, X)} a := [e],,, {B}] P
where x and X are specification variables and B is the following assertion
Acq(z, @) * W (z, X) * (Vp(a)) * O(x, a, snd(max(X))) * a = fst(max(X)).
Proof. Similar to the proof of Lemma 51, but using Lemma 45 to prove properties about the value read. [
Lemma 53.
m.mod = rix A (P, M) % (P',M') =
values(M'(r1x)) = values(M (rix)) U {(m.loc,m.val)}
where values(M) = {(m.loc,m.val) | m € M}.
Lemma 54.
(M, P) € [rplivre fl,u, W]y AP, M) = (P',M’) Am.time > snd(max(X)) A
m.mod = rlx A r.wr(m.loc) = (7, X) Ar’ = rwr[m.loc + (m, X U {(m.val,m.time)})] A
(geconf , Vi ,¢€) € [[W.rel(m.loc)(m.val)]]H(|W|) =
(M',P") e |rpli—1"o flLu, W]

32

Lemma 55 (Soundness of relaxed write).
I {A} [e1]rx = e2 {3t. W™ (2, X U{(v,1)}) * to < t}]"™
where x, v, X and 7 are specification variables and A is the following assertion
x =e; *v = ey *Rel(z,d) «x W (z, X) * ¢(v) * pure(¢(v)) * O(x, vy, to).
Proof. Let (gconf,V,r) € HA]]Z(W) It suffices to consider the case where

({1 [er] o = €2), V), geonf) 5 ({0, V"), geonf”),

and gconf € |rpli— o flLu, W], W >W.
By THREAD: WRITE it follows that gconf’ = (P', M’',O), o’ = (u,skip), and
(P,M) ™ (P, M) Virix(n(z)) <t V' =V Ulpln: {n(x)at}, rix: {n(z)at}
and R = [pln: {n(z)@t}, rix: {n(z)at}], where gconf = (P, M,O) and m = (n(x) :I* n(v), RQ(_,t]).

Pick ' = rlwr(n(z)) — (7, {(n(v),t)} Un(X))], v’ = v and W’ = W'. Then we need to prove that
r’ e canAcq(r’,u) <, r e canAcq(r, u),

geonf’ € [rpli > " o flus Wy (geonf’, V') € [3t. W (2, X U {(0,1)}) % snd(max(X)) < (/10V)
and writesAllowed (r, written(gconf, gconf')).

Firstly, 7’ e canAcq(r’,u) <, r @ canAcq(r, u) holds trivially since ' <, r and r’.acq = r.acq. Further-
more, writesAllowed(r, written(gconf, gconf’)) follows from writeAllowed(r, m), which itself follows from the
assumption that

(geonf,V,r) € [[AHZ(W)
The third proof obligation, (gconf’, V', r') € [3t. W™ (z, X U {(v,t)}) xtog < t]]Z(VV’)7 is easily seen to hold by
the definition of the interpretation.
It remains to prove that gconf’ € [rpli — r’ o f],u,W'](;y, which reduces to proving that
(geconf, ,Vy,¢e) € [[W.rel(m.loc)(m.val)]]H(|W|)

by Lemma 54. This in turn follows from the fact that ¢(m.val) is pure. O

33

4.5 Rules for plain accesses

Lemma 56 (Soundness of plain read).
s s np
HI— {z=exz = v}a:=]le],, {m»—)v*azv}]]
where = and v are specification variables.

s n .
Proof. Let (gconf,V,r) € [[x =exx > ’U]] (W). Tt suffices to consider the case where
“w

(1,0 1= [e] 1), V), geonf) ~5; (0", V"), geonf'),

and gconf € |rp[i = 7o flu, W, W >W.

