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Abstract— Classification of textures in scene images is very
difficult due to the high variability of the data within and
between images caused by effects such as non-homogeneity of
the textures, changes in illumination, shadows, foreshortening
and self-occlusion. For these reasons, finding proper features
and representative training samples for a classifier is very
problematic. Even defining the classes which can be discriminated
with texture information is not so straightforward. In this paper,
a visualization-based approach for training a texture classifier
is presented. Powerful local binary patterns (LBP) are used as
texture features and a self-organizing map (SOM) is employed
for visual training and classification, providing very promising
results in the classification of outdoor scene images.

I. I NTRODUCTION

The analysis of 3D-textured real-world images has recently
been a topic of increasing interest due to many potential
applications. These include, for example, classification and
inspection of materials or objects from varying viewpoints,
classification and segmentation of scene images e.g. for navi-
gation purposes, aerial image analysis, and retrieval of scene
images from multimedia databases.

Analysis of outdoor scene images, for example for nav-
igating a mobile robot, is very challenging. Texture could
play an important role in this kind of application, because
it is much more robust than color with respect to changes in
illumination and it could also be utilized in night vision [1].
Castano et al. argued that classification is a more important
issue in the vast majority of applications rather than clustering
or unsupervised segmentation. Regardless of its importance,
texture classification has been rarely utilized. Setchell and
Campbell [2] used color Gabor texture features for classifying
pre-labeled regions from images in the Bristol Image Database
[3]. Castano et al. assessed the performance of two Gabor
filtering based texture classification methods on a number of
real-world images relevant to autonomous navigation on cross-
country terrain and to autonomous geology [1]. They obtained
satisfactory results for rather simple terrain images containing
four classes (soil, trees, bushes/grass, and sky), but the results
for the rock dataset were much poorer.

Recently, Pietik̈ainen et al. applied local binary pattern
(LBP) texture features [4] to the classification of scene images
taken by a person walking along a street [5]. Five texture
classes were defined: sky, trees, grass, road and buildings. A

view-based classification method using multiple LBP distribu-
tions as texture models provided an accuracy of up to 85%.
They also applied the same methodology to the classification
Columbia-Utrecht database (CUReT) textures imaged under
different viewpoints and illuminations, exceeding the perfor-
mance obtained by earlier studies [6].

Outdoor scene image analysis sets high requirements for
the features used. There are wide illumination variations even
in a single image and for example, the influences of shad-
owing and overall illumination on classification performance
should be considered. Also the foreshortening effect and non-
homogeneity of objects set extra requirements for the features.
Even without these problems the scene classification is difficult
because of the great variability within classes; consider for
example different kinds of trees. The variation between classes
also changes greatly. For example, in some scenes the grass
can resemble a road in a certain illumination, but on the
other hand it can also look like the leaves of trees in some
other aspect. Because of these hard conditions and problems,
a tool for selecting classes, features and representative training
samples would be highly desirable.

Recently, a method based on visual training has provided a
significant breakthrough in wood inspection performance [7].
It combines an intuitive user interface with an unsupervised
classifier. The idea is to project the unlabeled training data into
two dimensions with some dimensionality reduction method
like a self-organizing map (SOM) [8]. Then the training data
is visualized on the 2D map where the user determines the
boundaries between classes. The approach does not require
labeling of separate samples, which is often an inconsistent
and error prone task reducing the accuracy required. The
decision of the class boundaries is based on observing the data
set as a whole, utilizing visualization and clustering of the data.
A similar SOM-based method using LBP texture features has
provided outstanding results in paper characterization [9].

A visualization-based approach could also be very useful
in the training of a classifier for 3D scene analysis. Most
of the research, however, has not paid much attention to the
significant roles of the training sample and feature selection in
these applications. In [5], an approach for learning appearance
models for view-based recognition using self-organization
of feature distributions was introduced and applied to the



recognition of CUReT textures.
In this paper, we will explore the use of visual training and

classification in the analysis of outdoor scene images. Separate
training and testing sets are used in the experiments. The
images to be analyzed are divided into small non-overlapping
blocks, and distributions of LBP features are computed within
each block. LBP distributions are then fed to a self-organizing
map for clustering the high-dimensional feature data on a two-
dimensional map. The visualization of the SOM is used for
selecting a representative training set for classification. In the
testing phase, the classification of image blocks is done with
either a SOM-based or ak-NN classifier. In addition to the
training set selection, the developed tool can also be used for
evaluating the performance of chosen texture features.

