
Periodic Textures in Wide Baseline Stereo
Dmitry Chetverikov and Zsolt Jankó
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Abstract— This study addresses the problem of finding cor-
respondences for wide baseline stereo. Texture has traditionally
been utilised as a single-image cue for 3D shape reconstruction
(shape-from-texture); at the same time, its role in multiview
scene reconstruction has been very limited. In stereo image
matching, repetitive patterns are usually considered as disturbing
factor since they tend to produce multiple peaks of correlation,
which results in matching ambiguity. We argue that presence
and proper analysis of distinct, compact periodic texture areas
can facilitate wide baseline matching by providing periodic
distinguished regions (PDRs) that efficiently constrain the search
for correspondences. We demonstrate how PDRs can be used to
find a few initial correspondences in a wide baseline stereo pair
and to establish precise correspondences for building the epipolar
geometry. Experimental results for various wide baseline stereo
pairs are shown.

I. I NTRODUCTION

Finding correspondences is critical for fully automatic re-
construction of a 3D scene from two images taken from
significantly different viewpoints and in varying illumination
conditions. Such reconstruction is usually called wide baseline
stereo. In this case, local image deformations cannot be ap-
proximated by translation and rotation; an affine model is more
adequate. Photometric variations, shadows and self-occlusion
make finding the correspondences even more difficult.

Regions selected for wide baseline matching should possess
some distinguishing, highly invariant and stable property. In
the recent paper [1], Matas et.al call such image elementsdis-
tinguished regions, abbreviated as DRs. The authors introduce
and apply a new type of non-texture DRs called maximally
stable extremal regions. The number of such regions is usually
large, while the values of the descriptors computed for them
are quite unstable. A feature vector of high dimensionality
is used, which provides input to aRANSAC-like epipolar
geometry estimation procedure.

A similar scheme can be traced in most of the previous
studies on wide baseline stereo. The paper [1] provides an
up-to-date overview of previous work. In particular, regions
for which invariant properties are defined are often based on
Harris interest points [2], [3] or other elements such as groups
of line segments [4] or curve features [5]. Local intensity
extrema were previously considered in [6].

Affine invariance of region descriptors is achieved in dif-
ferent ways. A frequently used method was proposed by
Baumberg [3], where rotation-invariant descriptors are com-
puted after applying a transformation that diagonalises the
covariance matrix of the intensity gradient of a region. Such

transformation normalising region image up to a rotation is
used in [1] and [7].

Texture has been traditionally utilised as a single-image
cue for 3D shape reconstruction (shape-from-texture). At the
same time, its role in multiview scene reconstruction has been
limited. (By texture we mean statistically repetitive patterns
such as those characterising surfaces of materials.) Most of the
existing methods avoid using texture as a tool for matching,
since repetitive patterns tend to correlate in multiple positions,
which may lead to an ambiguity. Perhaps the first – and a rare
– use of texture for wide baseline stereo is described in the
paper of Schaffalitzky and Zisserman [7]. Their method works
as follows.

The images are roughly segmented into regions (segments)
of different texture. Affine normalisation of the segments up
to rotation is then performed with a method similar to [3].
Putative inter-image correspondences between the texture seg-
ments are established using rotation-invariant texture features
based on Zernike moments. The putative correspondences
are verified by matching Harris interest points within the
affine-normalised segments. Finally, more point matches are
obtained for the verified segments, and the fundamental matrix
is estimated.

In [7], the operation of the method is illustrated by building
the epipolar geometry for the pair of the Valbonne images
shown in figure 9. Most of the point matches come from
the brick wall areas. Since the images are deliberately over-
segmented to avoid grouping over depth discontinuities, the
segmentation results in a large number (about 50) of unstable
regions. 1600 interest points are computed in each image to
verify the putative region correspondences. The method works
in this particular case; however, given the homogeneity of
textures, the idea of reducing ambiguity in region correspon-
dences by matching points within textures does not seem to
be sound. In fact, the point matching relies here on differences
between the bricks, which might be too subtle to utilise.

By nature, texture is a global rather than a local property.
It is unsuitable for establishing precise correspondences. We
agree with Schaffalitzky and Zisserman [7] in that texture
can serve as a constraint that limits the search for point
correspondences. However, we believe that this constraint
should be made more firm and strict – if necessary, at the
price of less generality. Another point is that texture based
constraints should support point matchingoutsideregions of
repetitive texture, since matchinginside such regions will
never be reliable. (In fact, as far as traditional homogeneous



texture is concerned, the term ‘texture matching’ can only
mean classification of two regions as same or different texture.)

