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ABSTRACT 

Research on graphical perception of time series 

visualisations has focused on visual representation, and not 

on interaction. Even for visual representation, there has 

been limited study of the impact on users of visual 

encodings and the strengths and weaknesses of Cartesian 

and Polar coordinate systems. In order to address this 

research gap, we performed a comprehensive graphical 

perception study that measured the effectiveness of time 

series visualisations with different interactions, visual 

encodings and coordinate systems for several tasks. Our 

results show that, while positional and colour visual 

encodings were better for most tasks, area visual encoding 

performed better for data comparison. Most importantly, we 

identified that introducing interactivity within time series 

visualisations considerably enhances the user experience, 

without any loss of efficiency or accuracy. We believe that 

our findings can greatly improve the development of visual 

analytics tools using time series visualisations in a variety 

of domains. 
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INTRODUCTION 
The staggering volume of continuously generated data 

today creates extraordinary opportunities for businesses to 

improve decision making with deeper insights into their 

data. However, most organisations collect more data than 

they can analyse and present in a meaningful way [19,28]. 

This has led to an increasing interest and effort from both 

industry [40] and academia [15] in developing usable and 

scalable visual analytics (VA) solutions. VA is commonly 

defined as: “the science of analytical reasoning facilitated 

by interactive visual interfaces” [37, p.4]. Whether simple 

or complex, a VA system is essentially composed of two 

main components: visual representation and interaction 

[39]. The former deals with the mapping of underlying data 

to alternative visual representations, while the latter 

facilitates the dialog between the user and the VA system. 

Despite consistently stating the value and importance of 

interaction for visual data analysis [12,37], the focus of the 

research by much of the VA community has been on the 

visual representation of data rather than on the interaction, 

as has been noted by others [2,24,30].  

Graphical perception is defined as the ability of users to 

interpret the visual encoding and thereby understand the 

information presented in a graph [8]. The aforementioned 

trend of focusing more on visual representation than on 

interaction is also predominant in graphical perception of 

time series visualisations, which is a well-studied area in 

visual analytics. A common practice in quantitative 

graphical perception studies of time series visualisations 

[4,10,14,16,21] is to conduct them in a static setting, i.e., 

not allowing the users to interact with the time series 

visualisations, thereby limiting our knowledge of the user 

experience. In addition, the overall coverage of different 

visual representations of time series data is lacking. Several 

previous studies [4,10,14,16,21] have compared the 

effectiveness of time series visualisations within and across 

the categories of positional (e.g., Figure 1(a&b)) and colour 

visual encodings (e.g., Figure 1(c&d)). However, to the best 

of our knowledge, there has been no study that compares 

the effectiveness of time series visualisations that use area 

visual encoding (e.g., Figure 1(e&f)) with their positional 

and colour counterparts. We use the term ‘area’ throughout 

even though we encode area-based visualisations using only 

segment (or arc) length, i.e., the width is fixed. Area does 

consist of length and width, however due to a relatively 

large segment/arc width, we believe it is more accurate to 

describe our testing as the stimulus of area. Similar to 

visual encodings, limited empirical evidence is available for 

the strengths and weaknesses of Cartesian (e.g., Figure 

1(a,c&e)) and Polar (e.g., Figure 1(b,d&f)) coordinate 

systems for time series visualisations, using different visual 

encodings.  

To address this research gap, we performed a 

comprehensive graphical perception study that measured 
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the effectiveness (i.e., completion time, accuracy, 

confidence and ease of use) of time series visualisations 

with different interactions, visual encodings and coordinate 

systems for several tasks. Our work makes three primary 

contributions:  

C1: We systematically examine the effects of two 

commonly used interaction techniques (i.e., highlighting 

and tooltips) on the effectiveness of different time series 

visualisations. 

C2: We compare the effectiveness of time series 

visualisations that use three different visual encoding 

techniques: position, colour and area.  

C3: We investigate the impact of two coordinate systems 

(Cartesian and Polar) on the effectiveness of time series 

visualisations within each of the aforementioned visual 

encoding techniques. 

Through these contributions, we hope to contribute to some 

very practical problems that rely on effective data 

visualisation of large time series data sets, such as analysing 

network security data to counter cyber-threats. We also 

believe that our work will motivate the visual analytics 

research community to focus equally on interaction and 

visual representation of data. In the next section we review 

related work. Then, we present our quantitative graphical 

perception study and explain the choice of time series 

visualisations, interaction techniques, study tasks and our 

time series data generation method. Finally, we present the 

results, discuss their implications and highlight further 

research opportunities. 

 

Figure 1. Selected time series visualisations with highlighting and tooltip interaction techniques. Visual encodings: positional (a) & 

(b); colour (c) & (d); area (e) & (f). Coordinate systems: Cartesian (a), (c) & (e); Polar (b), (d) & (f). Tasks: maxima (a), (c) & (e); 

trend detection (b), (d) & (f).  



RELATED WORK 

We review the related work for three areas that are key to 

our research, and the impact of each on the graphical 

perception of time series visualisations, namely the effects 

of interaction techniques, and then the impact of different 

visual representations, first with visual encodings and then 

with coordinate systems. 