By the THREAD: READ rule it follows that there exists an m = (n(z) :l‘;-ln v, Vin@Q(_,¢]) € M such
that V.pin(n(z)) < t, geonf'.P = gconf.P, gconf'.M = gconf.M, V' =V U [pln: L, rix : {n(z)@t}] and
o' = (ufa — v'], skip).

n
From the (geconf,V,r) € [[x N v]] (W) assumption it follows that there exists a 7/ > 7 and ¢ <

V(n(x)).pln such that r.pin(n(x)) = in}';(ﬂ’, n(v),t’) and 7’ > 0. Hence, ¢’ <.
From the erasure assumption it follows that last(M (n(z)) \ P).val = v and last(M (n(z)) \ P).time = ¢'.
If m € P it follows that m.tid # ¢ since otherwise, V'.rix(n(z)) = Virlx(n(z)) Ut < ¢ which is a
contradiction. Hence, by erasure,

writeAllowed(rp(m.tid) e canAcq(rp(m.tid), u), m).

This is a contradiction, since canAcq(rr(m.tid), u).pln(n(x)) = (1,), r.pln(n(z)) = (v,) and r#canAcq(rp(m.tid), u).
Otherwise, if m ¢ P it follows that m € (M(n(x)) \ P) and since ¢ < ¢ it must be the case that
last(M(n(x)) \ P) = m. It follows that v = v’
Pick 7 = r, v/ = w and W’ = W’'. Now the remain proof obligations are easy. O

Lemma 57.

(3

x € PLoc Am = (x " v, RQ(_,t]) A (P,M) = (P',M") A
last(M(z) \ P).time < t = last(M'(z) \ P') =m

Lemma 58 (Soundness of plain write).
1 1 np
[[I— {r=exz = _}[e|pn ::a{:c»—>a}]]
where x is a specification variable.

n
Proof. Let (gconf,V,r) € [[ac —exa > 7]] (W). It suffices to consider the case where
o

(ks [elgun == @), V), geonf) =5 (o, V"), geonf"),
and gconf € |rp[i— re fl,u, W |, W > W.
By the THREAD: WRITE rule it follows that there exists a ¢ such that

(n(2):"u(a),RO(_,t])
—

(gconf.P, gconf .M) (gconf'.P, gconf'.M) V' =V Ul[pln: {n(z)Qt}, rix: {n(x)Qt}

V(n(z)).rix < ¢t and o’ = (u, skip).

34

n
From the (gconf,V,r) € Hz BN _]] (W) assumption it follows that there exists a ¢’ < V.pln(n(z)) such
o

that r.pln(n(z)) = inj,(1, ,t).

By definition of a timemap, V.pin(n(z)) < V.rix(n(z)) and thus ¢’ < ¢.

Pick 7’ = r[pln(z) = inj,(1, u(a),t)], W = Wand v’ = u. By Lemma 57 it follows that last(gconf’.M (n(z))\
geonf'.P) = (n(z) '" v, RQ(_,t]) and thus, gconf’ € |rp[i — ' e f],u’, W] ;. It remains to prove that

K2

n
(geonf', V', r') € [[:1: s a]] (W'), r'ecanAcq(r’, u') <, recanAcq(r, u), and writesAllowed (r, written(gconf, gconf’)).
The first obligation follows.easﬂy from the definition of the interpretation. The second obligation follows

easily from the fact that ' <, r and 7’.acq = r.acq. For the last obligation, it suffices to prove that
writeAllowed(r, (n(x) :°*" v, RQ(_,#])), which holds since r.pln(n(z)) = inj,(1,) by assumption. O

K2

35

5 Examples

5.1 Random number generator

We do not need to transfer any information, so we can pick Av. T as the predicate for z and y.