In this paper, we limit the class of textures considered
and show that the presence of compact periodic textures can
facilitate wide baseline matching by providing the periodic
distinguished regions (PDRs) that efficiently constrain the
search for correspondences. Regularity features introduced
earlier in [8] are used as affine-invariant descriptors to identify
PDRs in a wide baseline stereo pair.

This study is the continuation of our previous research [9].
The novelcontribution of this paperis as follows. We demon-
strate that in certain cases three initial correspondences be-
tween PDRs can be used to obtain a 2D affine transformation
that roughly aligns the two images. This allows us to apply
a conventional matching technique to find a sufficient number
of precise correspondences and build the epipolar geometry.

II. OUTLINE OF THE METHOD

In this section we informally discuss and illustrate the
main steps of the proposed method. Then we present some
geometric considerations that motivate and justify our method.

Consider a wide baseline stereo pair. Assume that a large
part of the scene has the following property: relation between
the two images of this part can beroughly approximated by a
2D affine transformation in the image plane. (Conditions when
this is possible will be discussed later; weak perspective [10]
is an example.) The transformation has 6 parameters, which
means that 3 correspondences are required to estimate it. A
key idea is that once anapproximate affine alignmenthas been
found and applied, the corresponding image features get much
closer and a conventional matching algorithm can be used.

Figures 1a and 1b show two images from theRADIUS

database [11]. The viewing geometry can loosely be treated
as weak perspective, but the corresponding points are very
far away. Assume that one can somehow identify three pairs
of approximately corresponding points. Then one can roughly
align the two images in the hope that many more correspond-
ing features will become matchable.

Which elements of the images can be used to induce the
rough alignment? The pair contains a few compact periodic
texture regions which are suitable for this purpose. Finding
and identifying in both images the regions marked in 1a, we
establish three rough correspondences between the centroids
of the regions. Then we estimate the 2D affine transformation
that approximately aligns image 1b to image 1a. The result of
the alignment is shown in figure 1c.

Due to approximate affine model and imprecision of the
initial correspondences, the alignment is quite rough. Still,
it brings the corresponding features into proximity, which is
sufficient for successful application of a conventional feature
matching algorithm. We use the well-known KLT feature
tracker [12] that incorporates an efficient matching proce-
dure tolerating a moderate affine distortion. The algorithm
provides a significant number of good matches between the
two approximately aligned images. Applying the inverse affine
transformation, we obtain correspondences for the original

(a) (b) (c)

Fig. 1. (a–b) A wide baselineRADIUS pair. The regions indicated in (a)
are used to find the initial correspondences and estimate the affine alignment.
(c) Rough affine alignment of (b) to (a).

pair. A standard robust algorithm [10] is then used to estimate
the epipolar geometry. Sample epipolar lines are shown in the
top row of figure 2. The bottom row demonstrates the rectified
images which are suitable for dense matching.

Fig. 2. Top row: Sample epipolar lines. Bottom row: Rectified images.

The idea of rough alignment is based on the assumption that
the images of a large part of the scene can be approximately
related by a 2D affine transformation in the image plane (2D
affine homography). Precise analysis of the necessary and suf-
ficient geometric conditions is beyond the scope of this paper.
Presence of a large planar region is helpful but not sufficient.
Hartley and Zisserman [10] show how the (projective) 2D
homography induced by a plane can facilitate the estimation of
the fundamental matrix when correspondences for two more
additional off-the-plane points are known. The method is based
on measuring the plane induced parallax of the two points.

Our method uses only three initial (region) correspondences
and does not assume the presence of a plane. Instead, it im-
plicitly assumes that the projections of the 3D points lying in
a vicinity of the triangle formed by the three initial points will
be brought into closer proximity by an affine alignment. This
assumption is certainly reasonable when the depth variation of
the scene is much smaller than the distance to the observer, that
is, when the weak perspective camera model [10] is applicable.
When the depth variation is relatively large, the parallax of
the 3D points located far from the triangle will be large; such



points will not be matched. However, other points may still
match. Our experimental results demonstrate that the method
can be successfully applied under viewing conditions more
general than weak perspective.

III. T HE PROPOSED ALGORITHM

The three initial correspondences can in principle be ob-
tained in different ways depending on the typical features
of the images being considered. Our approach is completely
automatic, but it needs the presence in the stereo pair of at
least three compact periodic textures, referred to as periodic
distinguished regions. The following framework algorithm
summarises the proposed method.