Interaction Techniques 

The visual analytics (VA) research community has focused 

more on the visual representation of data rather than on 

different aspects of interaction, unlike the closely related 

research field of Human-Computer Interaction (HCI) that 

places equal emphasis on both the design and user 

experience. The small set of VA papers that discuss 

interaction largely concentrate on the classification and 

characterisation of interaction techniques [12,18,34,35,39], 

capturing interaction processes [31], designing and 

operationalising interactions [20,25,38] and identifying 

challenges and opportunities for further research [13,30]. 

However, limited attention has been paid to measuring the 

exact effects of commonly used interaction techniques on 

visual representations, both in general and specific to 

quantitative graphical perception studies of time series 

visualisations. There are two exceptions in this regard. Lam 

et al. [23] examined the effects of interactive low- and high-

resolution visual representations of time series data on 

search and comparison tasks. Also, Perin et al. [29] 

compared interactive horizon graphs with static horizon 

graphs and small multiples of line charts for multiple time 

series datasets. The focus of these two quantitative studies 

was on comparing the effectiveness of alternative visual 

representations of time series data, rather than on assessing 

the effects of individual interaction techniques. A more 

quantitative approach to assess the impact of alternative 

interaction techniques for different time series 

visualisations remains an under-researched area.  

Therefore, one of the main contributions (C1) of this work 

is to systematically examine the effects of commonly used 

interaction techniques (i.e., highlighting and tooltips) on the 

effectiveness of different time series visualisations. 

Visual Encodings 

Prior work on graphical perception found that the choice of 

visual encoding matters a great deal to users. In their 

seminal work in 1984, Cleveland and McGill [8] presented 

various charts to participants and asked them to compare 

the values of two marked objects by estimating the 

percentage of a smaller value versus a larger. This accuracy 

measure was then used to rank the following visual 

encodings (ordered from most to least accurate) for 

quantitative data: (1) position along a common scale, (2) 

position along non-aligned scales, (3) length, direction and 

angle, (4) area, (5) volume and curvature, and (6) shading 

and colour saturation. More recently, Heer and Bostock 

[17] in 2010, successfully replicated these results by 

conducting a crowdsourced experiment using Amazon’s 

Mechanical Turk. Based on existing psychophysical results 

and analysis of different perceptual tasks, Mackinlay [27] 

extended the ranking of the effectiveness of visual 

encodings to ordinal and nominal data. 

Time series data is among the most common type of data 

explored in quantitative graphical perception studies. The 

focus of such studies has been on evaluating the 

effectiveness of time series visualisations within and across 

the categories of positional (e.g., Figure 1(a&b)) and colour 

visual encodings (e.g., Figure 1(c&d)). Within the category 

of positional visual encoding, Heer et al. [16] compared the 

effectiveness of line charts with horizon graphs. They 

investigated the effects of chart size and layering on user 

performance for a single task of value comparison. 

Similarly, Javed et al. [21] evaluated the effectiveness of 

four different line chart techniques, involving multiple time 

series datasets. This study involved three tasks of 

comparison, slope and discrimination. On the other hand, 

Correl et al. [10] investigated how time series 

visualisations, using both positional and colour visual 

encodings, can be specifically designed to support 

aggregate comparisons. Albers et al. [4] also compared the 

effectiveness of eight different time series visualisations, 

using both positional and colour visual encodings, for a 

number of point and summary comparison tasks. The 

results from these studies [4,10,16,21] highlight the 

strengths and weaknesses of both positional and colour 

visual encodings for representing time series data and 

suggest that no individual visual encoding dominates in 

every task and data density. In particular, these findings 

indicate limited generalisability of the results of generic, 

non-time series studies conducted by Cleveland and McGill 

[8] and Heer and Bostock [17] to time series visualisations. 

This encouraged us to compare the effectiveness of time 

series visualisations using area visual encoding with 

visualisations using positional and colour visual encodings. 

To the best of our knowledge, ours is the first study that 

compares the effectiveness of time series visualisations 

using three different visual encodings of position, colour 

and area. This relates to the second contribution (C2) of our 

work.  

Coordinate Systems 

The strengths and weaknesses of visualisations based on 

Cartesian and Polar coordinate systems have been discussed 

by developers but empirical evidence is limited. Some 

studies exist that compared the Polar visualisations with 

competing Cartesian counterparts [7,36]. However, the non- 

time series nature and limited control of confounding 

factors within these studies constrains the generalisability 

of their findings.  

Cleveland and McGill [9] compared the effectiveness of bar 

charts with their polar counterparts, pie charts. They found 

bar charts to be more effective than pie charts, because 

comparing lengths is more accurate than comparing angles. 

However, Schonlau and Peters [33] found the effectiveness 

of pie charts closely comparable to that of bar charts. More 



recently, Diehl et al. [11] compared the effectiveness of a 

matrix-based Cartesian visualisation with its Polar 

counterpart. They employed the generic study task of 

memorising positions of visual elements. The findings from 

their user study suggested using a Cartesian coordinate 

system unless there are clear reasons in favour of a Polar 

coordinate system. While conducted with better control 

over confounding factors than [7] and [36], the findings of 

these generic, non-time series studies are not easily 

generalisable to Cartesian and Polar time series 

visualisations, mainly due to the large number of tasks with 

varying complexity, different data densities and the variety 

of available visual representations of time series data. 