r=y=0
{Wl(y, [0]) * Rel(y, Adv. T) % Acq(z, Av. T) * O(x,070)} {Wl(x, [0]) * Rel(x, Av. T) * Acq(y, Av. T) % O(y, 0, O)}
{x [:]x * Acq(z, Av. T) % O(x,0,0) } {y [:]y * Acq(y, Av. T) % O(y,0,0) }
1 ?cq(gfiv. T) s (3. O, t1) £ 0 < 1)+ 9T} || ?_Acg(gjﬁv. T) & (3tr. Oz, 12, 11) $0 < £1) # VT
O(LIJ 7"1,_)} O(y7r27_)}
{W!(y, [0]) % Rel(y, \v. T) * O(z,r1,)} {W!(z,[0]) * Rel(z, Av. T) % O(y,72, _)}
[]{Wl y, [0]) * Rel(y, Av. T) T % pure(T)} []{Wl ,[0]) * Rel(2, Av. T) % T x pure(T) }
Ylrix ::T1+1 Tlrix = T2
W (y, [r1 + 1;0]) * Rel(y, \v. T)} Wi(z [?"2, 0]) * Rel(z, Av. T)}
Wy, [r1 +1;0])} ([r2; 0]) }
{WX(y,[r1 + 1;0]) * O(z, 1, _)} {WX(z, [r2;0]) * O(y, 2,)}

)
}

{r1 € {rs,0} A7 € {r1 +1,0}
{T1:0/\(T2:0V7’2:1)}

5.2 Separation

We can define a self-looping list by having a location hold the address of the next element of the list, and
using an address already in the list to mark the end the list:

is-list(v) = sy, finite(sy) v & s * is-list (v, {v}, s2)
is-list (v, s1,52) = 3, 0" W(v,v" :: £) % Rel(v, hv. T) %
(v €81V (V€ sg*is-list (v, 51 U{v'}, 52\ {v'})))

Because we do not transfer anything between threads (we are trying to show the threads do not interact!),
we can use Av. T as the the predicate for the locations of the list. To avoid clutter, we elide Rel(—, Av. T)
and the associated assertions below.

We then have the following proof outline for the first thread (the second thread is entirely symmetric):

is-list(a) }
Js. finite(s) x a & s is-list (a,{a},s)}
Js,a’. Wh(a,a' = _)*(a' € {a} V (a/ ¢ {a} = is-list' (o, {a} U{v'}, s\ {d'})))}
{a [:]a* ook Wha,d)}
ok Wha,a')% x0(a,r,) xr =d'}
%Els, o/ . Wh(a,a' == _)xry=a x(a' €{a} Vv (d ¢ {a}is-list (a/,{a} U{a'} s\ {a'}))}
Ja'. W(a,a’ = _)xry=a % (a' € {a} Vv (a/ & {a} xFa" . W(d',a" == _)x...)))}
[?rl =d*a=axW(d,)x...}
{Wha',a)= ..
{30’ W(a,a" =)« ((a/ € {a}) V (a’ & {a} «W'(d',a::)))}
Wh(a,a::)V (3. W(a,a' == _)xa' ¢ {a} «xW'(d,a::)}
(is;liséf/()a}, {a}, @) v (3d'. a’ ¢ {a} * is-list' (a, {a},{a'}))}
1s-list(a

36

5.3 Non-deterministic write
5.3.1 Example using non-deterministic choice

Invariant-based methods cannot be used to prove that —(r; = ro = 1) in the following program where all

locations initially hold 0, and where the * stands for a non-deterministic choice.

if x
else

We elide most things.

{W(z, [0]) * W(y, [0])}

Ty = [‘T}rlx;
r2 = [yl

[-T] rx =1

Wl = 1 (nondet)

if *
[7] e =1 {Acq(z, Av. T) * Acq(y, Av. T)}
{W1(z, [150]) * Wh(y, [0]) } 1= (]

else T2 = [y,
[y}rlx =1 {O(l‘,?‘l,_)*O(y,’l“Q,_)}

{W!(, [0]) « W (y, [1;0]) }
{ (W, [15.0]) = W(y, [0]) v

We can conclude, by case analysis on the disjunction, and by using lemma 37, that (r; € {0,1} Arg €
{0}) Vv (r1 € {0} Ary € {0,1}), and therefore =(r; =19 = 1).

(W, [0]) = W(y, [1;01)) }

5.3.2 Example within the language

Invariant-based methods cannot be used to prove that —(r; = ro = 1) in the following program where all
locations initially hold 0.