Algorithm 1: Wide Baseline Stereo from PDRs

1) Detect periodic distinguished regions in both images and
at varying resolution levels.

2) Describe PDRs by their affine-invariant regularity fea-
tures and periodicity vectors.

3) Identify PDRs in the two images and establish tentative
region correspondences.

4) Test each triple of region correspondences by computing
rough affine alignment and applying a conventional
matching algorithm to the roughly aligned pair.

5) Select alignment that produces the highest matching
score and apply inverse transformation to obtain point
matches for original pair.

6) Estimate fundamental matrix and rectify the images.
7) Refine point matches by local affine matching in rectified

images.
8) Re-estimate fundamental matrix from refined point

matches.

Steps 1–3 of the algorithm are described in our previous
paper [9]. Step 1 involves computation of our regularity
features [8] in a sliding window, which is calledregularity
filtering. Figure 3 exemplifies the regularity filtering of the
images shown in the left column of figure 4. The maximal
regularity feature [8] is displayed intensity-coded, with light
regions having higher regularity. The two results were obtained
for two different resolutions of an image and with different
parameters of the filter.

Fig. 3. Examples of regularity filtering. The detected PDRs are shown in
the left column of figure 4.

Fig. 4. TheJANKO pair with PDRs detected at two resolution levels.

PDRs are detected in both images of a wide baseline
stereo pair and at different resolution levels. In figure 4, fine
periodic structures are detected at the initial resolution; the
coarser structure of the keyboard appears at a lower resolution.
Relatively large, dominant regions are normally detected. Their
number is small. (Typically, less than 10.)

Search for correspondences involves two different but re-
lated operations: PDR matching and feature point matching.
First, tentative PDR correspondences are established (step 3)
as discussed in [9]. (Note that matching of PDRs from different
resolution levels is prohibited.) Then each triple of tentative
correspondences is tested and the best one is selected. Testing
a triple includes computing the rough affine alignment for this
triple, then applying the modified KLT Tracker [12] to the
roughly aligned pair. To speed up the procedure, the KLT
matching is done at a reduced image resolution. The best
alignment is the one that produces the highest matching score,
that is, the largest number of successfully matched feature
points. Finally, the inverse affine transformation is applied to
obtain point matches for the original pair.

The process of PDR matching is illustrated in figure 5 where
the tentative correspondences obtained at both resolution levels
are shown by lines connecting the centroids of the regions.
Note that the same region may appear at different levels. Cor-
respondences forming the best matching triangle are indicated
by small circles marking the centroids. (Because of smaller
image resolution, these circles are better visible in similar
figures 11 and 12.)

Given three pairs of corresponding points, a rough affine
alignment can be determined by solving a simple linear sys-
tem. A modified version of the KLT Tracker [12] is applied to
the roughly aligned pair. The original code has been modified
to discard wrong matches (outliers) by reversing the order of
the images and checking if the reverse match is sufficiently
close to the original one. Since an alignment is either invalid
or valid but still approximate, many of the original matches
are discarded in all cases. When an alignment is invalid, only a



Fig. 5. PDR matching in theJANKO pair.

few spurious matches remain. When it is valid, the number of
matches increases drastically, indicating that the tested triangle
is a valid candidate. The valid candidate with the highest
matching score is selected.

Figure 6 shows the matches obtained for the best candidate
triangle marked in the two images. (See figure 4 for the
PDRs detected in the pair.) Three valid candidates were
available; still another one, formed by the two speakers and
the ventilation grid of the monitor, fails to produce a usable
alignment, since the three PDR centroids are almost collinear.
Note that the successfully matched points lie close to the plane
of the best triangle. The regions that are definitely off the
plane, such as the pictures on the wall, were not matched
because of the large parallax.

Fig. 6. Points matched in theJANKO pair.

When a sufficient number of point matches has been ob-
tained, the fundamental matrix is estimated using a robust
method such asRANSAC. A selection of efficient methods are
available [10]. An example of the epipolar geometry built for
the JANKO pair is demonstrated in figure 9. More results will
be shown in section IV.

Based on the epipolar geometry, the images are rectified
using a standard technique [10]. Then the point matches are
refined in the rectified images in order to make the epipolar
geometry more stable and precise. The task is twofold: to
remove the outliers that may still be present, and to refine
the locations of the matches. This is achieved by local affine
pattern matching constrained by the epipolar geometry. An
alternative solution is presented in [1]. Finally, the fundamental
matrix is re-estimated from the refined point matches.