With regards to the impact of coordinate systems on time 

series visualisations, the study conducted by Fuchs et al. 

[14] is closest to our work. They compared the 

effectiveness of two Cartesian and two Polar time series 

visualisations in a small multiple setting (called “glyphs”). 

One set of glyphs (one Cartesian and one Polar) used 

positional visual encoding, while the other set used the 

colour visual encoding. They found that line glyphs 

generally performed better for peak and trend detection 

tasks, while the Polar glyphs were better suited for reading 

values at specific temporal locations. In contrast to Fuchs et 

al. [14], we investigated the impact of coordinate systems 

on normal-sized, temporally labelled time series 

visualisations, not only based on positional and colour 

visual encodings but also using an area visual encoding 

(i.e., Figure 1(e & f)). This relates to the third contribution 

of our work (C3). 

USER STUDY 

To better understand the impact on the user experience, we 

conducted a lab-based user study to evaluate the 

effectiveness of different time series visualisations that use 

varied interaction techniques, visual encodings and 

coordinate systems for four tasks.  

Time Series Visualisations 

Time series data is a set of quantitative values changing 

over time, and it is predominant in a variety of domains 

ranging from banking and finance to computing to climate 

measurements. It is also extremely conducive to 

visualisation. Aigner et al. [3] provides an extensive review 

of time series visualisations.  

We selected two time series visualisations (one Cartesian 

and one Polar) from each of three visual encoding 

categories of position, colour and area. Firstly, a Cartesian 

line chart (Figure 1(a)) was used as a well-known baseline 

for the positional visual encoding; the radar chart (Figure 

1(b)) is the Polar counterpart. Secondly, following similar 

studies [4,10,14], rectangular (Figure 1(c)) and circular 

heatmaps (Figure 1(d)) were chosen to serve as the 

Cartesian and Polar counterparts from the category of 

colour visual encoding. We used ColorBrewer 2.0 [6] to 

choose a colour-blind safe sequential colour scheme for 

heatmaps. Lastly, considering the hierarchal nature of time 

series data, the Cartesian icicle plot (Figure 1(e)) and Polar 

sunburst visualisation (Figure 1(f)) were selected to 

represent the area visual encoding. While we could have 

used Cartesian and Polar treemaps [22] for our area 

encoding, icicle plots and sunbursts offer a more logical and 

space-efficient way of representing time series data. 

Further, sunburst provides an accurate Polar representation 

of the Cartesian icicle plot, unlike treemaps, thereby 

providing some consistency with the pairings for positional 

and colour encodings.   

Interaction Techniques 

In this study, we investigated the effects of two commonly 

used interaction techniques: highlighting and tooltips. In its 

simplest form, highlighting acts as the viewing control to 

attract a user’s attention to a subset of data within a 

visualisation [26]. On the other hand, a tooltip is a text 

message that appears when a cursor is positioned over an 

element in a graphical user interface. In our case, the 

purpose of both of these techniques was to facilitate the 

identification of the temporal location and quantitative 

value of a particular data point as accurately as possible. 

The primary difference was that highlighting tried to 

achieve this visually, whereas the tooltip explicitly provided 

the required information in textual form. 

The implementation of both of these interaction techniques 

was achieved through mouseover. The implementation of 

highlighting varied for each visualisation pair, mainly due 

to the inherent structure of the visual encodings. However, 

the design principle remained the same in each case, i.e., to 

have maximum visual impact, while avoiding visual 

occlusion. In the case of line chart, the highlighting of a 

particular data point increased its radius and introduced two 

dashed lines, each stretching from the selected data point to 

the X and Y axis respectively (Figure 1(a)). The same 

highlighting technique was used for radar chart, except 

following the Polar coordinate system (Figure 1(b)). In the 

case of the colour-encoded heatmaps, highlighting a data 

point increased its size and added an outline around the 

corresponding legend (Figure 1(c&d)). Lastly, in the case of 

the area-encoded icicle plot and sunburst visualisations, the 

highlighting of a data point changed its colour (Figure 

1(e&f)). Note that the visualisations that were using the 

colour visual encoding limited our choice of highlighting to 

alteration in the size of data points, as opposed to changing 

their colours. The opposite was true for time series 

visualisations that use the area visual encoding.  

The implementation of tooltips was the same for all 

visualisations, regardless of the type of visual encoding and 

coordinate system being used. We derived the following 

four interaction scenarios from these two commonly used 

interaction techniques: no interaction (where neither 

highlighting nor tooltips were used), only highlighting, only 

tooltips, and both highlighting and tooltips (highlighting-

tooltips). 



Tasks 

Following Fuchs et al. [14] our selection of tasks was based 

on two criteria: (1) their ecological validity and (2) their 

heterogeneity in terms of the elementary perceptual tasks. 