The approach presented is experimentally evaluated with a
set of outdoor scene images taken from the Outex database
[10]. The classification performance is determined by classi-
fying pre-labeled ground truth regions, but also examples of
segmenting the whole images are shown.

II. A NALYSIS TOOL

Fig. 1 shows a block diagram of the analysis method used.
First the original image is divided into non-overlapping blocks
of a chosen size. The texture features are extracted within each
block and used as an input for the self-organizing map. The
two-dimensional SOM obtained is then used for selecting the
training data for classification. The user can also see from the
map how well the chosen texture features can discriminate
different classes into separate clusters, and try again with other
features if the discrimination is not good enough. In the testing
phase, the classification performance of selected features is
determined with an independent data set.
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Fig. 1. Block diagram of analysis method

A. Texture Feature Extraction

For the present implementation, we chose the local binary
pattern operator, which has shown excellent performance in

the classification of 2D [4] and 3D [5] textures. LBP is a
gray-scale invariant texture primitive statistic. This is a very
important property, because the scene textures tend to have
significant local and global gray-scale variations. The LBP
features are also very fast to compute allowing processing at
video rates.

For each pixel in an image, a binary code is produced by
thresholding its neighborhood with the value of the center
pixel. A histogram is created to collect up the occurrences
of different binary patterns. The basic version of the LBP
operator considers only the eight neighbors of a pixel, but
the definition can be extended to include all circular neigh-
borhoods with any number of pixels [4]. By extending the
neighborhood one can collect larger-scale texture primitives.

In our research, we considered neighborhoods with 8, 16
and 24 samples and radii 1, 3 and 5. In order to reduce the
number of bins needed, we adopted the ”uniform” pattern ap-
proach proposed in [4]. The operators chosen were ”rotation-
dependent” operators LBPu2

8,1 (uniform, 8 samples; radius 1)
and multiresolution LBPu2

8,1+16,3+24,5 (uniform; 8, 16 and 24
samples; radii 1, 3 and 5). The multiresolution operator is
obtained by concatenating histograms produced by operators
at three resolutions into a single histogram.

B. Visual Training and Feature Analysis

The self-organizing map is used to reduce the dimension-
ality of the feature data. In dimensionality reduction, the
data is projected to a two-dimensional space and clustered
according to similarity [8]. Similar texture features cluster
close to each other, while more distant ones construct their
own node clusters on the SOM grid.

Fig. 2 illustrates the principle of SOM-based visual training
and feature analysis in scene analysis. Each sub-image (block)
extracted from the original scene image is considered as a
separate sample. Texture feature vectors (= LBP histograms)
derived from these samples are then used as input for the
SOM. After training the SOM, we visualize it and select a
few nodes from the visualized map for further analysis. A new
smaller-sized SOM is then trained by using selected samples
representing given class(es) as its input. Visualizing this new
SOM reveals if there are samples from some other classes
mixed with the class under consideration. The nodes, and
samples inside them, representing each correct class are then
selected and labeled to be included in the training set of the
classifier.

The following steps summarize how the visual training is
performed and Fig. 3 shows a real-world example of actual
visualization parts. The original training images can be used
as help when rejecting nodes, but usually rejection can be done
directly based on the appearance of nodes.

1) Divide training images to small sub-images and calculate
features from these small images.

2) Train a self-organizing map with these features.
3) Visualize the map and select nodes with similar appear-

ance.
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Fig. 2. SOM-based visual training

4) Train a new smaller map with samples inside the se-
lected nodes.

5) Visualize the smaller SOM and reject nodes representing
samples from other classes. All other sampes are added
to the training set and labeled similarly.

6) Goto step 3 until all classes have been gone through.

Feature analysis is also made in this phase. By selecting
a group of nodes and mapping samples inside them back to
the original image, we can see if the features can discriminate
this data well. We can, for example, select a group of nodes
assumed to represent trees in the scene and see how the
samples inside these nodes are actually located in the original
image. If different classes construct compact clusters and
do not mix too much with the other classes, we can make
an assumption that the chosen features are good enough.
Otherwise, if the nodes of the class ’tree’, for example, are
spread all over the SOM and different classes are mixed badly
inside nodes, we can assume that the features cannot separate
the classes in question well enough.

Fig. 4 shows a real-world example of how the feature
analysis and visualization of clustering work. The images are
shown to the user with full color, even though the texture
features were extracted after gray scale conversion. For a
human it is much easier to discriminate details from color than
gray scale images. The upper part of the figure shows a SOM
with selected nodes assumed to represent the class ’tree’, and
the lower part shows the original scene image. Those samples
that are selected from the SOM are also selected in the original
image. We can see that the features work quite well, because
the cluster is compact in the SOM and also the mixture with
other classes is small.