IV. W IDE BASELINE STEREO TESTS

In this section we show sample wide baseline stereo results
obtained by the proposed method. All of the results were
obtained automatically; some of the critical parameters, such

as the number of the resolution levels and the regularity
threshold, were manually selected for each particular stereo
pair. The main goal of the tests was to demonstrate the
feasibility of the method. No serious effort was made to
optimise the algorithms, for example, for the precision of the
epipolar geometry.

Figures 7 and 8 show sample epipolar lines and the rectified
images, respectively, for the already mentionedJANKO pair.
The PDRs concentrate in the central part of the image. Note
that the keyboard is clearly a periodic3D texture; the speaker
PDRs are also 3D textures, although the third dimension
is smaller. The epipolar geometry obtained is quite precise;
although it is seemingly close to affine, a projective method
was used to estimate the fundamental matrix.

Fig. 7. Sample epipolar lines in theJANKO pair.

Fig. 8. RectifiedJANKO pair with sample corresponding rows marked.

The well-knownVALBONNE pair (figure 9) was also suc-
cessfully processed, although its viewing geometry at first
glance does not seem suitable for the proposed approach. In
addition, most of the matched points concentrate in the almost
planar region of the facade. Nevertheless, three PDRs, includ-
ing the two pieces of the tower front wall, were successfully
detected and identified. In this case, refining the point matches
is essential, as it results in a much more stable solution. A
single resolution level was used. Note that two of the PDRs
are essentially the same brick wall texture. To find the proper
correspondences, one has to test two alternative variants.

Finally, the CORNER pair shown in figure 10 was a chal-
lenging data because the periodic regions are not as distinct
and compact as in the previous cases. Here, more triangles
had to be tested before an acceptable alignment was found.
Two resolution levels were used.

Processing time of the method depends on the size and
content of the images. For the largestJANKO images (1600×
1200), the regularity filtering at the initial resolution takes
about 30 sec on a 2.4 GHz PC running Linux. Testing all



Fig. 9. Sample epipolar lines in theVALBONNE pair.

Fig. 10. Sample epipolar lines in theCORNER pair.

possible alignments may take up to 60 sec, but usually it is
much faster.

V. SUMMARY AND CONCLUSIONS

It is obvious that the PDR method can only be applied in the
presence of distinct periodic structures, and that PDRs provide
constraints rather than precise correspondences. The success
of the method depends on whether the assumptions of partial
affine alignment are met; if there are few feature points in the
roughly aligned area, the method might fail. A related potential
drawback is that the matched 3D points tend to concentrate
near the plane defined by the best matching triangle. If the
area of the triangle is small, or if any of its heights is small,
the alignment might be of no use.

If for some reasons the tentative PDR correspondences are
poor and no valid alignment is found, it may be necessary to
extend the testing beyond the tentative PDR correspondences.
For example, it may happen that the magnifications (levels of
detail) of two images are significantly different. Then PDRs
should be identified atdifferent scales, which needs scale-
invariant texture classification. As periodicity is, in general,
scale-dependent, the scale-invariance cannot be guaranteed.
However, it is still highly probable that the PDRs will be
detected. In such cases one should not rely on the tentative
correspondences, and all reasonable candidates must be tested.

This is computationally feasible since the number of PDRs
is small. This is illustrated in figures 11 and 12 that show the

tentative correspondences considered in these two pairs. (As
before, the small circles indicate the best matches.) Additional
constrains may be imposed to speed up the procedure by
discarding small or narrow triangles, as well as the correspon-
dences that reverse the order of the vertices.

Fig. 11. PDR matching in theVALBONNE pair. The borders of the detected
PDRs are shown.

Fig. 12. PDR matching in theCORNER pair. The borders of the PDRs are
not shown for clarity.

An advantage of the proposed approach is that it is based
on patterns of perceptual value. Matching feature points within
textures, or matching a large number of very small, unstable
regions are avoided when only possible. The PDRs are sta-
ble dominant regions that can be relied upon. Although the
regularity features of a periodic 3D texture region are not in
general affine invariant, the region is still easy to detect and
test against a small number of regions in the other image.

To summarise the contribution of this study, we hope that
the results presented clearly demonstrate that the periodic
distinguished regions can be used as an efficient aid to wide
baseline stereo. Further analysis is needed to clarify the
assumptions of the method and to evaluate its performance
and precision.
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