To meet the first criterion, our tasks were informed by 

investigations into the work practices of network security 

professionals, particularly the activity of data correlation to 

find new and unexplained patterns for further analysis [1]. 

However, we believe that the study tasks are also widely 

applicable to other domains, e.g., climate measurement and 

banking and finance. Heterogeneity was ensured by 

selecting tasks that were composed of distinct elementary 

perceptual tasks. The time series data was presented to 

participants in the form of sales data of a fictitious 

company, spanning over 16 weeks (with 7x16=112 data 

points) to provide an easy-to-understand context. Based on 

these criteria, we selected the following four tasks for this 

study: 

1. Maxima: To identify the highest absolute value in a 

dataset (e.g., the highlighted day in Figure 1(a,c&e)). 

Specifically, we asked participants to “discover the day 

when the sales were at their highest”.  

2. Minima: To identify the lowest absolute value in a 

dataset. Specifically, we asked participants to “discover 

the day when the sales were at their lowest”. This was 

functionally identical to the maxima task, except that 

“highest” was changed to “lowest”. Despite their 

similarities, prior work [4,32] suggests that there are 

differences in the performance of these two tasks and 

that different visualisations may be more suitable.  

3. Comparison: To compare two sets of data points to find 

out which set has the highest aggregated value. 

Specifically, we asked participants to “discover which 

of the following weeks has the highest aggregated 

sales: <week X> or <week Y>”.  

4. Trend detection: To identify a subset of data (i.e., a 

week) with the lowest value increase (or upward trend) 

within the dataset (e.g., 3rd week of February in Figure 

1(b,d&f)). Specifically, we asked participants to 

“discover the week with the smallest difference in sales 

between the first and last day”. 

In terms of ecological validity, maxima and minima tasks 

aim to identify the highest and lowest network traffic 

respectively, when detecting bandwidth depletion denial of 

service (DoS) attacks using data correlation. On the other 

hand, the comparison task aims to compare two subsets of 

data to identify unexplained patterns requiring further 

analysis. Lastly, the task of trend detection aims to identify 

increasing or decreasing trends in network traffic when 

performing the activity of data correlation. 

Experiment Design 

We followed a within-subject design with independent 

variables of 4 interaction scenarios (no interaction, 

highlighting, tooltips and highlighting-tooltips), 3 visual 

encodings (position, colour and area), 2 coordinate systems 

(Cartesian and Polar) and 4 tasks. This within-subject 

factorial design yielded a total of 96 (4x3x2x4) 

experimental conditions for each participant. The dependent 

variables used to measure the impact on users were the 

completion time of each experimental condition, answer 

correctness, confidence regarding the given answer, and the 

ease of use of the visualisation. The experiment was 

approved by our University's ethics board. 

Following Javed et al. [21], the order of the tasks was not 

counterbalanced, but rather presented in the order of simple 

to complex, to better prepare the participants for the more 

difficult tasks at the end. We believed this would not have a 

significant effect on the validity of the study results since 

our purpose was not to compare the effectiveness of one 

task against another, but rather to compare the effectiveness 

of alternative time series visualisations within the selected 

tasks. We counterbalanced the order of time series 

visualisations and interaction scenarios between subjects 

using a balanced Latin square to minimise the systematic 

effects of practice.  

Time Series Data 

Following previous graphical perception studies 

[4,10,14,16,21], we used synthetic time series data in order 

to have greater control on the data values and their 

corresponding visual representation. We generated 96 

distinct time series datasets, one for each experiment 

condition. These were assigned randomly to minimise the 

learning effect of a correct answer repeatedly appearing at a 

particular temporal location or having a particular value. 

Each dataset had 112 data points (1 per day) and spanned 

over a period of 16 weeks. Based on our pilot testing and 

the data density of datasets used by similar studies 

[4,10,14], we estimated that this scale of data would be 

substantial enough to achieve the appropriate level of 

difficulty for the different tasks of our study. 

We adopted the methods of Fuchs et al. [14] and Correl et 

al. [10] to generate synthetic data for this experiment. All 

data values were drawn from a normalised range 0 to 100 to 

make the data generalisable across different display 

conditions. Below we explain the data generation method 

for each of the four study tasks: 

Maxima: We selected a data point (p) at random in terms of 

its temporal placement and value. The value of p was drawn 

from the range 65 to 100. Following Albers et al. [4] and 

Fuchs et al. [14], we set the offset d=20, which is the 

difference between the maxima (p) and randomly generated 

noise. The remaining data points within the time series 

dataset were randomly drawn from the range 1 to (p - d). 

Minima: Similar to maxima except that p was drawn from 

the range 1 to 35 and the remaining data points within the 

time series dataset were randomly drawn from the range (p 

+ d) to 100, with offset d=20.   

Comparison: We selected two weeks (w1 and w2) at 

random in terms of their temporal placement. Data points 



within w1 were drawn at random from the range 20 to 80. 

The sum (s1) of values within week 1 was then calculated. 