C. Classification

In the present system, the classification is made either with
a SOM-based approach or with ak-NN classifier. The chosen

Select nodes representing the class ’grass’
and train a new SOM with these samples

Select suspicious nodes and map them
back to the training image

Samples inside selected nodes seem to belong
to the class ’road’, so they can be rejected

Fig. 3. Visual training example

classifier utilizes the labeled training set constructed in the
training and feature analysis phase. Some details about the
SOM classifier are given below.

The label for each node in the SOM is selected in such a
way that each node gets the same label as the majority of the
training samples in that node. The nodes getting no training
samples are labeled by finding the nearest training sample.

Instead of the Euclidean distance normally used with SOM,
we used a log-likelihood statistic for finding the nearest node
and sample in the training of the SOM and in classification.
This distance measure has performed very well in the earlier
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Fig. 4. Visual feature analysis

studies with LBP features [4]. The log-likelihood statistic is
calculated as:

L(S, M) =
B∑

b=1

Sb log Mb, (1)

whereS andM are the sample and model distributions,B
is the number of bins andSb andMb correspond to the sample
and model probabilities at binb [4].

In the classification stage, the image to be analyzed is first
divided into blocks as in the training phase. Each block is then
classified with a SOM, and as a result a segmented image is
generated and displayed. Classification is simple: samples are
compared directly to the nodes of the SOM and the closest
nodes are found. The performance of the classification can be
determined considering only blocks located inside pre-labeled
ground truth regions.

The classification could also be made pixel-wise by cen-
tering a circular disk with a radius of chosen size at the
pixel being classified. Then we compute the sample feature
histogram over the disk, and assign the pixel to the class whose
model is most similar to the sample.

III. E XPERIMENTS

The same data set as in [5] was used, where image classifi-
cation was done pixel-wise using a circular disk with a radius
of 30 pixels at the pixel being classified. First the scenes were
divided into ground-truth regions (sky, trees, grass, road and
buildings) by hand and model LBP distributions for each class
were determined. In classification, a pixel was assigned to the
class whose model was most similar to the sample.

The block-based classification used in our present exper-
iments is rougher than the pixel-based one, but it makes

real-time processing possible. The block size affects the seg-
mentation resolution in such a way that the width of the
block (N ) is basically the smallest distance between different
segments or classes that can be detected. In the case of texture-
based classification, this approach still leads to a rather good
resolution when the original images are very large compared
to the blocks.

The image data consisted of a sequence of 22 outdoor
scene images of 2272x1704 pixels. The set is available at the
Outex database [10] in the test suite ID OutexNS 00001 (see
http://www.outex.oulu.fi). The chosen block size was 64x64
pixels, and therefore we had 910 (= 35x26) blocks from each
scene. The remaining 32 pixels from the left and 40 pixels
from the bottom of each image were left out because they did
not fit in the blocks.

We selected the LBPu2
8,1 operator, which gave rather good

results also in [5] (80.92 %). In addition, LBPu2
8,1+16,3+24,5 was

used, obtaining an 85.43 % accuracy in the previous study.
The training set was created scene by scene. First, a SOM

of its own was built for each scene image. Then, the areas
representing a specific class were selected from each SOM
and a new SOM was created using this selected data. This
was repeated for all classes to be considered. The SOMs
representing all scenes and classes were then combined to form
the final training set for the classifier. A feature analysis was
also made for each scene separately. Fig. 5 shows an example
how the texture operators used cluster the ’road’ class from the
training image P9100032. We can see that ’road’ is mixed quite
often to the class ’grass’. The textures of ’road’ and ’grass’
resemble each other even though they differ much in color.
Also the ’road’ and ’grass’ clusters in SOM are very close to
each other and partly mixed. Fig. 5 also shows how LBPu2

8,1

can discriminate the class ’sky’. Now the confusion with the
other classes is very small, and the cluster in the SOM is more
compact (see the nodes in the upper right corner of LBPu2

8,1

SOM).
It is clear that the use of small image blocks instead of

pixels could cause problems in the classification of such blocks
that contain pixels from more than one class, for example
blocks containing boundaries between ’grass’ and ’road’. Our
approach offers a way to learn also these kinds of classes and
they can be labeled separately. But in this study we held in
the original classification problem and did not handle class
boundaries differently.

