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Abstract - We propose an uncalibrated method for acquiring
the normal and albedo fields of an isotropic 3D surface texture
illuminated at a constant slant angle. The method is ’uncalibrated’
in that the illumination vectors are not known a priori. We assume
single point lighting of a rough Lambertian surface lying in the x-y
plane. We use Hayakawa’s uncalibrated photometric stereo
algorithm to simultaneously estimate the scaled surface normals and
the illumination vectors in an arbitrary co-ordinate system. The use
of constant illumination slant intensity data means that the required
orientation to a viewer co-ordinate system simply involves a z-axis
rotation.  Orientation in the x-y plane is determined by applying a
frequency domain method for estimating illumination tilt angles.
Preliminary results from simulations and real data are provided.

I.  INTRODUCTION

Photometric stereo (PS) can be used to acquire the
normal and albedo fields of surface texture from a
minimum of three intensity images [1].  In order to solve
the equations for these unknowns, however, the
illumination vector corresponding to each image must be
determined.  The fact that a priori knowledge is a
prerequisite for this method limits its application.

  Hayakawa [2] proposed a new PS method which
avoids measurement of the illumination and is essentially
uncalibrated.  However, the resulting surface normals and
illumination vectors are in fact defined in an arbitrary
co-ordinate system.  Determining the orientation requires
prior knowledge of either three surface or illuminant
vectors.  Hayakawa’s algorithm has been researched
further by several authors and employed in the area of
face recognition [7, 8, 9, 10].  Belhumeur et al [8] noted
that a generalised bas-relief ambiguity exists and
proposed using the integrability constraint to solve it.  In
doing so they limit the method to smooth surface
applications.  As we intend to apply the method to
globally flat but rough surface textures this assumption is
not applicable in our work.  They also recommend the use
of a general calibration object but this is not suitable for
our intended application.  Drobohlav [11, 12] has also
tackled the inherent ambiguity in uncalibrated PS. He
proposes reducing the ambiguity by considering both
Lambertian and specular terms but couples this with the
integrability constraint.

This paper presents preliminary work on developing
uncalibrated PS for application to surface textures. We
use Hayakawa’s algorithm to determine the surface
gradients and albedo image without calibration.  We
assume that the illuminant slant is unknown but constant.
Furthermore we assume that the surface texture is
isotropic in nature such that the illuminant tilt angle can
be estimated from the intensity image.

II.  THEORY

A   Photometric Stereo
  The PS algorithm is derived from Lambert’s law. Thus
the irradiance of a surface element with surface normal, n,
illuminated by a source with vector, l is:

)(),( nl •= ρyxi

where ρ = surface albedo
)cos,sinsin,sin(cos),,( σστστ== zyx llll

n = unit surface normal
τ  = tilt angle (latitude),
σ  = slant angle (longitude)

If three images i1, i2 & i3 of a surface are captured under
different illumination conditions which are known, it is
straightforward to solve the 3 equations for the scaled
surface normals,  t = ρn:

iLt 1−=
where:
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In calibrated PS L and i are known.

B  Uncalibrated Photometric Stereo
  For uncalibrated PS only i is known. We therefore face a
bilinear problem in which both L and t must be
simultaneously estimated.  This is a generic machine
vision problem in which calibration times estimation
equals data or C.E=D [6].  One solution is DEC ==  but
it is not unique: there is an ambiguity such that
( )( ) DDAAD 1 =−.. .  Other prior information is required to

resolve this ambiguity.
  Hayakawa’s algorithm [2] for uncalibrated PS tackles
the problem in exactly this way. A matrix of known data
is constructed by inserting each captured image of the
surface texture as a column.
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Singular value decomposition (SVD) is applied to the
resulting intensity matrix I to provide an initial estimate
for the surface and illumination matrices:

VUSLI Σ==
Pseudo surface and illumination matrices are formed by
taking the three largest eigenvalues Σ′  and the
corresponding columns and rows in U and V respectively,
U′  & V′  , as follows.

where p = no. of pixels
f = no. of frames



2/1)’(’ˆ US ±= ’)’(ˆ 2/1 VL ±=
The ambiguity, A, is then resolved by assuming that there
are six pixels with constant albedo or six frames in which
the intensity of the light source is constant.