T3 = [t} rixs

if r3 [2]x =1
else [ylax =1

L= [‘r]rlx;

t =1
[]'”IX T2 =Y rix

5.4 Coherence
5.4.1 CoRW

The following program, where location x initially holds 0, cannot have the following outcome:

r1 = [z]
[l‘] rix -—

T9 =
T3 .

(%], // reads 1

x],, // reads 2

[2] i = 2 (CoRW)

s // reads 2
1 =

The proof outline for the first thread crucially records that the value it reads has a smaller timestamp
than the value it writes:

{W% (ﬁ{(o’ 0)}) * Acq(z, Av. T)}
[{E]it. vvéEllxX:{(o, 0)}) % O(z, r1,)}

{3t,t1. W2 (, {(0,0), (1,£1)}) % O(z, 71, 1) x t < t1}

The proof outline for the second thread just records it writes 2:

{W: (2, {(0,0)})}

[@]rx =2
{3ta. W2 (2,{(0,0), (2,t2)}) %0 < to }

37

The proof outline for the third thread just records the order of the timestamps of 1 and 2:

{Acq(z, \v. T)}

ra = [2] 4,
{Acq(z, \v. T) * 3tq. O(z,71,t4) }
ry = [2] 4,

{3ta,ty. Oz, 73, ta) x Oz, 73, 1) * to < ty}

We can then combine the write permissions to obtain W!(z, {(0,0), (1,¢1), (2,22)}). If moreover we assume
that 7o = 1xr3 = 2, from the postcondition of the third thread, we have that t; < to by Lemmas 37 and 39.
Also, if moreover we assume that r; = 2, we have that t; < t; by Lemma 37. Therefore, we can conclude
—(rp =2%rg =1%xrg =2).

5.4.2 CoWR
The following program, where location x initially holds 0, cannot have the following outcome:

ro = [z].,; // reads 2
rg =[] reads 1

(@] =1,
ry =[]

(CoWR)

rix

[x] flx i= 2
rix /

reads 2

The proof outline for the first thread records that the read reads a timestamp no older than that of the
write:

{W3 (z,{(0,0)}) * Acq(z, \v. T)}

[I]rlx =1
{3t. \[/Vf (2,{(0,0), (1,t1)}) * Acq(x, v. T)}
71 = T o

{3t,t1. W2 (, {(0,0), (1,£1)}) % O(z, 71, 1) % t1 < t}

The proof outline for the second and the third threads are identical to that of CoRW. As for CoRW,
we can combine the write permissions to obtain W!(xz, {(0,0), (1,%1),(2,t2)}). If moreover we assume that
ro = 2% rg = 1, symmetrically to CoORW, from the postcondition of the third thread, we have that ¢35 < t;
by Lemmas 37 and 39. Also, if moreover we assume that r; = 2, we have that ¢; < ¢ by Lemma 37, and
thus t; < to by Lemma 39. Therefore, we can conclude —(rq = 2% ro = 2% r3 =1).

5.5 Release/acquire
5.5.1 Split permission message passing example

The following program, where locations x, y, and z initially hold 0, cannot have the following outcome:
(ri=1%xr9=0)%(rg=1xry =0):

[x}rlx = 1, r = [’Z}acq; r3 = [Z]acq;
W= 1; | ifr =1 if rg =1 (Split-MP)
[2]rer = re = (2], r4:= [Yln,

We pick
¢. =M. (if v=1 then W'(z,[1;0]) else T) * (if v =1 then W'(y,[1;0]) else T)

for 2. This ought to be Av. if v = 1 then (W!(z,[1;0]) x WL(y,[1;0])) else T, but the ¢ are stored and
treated as syntactic assertions.