The values of data points within w2 were randomly drawn 

with the constraint that the sum of values (s2) was either 

20% (offset d) lower than s1 to simulate the aggregated 

value of w1 > w2, or s2 was 20% higher than s1 to simulate 

the aggregated value of w2 > w1. The remaining data points 

within the time series dataset were randomly drawn from 

the range 1 to 100. 

Trend Detection: First, we created 15 distractor weeks. In 

each week, the value of the 1st data point was drawn from 

the range 1 to 20 and the value of the 7th data point was 

drawn from the range 70 to 100. From these distractor 

weeks, we identified the week with the smallest difference 

between the first and last day (sDif). Then, we created the 

winner week and added it to the dataset at a random 

temporal place. In this week, the value of the 1st data point 

(p1) was drawn from the range 1 to 50 and the value of the 

7th data point was calculated by using the formula ‘p1 + 

sDif - offset (d)’, where d=20. The middle 5 data points 

within each week were drawn along the trend line with a 

random variation of 1 to 5. 

Participants 

We recruited 24 participants (14 male, 10 female). All 

participants had normal or corrected-to-normal vision and 

did not report colour blindness. The age of participants 

ranged from 18-44 years. 11 participants (46%) were 

students, 1 participant (4%) was part-time employed and 12 

participants (50%) were in full-time employment. The 

education level of participants was diverse with 5 

participants (21%) enrolled as undergraduate or graduate 

students, 8 (33%) had a Bachelor’s degree, 8 (33%) 

received a Master’s degree and 3 participants (13%) had a 

Ph.D. degree. Following Javed et al. [21], we also screened 

participants to have reasonable computer experience, which 

was defined as using a computer more than 20 hours per 

week. All the participants were given a £10 voucher upon 

completion of the study.   

Apparatus 

The experiment was conducted on a 15.6 inch Samsung 

laptop with a 2.5GHz Intel i5 processor, 6 GB of RAM and 

screen resolution set to 1366x768. A standard, wired mouse 

was also connected with the laptop to facilitate the 

interaction with the study software. 

The study was implemented as a web application using 

HTML5, CSS and JavaScript. Time series visualisations 

were developed using D3.js [5]. Based on our pilot studies, 

for the Cartesian time series visualisations, a width of 700 

pixels and a height of 300 pixels was found to be of 

appropriate size on the 15.6 inch laptop with the screen 

resolution set to 1366x768. The size of Polar visualisations 

was set to 458x458 pixels to assign an approximately equal 

number of pixels for both the Cartesian and Polar 

visualisations.  

Study Procedure 

The experiment took place in a quiet room. The participants 

sat in front of a table at a distance of approximately 50cm 

from the laptop and interacted with the study software using 

only a mouse. 

The experiment began by briefly explaining the purpose 

and procedure of the study. The participant was asked to 

sign a consent form and to complete a short demographic 

survey. The experimenter then explained (using a script) the 

time series visualisations, interaction techniques, data, and 

the first task. After completing the training for the first task, 

the participant completed 24 (4 interaction scenarios x 3 

visual encodings x 2 coordinate systems) experimental 

conditions for the task in which he/she selected the correct 

answer using drop-down menus of week and month. After 

each condition, the participant answered two 5-point Likert 

scale questions, ranging from strongly agree (5) to strongly 

disagree (1): (i) I feel confident about the given answer and 

(ii) I think this visualisation is easy to use for this task. The 

participant completed the training and all experimental 

conditions for the task of maxima, then minima, 

comparison and trend detection respectively. Thus, training 

was completed at the start of each of the four tasks. 

Participants were advised that they should only move on to 

the actual study task once they were comfortable with the 

study software and fully understood the task. 

Participants were advised to perform each experimental 

condition as quickly as possible to keep it in line with our 

1st criterion of task selection (i.e., ecological validity); 

however, no strict time limits were imposed. The study 

duration ranged from 50 to 75 minutes. 

RESULTS 

In this study, completion time was the only continuous 

dependent variable and it was not normally distributed. 

Data normality was tested using the Shapiro-Wilk test, 

which identified 73.95% (71 out of 96) experimental 

conditions that were not normally distributed (p<0.05). The 

remaining 3 dependent variables in this study were either 

binary (accuracy) or ordinal (confidence and ease of use), 

which by definition could not be normally distributed. 

Therefore, we analysed the results using a non-parametric 

Friedman test. Pairwise comparisons were conducted with 

Wilcoxon signed-rank test. Significance levels were 

adjusted with the Holm-Bonferroni correction for multiple 

testing. We categorise the results into three sub-sections, 

corresponding to the three contributions of this paper. We 

only report on the statistically significant results at p<0.05. 

Effects of Interaction Techniques 

We compared the effectiveness (i.e., completion time 

(seconds), accuracy (percentage), confidence (Likert) and 

ease of use (Likert)) of four selected interaction scenarios 

(i.e., no interaction, highlighting, tooltips, and highlighting-

tooltips) for three visual encodings (i.e., position, colour 

and area) and four tasks. Figure 2 provides an overview of 

statistically significant results. 



 

Figure 2. Overview of results for interaction scenarios. Conf. = confidence and ease-use = ease of use. 