ASS ˆ= LAL 1 ˆ−=

C  Absolute Orientation
  The resulting surface and illumination matrices, S & L,
are in an arbitrary 3D co-ordinate system and require
alignment.  Horn [3] details a method to perform this.
However, it requires three surface normals or illumination
vectors in the viewer-oriented system to be known.  The
use of a calibration object would make this possible but is
not suitable for all applications.

We assume that the illumination slant angle is constant.
Although its value is unknown, the fact that it does not
change affects the results of the decomposition.  Whilst
the variation in the intensity data cloud is accounted for
by two eigenvectors, one eigenvector provides a measure
of the distance of that cloud from the origin i.e. the data’s
average. The elements of the pseudo illumination matrix
column corresponding to this ‘average’ eigenvector are
equal in the case of constant illumination slant.  Since the
z-component of the actual illumination matrix is also
constant this means that the required orientation
simplifies to a z-axis rotation.  It is noted that this rotation
may be augmented by a permutation but that this is
dependent on the relative position of the eigenvectors.  In
any case, an approximation for the first and second
elements of three illumination vectors is then all that is
required to find the overall rotation matrix.  The tilt angle
corresponding to each is actually sufficient for this
purpose since the slant angle has effectively been
estimated.

D  Illuminant Tilt Angle Estimation
  It is possible to estimate the illuminant tilt angle for an
isotropic texture from its image.  Knill [5] proposed a
spatial domain estimator to do so but we use Chantler’s
[4] frequency domain method due to accuracy
considerations.   In the latter, the polar plot ( )θP  is

determined from the Fourier transform of the image.  The
polar plot for an isotropic surface texture is a cosine
function whose maximum value corresponds to the
illuminant tilt angle (See Fig.1).

Fig. 1.   Polar plot of synthetic isotropic surface illuminated from
τ =45°, σ =45°.  Best-fit cosine shown - offset provides tilt estimate.

  Fourier analysis is subsequently applied to the polar plot
data in order to estimate the angle.  It is given by the
following formula:

2/tan90ˆ 1
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E  Summary
  A brief outline of the proposed overall method follows :

1. Capture intensity images of isotropic surface
textures under constant illuminant slant angle
conditions.

2. Process resulting images with Chantler’s
illuminant tilt estimator to predict tilt angle for
each.

3. Process overall intensity matrix I with
Hayakawa’s uncalibrated photometric stereo
algorithm.

4. Orient the resulting surface normal and
illumination matrices to viewer-oriented 3D
system using Horn’s method with estimated tilt
angles for three vectors.

III. ASSESSMENT

A   Synthetic images
  We initially tested the proposed method with synthetic
images to determine how well it worked under controlled
conditions. We used a fractal model since it produces
isotropic surfaces which look natural.  The images were
generated by rendering the resulting height map and used
as input for our algorithm.  The output (the surface
normal fields) was compared against surface normal
estimates obtained from the fractal height map.  Accuracy
was expressed as a signal to noise ratio.

Fig. 2.   Fractal height map ( β =3.5), left, and an example of an image

generated by relighting it, right.

  Each basic data set consisted of 36 images.  For a given
illuminant slant angle, images were generated every 10°
with regard to tilt angle.  Further data sets were produced
by adding increasing levels of white noise to simulate real
conditions.  Experiments were performed over a range of
input signal to noise values with different illuminant
slants and increasing height variation.  The results are
presented below.
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Fig. 3.  Output signal to noise ratios against input for the synthetic
fractal surface (a) slant variation, top and (b) height variation, bottom.