38

The proof outline for the writer transfers the write permissions for z and y away on z using ¢, :

{W(z, [0]) * Rel(z, Av. T) * W(y, [0]) * Rel(y, Av. T) « W(z,[0]) * Rel(z, ¢.) }

[x]rlx =1
[{\fvl ,[1;0]) « W(y, [0]) = Rel(y, Av. T) * W!(z,[0]) * Rel(z, ¢.) }
Ylrx =1

{W(z, [1;0]) * W(y, [1;0]) * W!(z, [0 * Rel(z, ¢.)}

[]{z = zl* 1=1%W!(2,{(0,0)}) * Rel(z, ¢.) * ¢-(1) * O(2,0,0) }
(Bt WA e, {(1,0)} U {(0,0)1) 0 <)

{W!(z,[1;0]) = Rel(z, ¢.) }

The proof outline for the first reader starts with an acquire permission for first half of ¢, for z, obtained by
splitting ¢, from the initial Acq(z, ¢.) using lemma 36, and uses it to obtain W*(z, [1;0]), which it then uses
to know that it reads 1 from .

{Acq(z, . if v=1 then W'(z,[1;0]) else T))* O(z,0,0) x Acq(x, v. T)}
{z =2z%Acq(z, . if v=1 then W!(z,[1;0]) else T))*O(z,0,0)}
= [Z]acq;
{Acq(z, (Av. if v =1 then Wl(z,[1;0]) else T)[ry — T]) x }
(Ft5. O(z,71,t5) 0 < t5) % (Av. if v =1 then Wt(z,[1;0]) else T)(r1)
{f()\'u. if v=1 then W!(x,[1;0]) else T)(r1) * Acq(z, Av. T)}
i T = 1
{W(z []1 ;0]) * Acq(z, Av. T)}
gAcq(x,}S\%. T) * Wh(z, [1;0]) % (V(Av. T)(r2)) * O(x, 72, snd(max([1;0]))) * r2 = fst(max([1;0]))}
Tro = 1
{7’1 =1=1ry = 1}

The proof outline for the second reader is symmetric.

5.5.2 WRC

The following program, where locations x and y initially hold 0, cannot have the following outcome: ro =
1x7r3=0:
1= [|| T2 = Waeq
[]x:=1; || ifry =1 ifry =1 (WRC)
[Ylrer :=1 T3 1= [2] 4,
We pick ¢, = Av. if v =1 then 3t. O(x,1,t) else T. The proof outline for the first thread just records the
write of 1 to x:
{W'(2,{(0,0)}) * Rel(z, Av. T)}
[1’] rix o= 1
{3t. W(z,{(0,0), (1,£)}) * 0 < t}
The proof outline for the second thread feeds the O(z, 1,t) it obtains in the ‘if” branch in the release write
to y:
{Acq(z, M. T) % O(z,0,0) * W!(y, {(0,0)}) * Rel(y, ¢,) }
L= [m]rlx;
if T = 1
{3t. O(x,1,t) » W (y, {(0,0)}) * Rel(y, ¢,) }
{y=y*1=1x%Rel(y,¢,) « W! (y7 {(0,0)}) = (3t. O(x,1,t)) * O(y,0,0) }

[y}rel =1
{3t W(y,{(0,0)} U{(1,¢)})x 0 < t'}
{T}

39

The proof outline for the third thread relates the timestamp of the value it reads from x with what it learns
using ¢, from the acquire read from y:

{Acq(y, ¢,) * O(y,0,0) * Acq(z, Av. T)}

{y [:]y * Acq(y, dy) * O(y,0,0) }
T2 = Ylacq’

{3t > 0. Acq(y, dy[ro — T]) * d(r2) * Oy, r2, 1)}
{Acq(x, Av. T) % d)(rg)}

lf To = 1
{3t. Acq(x, M. T) « O(z,1,t)}
r3 =[],

{3t,¢". Oz, 1,t) % O(z,rs, ') x t < t'}

At the end of the execution, assuming ro = 1, we can confront W!(z, {(0,0), (1,¢)}) with 3¢t,#'. O(z,1,t) *
O(x,r3,t') xt <t to conclude that r3 = 1, as desired.

40