Maxima Results 

For visualisations using positional visual encoding, there 

was an overall effect of interaction scenarios on confidence 

(χ2(3)=11.53, p=0.009) and ease of use (χ2(3)=15.26, 

p=0.002). Pairwise comparisons showed that participants 

had more confidence regarding their answers when using 

visualisations with tooltips than no interaction (Z=-2.84, 

p=0.005) and highlighting visualisations (Z=-2.81, 

p=0.005). Similarly, visualisations with tooltips were easier 

to use than no interaction (Z=-3.03, p=0.002) and 

highlighting visualisations (Z=-2.91, p=0.004). 

Visualisations with highlighting-tooltips were also found to 

be easier to use than no interaction visualisations (Z=-2.89, 

p=0.004). 

For visualisations using colour visual encoding, there was 

an overall effect of interaction scenarios on ease of use 

(χ2(3)=15.70, p=0.001).  Pairwise comparisons showed that 

visualisations with highlighting (Z=-3.12, p=0.002), tooltips 

(Z=-2.80, p=0.005) and highlighting-tooltips (Z=-3.22, 

p=0.001) were easier to use than no interaction 

visualisations. 

For visualisations using area visual encoding, there was an 

overall effect of interaction scenarios on confidence 

(χ2(3)=14.30, p=0.003) and ease of use (χ2(3)=17.31, 

p<0.001). Pairwise comparisons showed that participants 

had more confidence regarding their answers when using 

visualisations with tooltips than no interaction 

visualisations (Z=-2.74, p=0.006). Moreover, visualisations 

with tooltips (Z=-3.14, p=0.002) and highlighting-tooltips 

(Z=-3.06, p=0.002) were easier to use than no interaction 

visualisations.  

Minima Results 

For visualisations using positional visual encoding, there 

was an overall effect of interaction scenarios on ease of use 

(χ2(3)=10.35, p=0.016). Pairwise comparisons showed that 

visualisations with highlighting (Z=-2.99, p=0.003) and 

tooltips (Z=-2.76, p=0.006) were easier to use than no 

interaction visualisations.  

Comparison Results 

For visualisations using positional visual encoding, there 

was an overall effect of interaction scenarios on ease of use 

(χ2(3)=10.36, p=0.016). Pairwise comparisons showed 

visualisations with highlighting (Z=-2.68, p=0.007) and 

highlighting-tooltips (Z=-2.55, p=0.010) were easier to use 

than no interaction visualisations.  

For visualisations using area visual encoding, there was an 

overall effect of interaction scenarios on confidence 

(χ2(3)=10.32, p=0.016) and ease of use (χ2(3)=17.01, 

p<0.001). Pairwise comparisons showed that participants 

had more confidence regarding their answers when using 

visualisations with highlighting-tooltips than no interaction 

visualisations (Z=-2.80, p=0.005).  Moreover, visualisations 

with tooltips were easier to use than no interaction (Z=-

3.12, p=0.002) and highlighting visualisations (Z=-2.66, 

p=0.008). Visualisations with highlighting-tooltips were 

also found to be easier to use than no interaction 

visualisations (Z=-3.12, p=0.002). 

Trend Detection Results 

For visualisations using positional visual encoding, there 

was an overall effect of interaction scenarios on ease of use 

(χ2(3)=24.05, p<0.001). Pairwise comparisons showed that 

visualisations with tooltips (Z=-3.40, p=0.001) and 

highlighting-tooltips (Z=-2.69, p=0.007) were easier to use 

than no interaction visualisations.  

For visualisations using area visual encoding, there was an 

overall effect of interaction scenarios on confidence 

(χ2(3)=18.02, p<0.001) and ease of use (χ2(3)=13.04, 

p<0.005). Pairwise comparisons showed that participants 

had more confidence regarding their answers when using 

visualisations with tooltips (Z=-3.10, p=0.002) and 

highlighting-tooltips (Z=-3.17, p=0.002) than no interaction 

visualisations. In addition, visualisations with highlighting-

tooltips were easier to use than no interaction (Z=-2.89, 

p=0.004) and highlighting visualisations (Z=-2.73, 

p=0.006).  



 

Figure 3. Overview of results for visual encodings. Conf. = confidence, ease-use = ease of use, compar. = comparison. 

Impact of Visual Encodings 

We compared the effectiveness (i.e., completion time, 

accuracy, confidence and ease of use) of visualisations 

using three different visual encoding techniques (i.e., 

position, colour and area) for the tasks of maxima, minima, 

comparison and trend detection. Figure 3 provides an 

overview of statistically significant results. 

Minima Results 

There was an overall effect of visual encodings on accuracy 

(χ2(2)=33.74, p<0.001). Pairwise comparisons showed that 

the participants gave more correct answers when using 

visualisations with colour visual encoding, compared to 

position (Z=-2.36, p=0.018) and area (Z=-4.18, p<0.001). 

Participants also gave more correct answers when using 

visualisations with positional visual encoding than area 

(Z=-3.89, p<0.001). 