It is noted that the signal to noise ratio decreases with
increasing slant angle; it also decreases with increasing
height variation.  This indicates that we should avoid
extremely rough surface textures and furthermore avoid
raking illumination conditions.  Increasing the degree of
input noise results in an increasingly noisy output.

B   Real data
  In order to assess the performance of the proposed
method with real data, we captured images of an isotropic
texture under various illumination conditions.  A
fractured plaster surface was used.  The texture was lit by
a light source at a distance of approximately 1m and
images of it were captured with a digital camera.  It is
noted that both the camera and the texture were fixed in
position and orientation. The light source was moved
and/or pivoted to provide illuminant orientations
corresponding to 36 different tilt angles for three different
slant angles.  This resulted in three data sets, each of
which was processed both by the calibrated PS algorithm
as well as the uncalibrated method to allow comparison.
The resulting surface gradients and albedo images were
then used to generate relit images corresponding to the
entire range of illumination conditions used during the
image capture session.  This meant that it was then
possible to compute an average image signal to noise
value for each method at each slant angle.
  The relit images for both methods were found to be
visually similar to the originals.  However, the variance in
the relit images corresponding to the completely
uncalibrated method was significantly higher than that for
both the original images and those generated from the
calibrated results.  A comparison between the surface
gradients predicted by both methods revealed the cause to

be a constant scaling factor; this linear relationship is
clearly demonstrated in Figure 4.  We believe that this
effect can be attributed to the bas-relief ambiguity [7].  In
this case a z-axis rotation alone is not sufficient to
completely orient the data. In order to resolve this
ambiguity, the scaling factor must be determined.

Fig. 4.  Plot of surface gradient values generated by uncalibrated PS
against corresponding values generated by calibrated PS for a real
textured surface (best fit line also shown).

Since we are dealing with images of an isotropic texture
illuminated with constant slant angle, the mean and
variance will be constant for every image.  This
observation allows the images generated by relighting the
uncalibrated data to be scaled and thus compared to the
originals.  Average signal to noise ratio values are given
in the bar chart in Figure 5.   A visual comparison of relit
images is given in Figure 6.  The uncalibrated results
compare favourably with the calibrated results both
visually and in terms of the signal to noise ratio.

Fig. 5.   Plot of surface gradient values generated by uncalibrated PS
against corresponding values generated by calibrated PS for a real
textured surface.

IV.  CONCLUSIONS

  In this paper we have presented research the ultimate
aim of which is to develop a completely uncalibrated
photometric stereo algorithm for the acquisition of surface
texture for use in relighting applications.
  We have chosen to avoid the use of a calibration object
and instead constrain the input data.  Our current
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approach requires that the slant angle of all illumination
vectors is a constant but unknown value.  We also assume
that the surface is isotropic and aligned with the x-y
plane.  As a result the orientation from arbitrary to viewer
oriented co-ordinate system involves a rotation about the
z-axis which is estimated using an existing frequency
domain method.
  Whilst limited in application, the resulting algorithm has
been shown to work well in the absence of noise with
isotropic images of synthetic textures.  It also provides
excellent ‘re-lights’ of a real texture.
  We intend to assess the performance of the method on a
wide variety of surface textures and to extend the
approach to deal with directional textures.
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A   Original image
τ  = 90°, σ  = 45°

Fig. 6. Comparison of an original image with relit images which have been generated by using the surface gradient
and albedo images determined by both the uncalibrated and the calibrated photometric stereo methods from data sets
of various illuminant slant angles.

I. UNCALIBRATED PS

B Relit images C Error magnitude images

1. Original data set with illuminant slant angle of 30°

2. Original data set with illuminant slant angle of 45°

3. Original data set with illuminant slant angle of 60°

1. Original data set with illuminant slant angle of 30°

2. Original data set with illuminant slant angle of 45°

Original data set with illuminant slant angle of 60°

II. CALIBRATED PS

B Relit images C Error magnitude images


