Investigating Time Series Visualisations to Improve the User Experience

Muhammad Adnan

Mike Just, Lynne Baillie

イロト イポト イヨト イヨト

- Time series visualisations widely used
- Example: Network security analysis
 - Time (horizontal), number of packets (vertical)

- Time series visualisations widely used
- Example: Network security analysis
 - Time (horizontal), number of packets (vertical)

 Tasks such as maxima and comparison used to identify possible Denial of Service attacks

・ロト ・四ト ・ヨト ・ヨト

• Several possible visual representations to use

• Several possible visual representations to use

(a) Line chart

• Several possible visual representations to use

(人間) システン イラン

• Several possible visual representations to use

3

イロト 不同下 イヨト イヨト

• Which visual representation to use?

- Which visual representation to use?
- What about user interaction?

- Which visual representation to use?
- What about user interaction?
- Dozens of research papers since early 80s on visual representation and graphical perception
- Gaps re: some fundamental factors
 - Interaction techniques
 - Visual encodings
 - Coordinate systems

Background

Interaction techniques

Graphical perception studies commonly in **static setting**, limiting knowledge of **user experience**.

Background

Interaction techniques

Graphical perception studies commonly in **static setting**, limiting knowledge of **user experience**.

Visual encodings

Effectiveness within and across position and colour visual encodings, but **not area**.

Background

Interaction techniques

Graphical perception studies commonly in **static setting**, limiting knowledge of **user experience**.

Visual encodings

Effectiveness within and across position and colour visual encodings, but **not area**.

Coordinate systems

Limited empirical evidence on **Cartesian vs. Polar** coordinate systems for time series visualisations using different visual encodings.

Our Approach

• Graphical perception study

Our Approach

- Graphical perception study
 - 4 arrangements of two **interaction techniques**:

No interactionOnly tooltipsOnly highlightingBoth highlighting & tooltips

• 3 visual encodings:

Position Colour Area

• 2 coordinate systems:

Cartesian Polar

• 4 study tasks:

Maxima Comparison Minima Trend detection

Our Approach

- Graphical perception study
 - 4 arrangements of two **interaction techniques**:

No interactionOnly tooltipsOnly highlightingBoth highlighting & tooltips

• 3 visual encodings:

Position Colour Area

• 2 coordinate systems:

Cartesian Polar

• 4 study tasks:

Maxima Comparison Minima Trend detection

• 96 (4x3x2x4) experimental conditions

- Visual encodings: Position, colour, and area
- For each, a Cartesian and polar coord. system
- Interaction techniques: highlighting & tooltips

Position encoding: Cartesian (line chart)

- Visual encodings: Position, colour, and area
- For each, a Cartesian and polar coord. system
- Interaction techniques: highlighting & tooltips

Position encoding: Polar (radar chart)

- Visual encodings: Position, colour, and area
- For each, a Cartesian and polar coord. system
- Interaction techniques: highlighting & tooltips

Colour encoding: Cartesian (rectangular heatmap)

- Visual encodings: Position, colour, and area
- For each, a Cartesian and polar coord. system
- Interaction techniques: highlighting & tooltips

Colour encoding: Polar (circular heatmap)

- Visual encodings: Position, colour, and area
- For each, a Cartesian and polar coord. system
- Interaction techniques: highlighting & tooltips
- Area encoding: Cartesian (icicle plot)

(e) Icicle plot

- Visual encodings: Position, colour, and area
- For each, a Cartesian and polar coord. system
- Interaction techniques: highlighting & tooltips

Area encoding: Polar (sunburst plot)

()

Visual Representation Summary

Study Tasks

Maxima

To identify the highest absolute value in a dataset
Minima

• To identify the lowest absolute value in a dataset

- Comparison
 - To compare two sets of data points to find out which set has the highest aggregated value
- Trend detection
 - To identify subset of data (i.e., a week) with lowest value increase (upward trend) within dataset

Study Tasks

Maxima

To identify the highest absolute value in a dataset
Minima

• To identify the lowest absolute value in a dataset

- Comparison
 - To compare two sets of data points to find out which set has the highest aggregated value
- Trend detection
 - To identify subset of data (i.e., a week) with lowest value increase (upward trend) within dataset