Comparison Results 

There was an overall effect of visual encodings on 

completion time (χ2(2)=37.00, p<0.001), accuracy 

(χ2(2)=33.09, p<0.001), confidence (χ2(2)=31.08, p<0.001) 

and ease of use (χ2(2)=31.63, p<0.001). Pairwise 

comparisons showed that the completion time was lower for 

visualisations with colour (Z=-4.11, p<0.001) and area 

visual encodings (Z=-4.29, p<0.001) than position. The 

completion time was also lower for visualisations with area 

visual encoding than colour (Z=-3.46, p=0.001). In 

addition, participants gave more correct answers when 

using visualisations with colour (Z=-3.67, p<0.001) and 

area visual encodings (Z=-3.96, p<0.001) than position. 

Pairwise comparisons also showed that participants had 

more confidence in their answers when using visualisations 

with colour (Z=-3.79, p<0.001) and area visual encodings 

(Z=-3.95, p<0.001) than position. Participants also had 

more confidence in their answers when using visualisations 

with area visual encoding than colour (Z=-2.12, p=0.034). 

Lastly, visualisations with colour (Z=-3.64, p<0.001) and 

area visual encodings (Z=-3.94, p<0.001) were easier to use 

than position. Visualisations using area visual encoding 

were also easier to use than colour visual encoding (Z=-

2.72, p=0.007). 

For all other cases, there were no statistically significant 

differences between positional and colour visual encodings, 

however both were more effective than area visual 

encoding. Also, no statistically significant differences were 

found for the dependent variable of accuracy within the task 

of maxima. 

Impact of Coordinate Systems 

We compared the effectiveness (i.e., completion time, 

accuracy, confidence and ease of use) of Cartesian and 

Polar coordinate systems for three visual encodings (i.e., 

position, colour and area) and four tasks (i.e., maxima, 

minima, comparison and trend detection). Figure 4 provides 

an overview of statistically significant results. 

Maxima Results 

For visualisations using positional visual encoding, the 

participants had more confidence regarding their answers 

for the Cartesian coordinate system than Polar (Z=-2.08, 

p=0.038). Similarly, the Cartesian visualisation was easier 

to use than Polar (Z=-2.75, p=0.006). For visualisations 

using area visual encoding, the completion time was lower 

for the Cartesian coordinate system than Polar (Z=-2.46, 

p=0.014). In addition, the Cartesian visualisation was easier 

to use than Polar (Z=-2.49, p=0.013).  



 

Figure 4. Overview of results for coordinate systems. Conf. = confidence, ease-use = ease of use and compar. = comparison. 

Minima Results 

For visualisations using positional visual encoding, the 

completion time was lower for the Cartesian coordinate 

system than Polar (Z=-4.00, p<0.001). The participants 

gave more correct answers when using the Cartesian 

coordinate system compared to Polar (Z=-2.80, p=0.005) In 

addition, the participants had more confidence in their 

answers for the Cartesian coordinate system than Polar (Z=-

3.33, p=0.001) and found it easier to use, compared to Polar 

(Z=-3.92, p<0.001). 

On the other hand, for visualisations using colour visual 

encoding, only completion time was lower for the Cartesian 

coordinate system than Polar (Z=-2.11, p=0.034). 

In contrast to positional and colour visual encodings, the 

Polar visualisation performed better than its Cartesian 

counterpart for area visual encoding. The completion time 

was lower for the Polar coordinate system than Cartesian 

(Z=-2.14, p=0.032). The participants gave more correct 

answers when using the Polar coordinate system than 

Cartesian (Z=-4.00, p<0.001). Also, participants had more 

confidence regarding their answers for the Polar coordinate 

system than Cartesian (Z=-3.60, p<0.001) and found it 

easier to use, compared to Cartesian (Z=-3.11, p=0.002). 

Comparison Results 

For the task of comparison, the only statistically significant 

result was for the visualisations using positional visual 

encoding. The participants found the Cartesian visualisation 

to be easier to use than its Polar counterpart (Z=-2.59, 

p=0.010). 

Trend Detection Results 

For visualisations using positional visual encoding, the 

completion time was lower for the Cartesian coordinate 

system than Polar (Z=-2.46, p=0.014). In addition, the 

participants had more confidence regarding their answers 

for the Cartesian coordinate system than Polar (Z=-2.98, 

p=0.003). They also found it easier to use compared to 

Polar (Z=-3.47, p=0.001). 

On the other hand, for visualisations using colour visual 

encoding, only completion time was lower for the Cartesian 

coordinate system than Polar (Z=-2.07, p=0.038). Similarly, 

for visualisations using area visual encoding, only 

completion time was lower for the Cartesian coordinate 

system than Polar (Z=-2.49, p=0.013). 

DISCUSSION  

We divide the findings into three sub-sections, 

corresponding to the three contributions (C1-C3) of this 

paper.  