After creating the training set, the classification SOM was
trained with it. The size of the SOM was set to 15x15
nodes. The separate testing images were then segmented by
classifying each block. Table I summarizes the classification
results for the ground-truth data used. Fig. 6 shows an example
image with manually selected ground-truth regions. The blocks
located inside these regions were then classified to determine
the performance of the approach. This was done both for
the training and testing sets. Fig. 7 shows an example scene
(P910039 in the Outex database) and its segmentation with
the visually trained method using both SOM-based andk-
NN (k=5) classification with LBPu2

8,1 features. For comparison,



Original image and LBPu2
8,1 clustering class ’sky’

LBPu2
8,1 SOM and scene clustering class ’road’

LBPu2
8,1+16,2+24,3 SOM and scene clustering

class ’road’

Fig. 5. Two different LBP operators clustering the classes ’road’ and ’sky’

the segmentation obtained by an iterative k-means clustering
(k=5) method is also presented [11]. The results fork-NN are
slightly better than for the SOM-based classifier, but the latter
one can perform classification in real-time. This demonstrates
that we can use the visualization-based method for training
and then use another type of classifier for classification and
segmentation. We can also see that the k-means clustering
method mixes the classes quite badly and suffers from the
limited number of classes that it uses.

TABLE I

CLASSIFICATION OF LABELED GROUND TRUTH DATA AGAINST THE

VISUALLY CREATED TRAINING SET

Classification Method Training Set [%] Testing Set [%]
k-NN + LBPu2

8,1, k=3 90.5 84.3
k-NN + LBPu2

8,1, k=5 90.4 84.9
SOM + LBPu2

8,1 85.7 82.3

k-NN + LBPu2
8,1+16,3+24,5, k=3 91.7 89.1

k-NN + LBPu2
8,1+16,3+24,5, k=5 92.1 89.0

SOM + LBPu2
8,1+16,3+24,5 86.3 82.6

For some scenes the confusion between classes was higher
than for the others. The class ’building’ seemed to be quite

Fig. 6. Example image of manually selected ground truth regions

Original image SOM-based segmentation

k-means clustering k-NN classification (k=5)

Fig. 7. Segmentation result with SOM-based classification, k-means cluster-
ing and k-NN classification

difficult to distinguish. The main reason for this is that the
number of models from this class was very low compared to
the others and it did not get many nodes from the classification
SOM. With k-NN classification the buildings were easier to
discriminate, but still many of them could not be recognized.
The confusion between the classes ’grass’ and ’road’ was
surprisingly high and again thek-NN classifier performed a
little better than the SOM-based one. The class ’tree’ was the
easiest one to discriminate. Also most of the samples in the
scene images belonged to this class giving many nodes of the
classification SOM a ’tree’ label. Also the ’sky’ class was quite
easy containing very even texture.

IV. D ISCUSSION

Classification of textures in scene images is very difficult
due to the high variability of the data within and between
images caused by effects such as non-homogeneity of the
textures, changes in illumination, shadows, foreshortening
and self-occlusion. For these reasons, finding proper features
and representative training samples for a classifier is highly
problematic.

In this paper, we presented a visualization-based tool for the
analysis of textured scene images. The images to be analyzed



are divided into non-overlapping blocks and the features
computed within these blocks are fed to a self-organizing map.
The SOM is used for visualization with which a user can easily
create a proper training set with class labels. The visualization
can also be used for analyzing how well different features can
discriminate the data. The SOM can also be used as a very
fast classifier to provide rapid feedback on the performance
obtained with the chosen models and features.

The usefulness of the tool was demonstrated with a set of
outdoor scene images. The visualization of high dimensional
texture data extracted from difficult textured materials gives
important information about the data. We can see how features
can discriminate different classes and use this for feature selec-
tion. We can also visualize how the method learns the models
for different classes and concentrate more on the difficult ones.
Fast and relatively accurate classification combined with the
visualization based feature and data analysis can be advanced
in various applications. In the future we plan to utilize this
visualization based approach when developing more general
outdoor scene classification methods, where the within class
variation is even more than here and the models for the classes
and features used must be considered very carefully.

The approach described in this paper could be extended and
generalized in many ways. After creating a proper training
set we can produce models for all classes and use many
kinds of classifiers for actual classification. Even though we
used block-based segmentation, also the pixel-wise approach
could be utilized in the classification phase. Also the training
part could be made much easier: now it is quite laborious
to manually define class boundaries in the SOM for every
training image. We can, for example, produce one larger SOM
for the whole training data and use that for determining class
models. Another way would be to automate the selection
of class regions using previous knowledge of model feature
distributions and use visualization for deciding if we need to
manually adjust the selection. This enables us to rapidly check
the number of images giving potential for analysing larger data
sets.
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