Task scenario

Presented as sales data of a fictitious company

Study Design

Study design

- 24 study participants
 - (14 male, 10 female; 18-44 years old)
- Within-subject factorial design with 96 (4x3x2x4) experimental conditions for each participant
- Experimental conditions
 - Counterbalanced visualisations and interactions
 - Tasks ordered simple to complex (Javed et al., 2010)
- Data for visual representations
 - 96 distinct, synthetic time series datasets (one for each condition) following Fuchs et al. (2013)
 - Each dataset had 112 data points (1 per day) over 16 week period

Study Procedure

Stage	Description
Introduction	Greetings, consent, demographic
	questionnaire, study explanation
Maxima	Task training, 24 conditions
Minima	Task training, 24 conditions
Comparison	Task training, 24 conditions
Trend detect.	Task training, 24 conditions

Stage	Description
Introduction	Greetings, consent, demographic
	questionnaire, study explanation
Maxima	Task training, 24 conditions
Minima	Task training, 24 conditions
Comparison	Task training, 24 conditions
Trend detect.	Task training, 24 conditions

24 experimental conditions for each task (3 visual encodings x 2 coord. systems x 4 interact.) Effectiveness measured with four components, collected after each experimental condition

Effectiveness measured with four components, collected after each experimental condition

- Completion of an experimental condition (sec)
- Accuracy of the given answer (binary)
- Confidence of the given answer (5-point Likert)
- Ease of use of a visualisation (5-point Likert)

Final two collected via questionnaire per condition

Results: Interaction Techniques

• Interactivity enhanced user experience

- Interaction significantly better than no interaction
- Confidence and ease-of-use
- No affect on completion time or accuracy

Results: Interaction Techniques

• Interactivity enhanced user experience

- Interaction significantly better than no interaction
- Confidence and ease-of-use
- No affect on completion time or accuracy

Results: Interaction Techniques

• Interactivity enhanced user experience

- Interaction significantly better than no interaction
- Confidence and ease-of-use
- No affect on completion time or accuracy

• Textual (tooltips) better than highlighting

Results: Visual Encodings

• Completion, accuracy, confidence, & ease

Results: Visual Encodings

- Completion, accuracy, confidence, & ease
- Position & colour better: max, min, trend det.
 - Colour more accurate for minima

Results: Visual Encodings

- Completion, accuracy, confidence, & ease
- Position & colour better: max, min, trend det.
 - Colour more accurate for minima

• Area more effective for comparison task

• Completion, accuracy, confidence, & ease

- Completion, accuracy, confidence, & ease
- Cartesian generally better than polar

- Completion, accuracy, confidence, & ease
- Cartesian generally better than polar
- Polar better for minima task with area

- Completion, accuracy, confidence, & ease
- Cartesian generally better than polar
- Polar better for minima task with area

• Neglible effect of coordinate system for colour

Key Findings

- Interactivity improved user experience
 - Improved confidence and ease of use, without a significant decrease in completion time or accuracy.

Key Findings

- Interactivity improved user experience
 - Improved confidence and ease of use, without a significant decrease in completion time or accuracy.
- No "one-size-fits-all"
 - The choice of a visual representation should be based on the type of tasks

Key Findings

- Interactivity improved user experience
 - Improved confidence and ease of use, without a significant decrease in completion time or accuracy.
- No "one-size-fits-all"
 - The choice of a visual representation should be based on the type of tasks
- Generally, Cartesian is better
 - Cartesian coordinate systems are generally comparable or more effective than Polar, except for visualisations that use area for minima.

Looking Ahead

- Increased study of interactivity for time series visualisations
- Evidence of tradeoffs for different visual representations and tasks

Looking Ahead

- Increased study of interactivity for time series visualisations
- Evidence of tradeoffs for different visual representations and tasks
- Future work
 - Offset, interaction effects, different tasks and interactions

Looking Ahead

- Increased study of interactivity for time series visualisations
- Evidence of tradeoffs for different visual representations and tasks
- Future work
 - Offset, interaction effects, different tasks and interactions
- Results applicable to domains that use time series visualisations
 - Currently studying visualisations for network security analysis

Contact

Interactive & Trustworthy Technologies (ITT) Web http://www.ittgroup.org/ Twitter @ITT_Research

Email m.just@hw.ac.uk (Mike Just)

PhD position in Usable Mobile Security	
Where?	Heriot-Watt University, Edinburgh, UK Some travel to Microsoft Research, India
Supervisors	Lynne Baillie (Heriot-Watt University) Jacki O'Neil (Microsoft Research India) Mike Just (Heriot-Watt University)
Contact	1.baillie@hw.ac.uk (Lynne Baillie)