Effects of Interaction Techniques 

We found that introducing interactivity for time series 

visualisations could considerably enhance the user 

experience (i.e., confidence and ease of use), without the 

loss of any efficiency or accuracy. Further, there are clear 

differences in the effectiveness of selected interaction 

scenarios (i.e., highlighting, tooltips, and highlighting-

tooltips). Our findings indicate that visualisations with 

tooltips were not only considerably more effective than the 

visualisations with highlighting, but they were also slightly 

better than visualisations with both the highlighting and the 

tooltips (highlighting-tooltips). In terms of design 

implications for time series visualisations, this finding 

suggests that  users prefer clear textual instructions (i.e., 

tooltips) than highlighting, when it comes to facilitating the 

identification of temporal location and quantitative value of 

a particular data point. 



The trend of interactive time series visualisations resulting 

in better user experience was observed considerably less for 

the task of minima and visualisations that use colour visual 

encoding. This confirms the findings of prior work [4,32] 

that indicate that despite the similarity between minima and 

maxima, there are differences in the performance of these 

two tasks and that different visualisations may be suitable. 

This finding has two design implications for time series 

visualisations. Firstly, introducing interactivity may add 

little value for time series visualisations using colour visual 

encoding. Secondly, the effect of interactivity on the 

performance of minima task is very negligible. 

Impact of Visual Encodings 

Our findings suggest that for maxima, minima and trend 

detection tasks, time series visualisations that use positional 

and colour visual encodings were more effective than area 

visual encodings. However, for the task of comparison, 

visualisations that use area visual encodings were more 

effective than their positional and colour counterparts. 

This confirms that the findings of generic, non-time series 

graphical perception studies [8,17] are not fully 

generalisable to time series visualisations. In other words, 

while visualisations using positional visual encodings are 

quite a strong option to visualise time series data, there are 

many scenarios where visualisations that use colour visual 

encoding are comparable or more effective. In addition, we 

have a new finding that there are certain scenarios (e.g., 

comparison task) where visualisations that use area visual 

encoding are better suited, compared to visualisations from 

both the visual encodings of position and colour. 

In terms of design implications, our findings suggest that 

the choice of a time series visualisation should be based on 

the type of tasks and the metric used to measure the 

effectiveness, since there is no “one-size-fits-all” solution. 

Impact of Coordinate Systems 

We found that visualisations that are based on a Cartesian 

coordinate system are generally comparable or more 

effective than Polar, except for visualisations that use area 

visual encoding for the task of minima. 

This confirms the findings of two generic studies conducted 

by Diehl et al. [11], which suggest using a Cartesian 

coordinate system unless there are clear reasons in favour 

of Polar. In our case, the only scenario where a visualisation 

based on the Polar coordinate system (i.e., sunburst 

visualisation) were more effective than its Cartesian 

counterpart (i.e., icicle plot) was from the category of area 

visual encoding, for the task of minima. There could be 

several possible reasons for this finding. We believe that 

this was due to the increased space to encode data values of 

days, provided by the outermost ring of the sunburst 

visualisation compared to the lowermost segment of the 

icicle plot.  

Also note that, the effect of coordinate systems is negligible 

for time series visualisations that use colour visual 

encoding. In terms of design implications, this finding 

suggests that time series visualisations using colour visual 

encoding may be an appropriate choice when the coordinate 

system is not known beforehand.   

LIMITATIONS AND FUTURE WORK 

While comprehensive enough to explore three different 

aspects (C1-C3) of time series visualisations, this approach 

was not without limitations. To begin with, we investigated 

the effect of two commonly used interaction techniques 

(i.e., highlighting and tooltips) on the effectiveness of 

different time series visualisations. In the future, we would 

like to extend this study to other commonly used interaction 

techniques, e.g., selection, filtering and zoom in/out. 

In addition, our experiment considers a small but diverse set 

of time series visualisations and tasks. We believe that our 

findings would be generalisable to a wider range of 

situations, but we have not confirmed this empirically. In 

our future endeavours, we plan to extend these findings by 

including additional time series visualisations (e.g., scatter 

plots and horizon graphs) and tasks (e.g., range and 

outliers). The same is true for the selected size and aspect 

ratio of time series visualisations, density of time series 

datasets and the offset between the correct answers and 

randomly generated noise. 

CONCLUSION  

In this paper, we presented the results of a comprehensive 

graphical perception study. The purpose of this study was to 

examine the effects of two commonly used interaction 

techniques on time series visualisations (C1), to compare 

the effectiveness of time series visualisations using the 

positional, colour and area visual encodings (C2) and to 

investigate the impact of Cartesian and Polar coordinate 

systems on the effectiveness of time series visualisations 

(C3).  

Our results show that the time series visualisations that use 

positional and colour visual encodings were more effective 

than area visual encodings for maxima, minima and trend 

detection tasks. However, for the task of comparison, 

visualisations that use area visual encodings were more 

effective than their positional and colour counterparts. We 

also found that the time series visualisations that are based 

on the Cartesian coordinate system are generally 

comparable or more effective than Polar. Most importantly, 

we identified that introducing interactivity within time 

series visualisations considerably enhances the user 

experience, without any loss of efficiency or accuracy. We 

believe that our findings could vastly assist visual analytics 

tool developers when choosing time series visualisations for 

different tasks in a variety of domains. We also believe that 

our work will motivate the visual analytics research 

community to focus equally on interaction and visual 

representation of data. 
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