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Abstract— This paper describes the basic steps of a new
technique, called bunch sampling, that enables the realistic
synthesis of spatially homogeneous textures. A geometric shape of
the bunch (acting as a texel) and spatial placement grid governing
relative positions of the bunches are estimated from the training
texture by using a generic Gibbs random field texture model
with multiple pairwise pixel interactions. During the synthesis,
the bunches are randomly sampled from the training texture and
placed into the large-size goal image with due account of their
spatial interdependence.

I. I NTRODUCTION

Due to diversity and complexity of natural textures, their
analysis and synthesis is generally a complicated problem.
Most of present approaches to texture synthesis are based
on Markov random field (MRF) models and can be roughly
divided into two groups, namely, model based probabilistic
synthesis and non-parametric sampling.

The model based methods [1], [3], [4], [7]–[9], [17] identify
first a particular MRF model of a given training texture spec-
ified usually by a joint Gibbs probability distribution (GPD)
of image signals, and generate textures using Markov Chain
Monte Carlo (MCMC). Since both the model identification
(parameter estimation) and the image generation are computa-
tionally intensive processes, these approaches are less feasible
for synthesising large-size textures. Much faster synthesis is
obtained with non-parametric sampling [5], [6], [12]. Also
assuming Markovianity of the texture, these techniques treat
the training image as a source of random signal samples
related to the underlying marginal GPDs. They synthesise new
textures by direct sampling of image signals and permuting
and replicating those samples into a goal image. Since the
synthesis accounts for no explicit texture model, the synthetic
texture may have false borders between the permuted samples
and verbatim replication of training singularities. Also, there
is no theoretically justified technique to select the proper size
of the samples for various textures.

This paper details an alternative approach to fast texture
synthesis, called bunch sampling in [10], [16], that aims to
bridge gaps between the model based synthesis and non-
parametric sampling by combining the strength of the both
approaches. The structural approach to texture analysis [11]
considers a homogeneous texture as a regular and repetitive

spatial arrangement of its specific primitive elements (texels).
From the statistical viewpoint, the same texture is a sample of a
spatially homogenous MRF describing a particular set of local
interactions between the image signals. Combining the both
two viewpoints, bunch sampling interprets a texture with two
types of signal interactions, namely, intra-texel and inter-texel
ones. The intra-texel interactions govern signal co-occurrences
inside a single texel, while the inter-texel interactions specify
spatial interdependence between texels. During the texture
synthesis, bunch sampling keeps both the intra- and inter-
texel interactions revealed in the training prototype in order for
the synthetic texture to inherit statistical features thus overall
texture appearance. The intra-texel interactions are preserved
by texel-based sampling, that is, a whole texel is retrieved
at each sampling step. The inter-texel interactions are kept
by placing texel into the synthetic texture in accord with the
placement rule that specifies spatial relation of the adjacent
texels of the training image.

II. BUNCH SAMPLING : ESTIMATION OF A BUNCH

Assuming that all its texels have the same geometric shape,
a texture is characterised by the geometric shape of, and spatial
relations between, the texels. Bunch sampling estimates the
geometric shape from the characteristic structure of pairwise
pixel interactions for a generic Gibbs random field (GGRF)
model [7]–[9].

A. Generic Gibbs Random Field Texture Model

The GGRF texture model involves characteristic translation
invariant second order clique families, each family containing
pixel pairs with the same relative spatial displacement. Each
clique family, Cξ,η = {(x, y), (x + ξ, y + η) : (x, y) ∈
R; (x + ξ, y + η) ∈ R}, has the same strength of interactions
between every two grey levels in the pixels, which is given by
a Gibbs potential. The GGRF model belongs to the exponential
families of distributions, and has the grey level co-occurrence
histograms (GLCH) for each clique family as its sufficient
statistics. The exponent of the GPD for the GGRF specifies
the total interaction energy:

E =
∑

(ξ,η)∈A

Vξ,η • Fξ,η(g) (1)



D3 D4 D6 D9 D29 D34 D57 D101 flower0002 food0002 grass0002 metal0003

Fig. 1. Training textures (128× 128) taken or cut from the digitised Brodatz album [2] and the MIT VisTex texture database [13].
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Fig. 2. MBIMs and the estimated bunches.

whereg is a digital image,A denotes a set of the characteristic
clique families indexed with the corresponding inter-pixel dis-
placements,Vξ,η andFξ,η(g) are, respectively, the potential
vector and the normalised GLCH vector for the clique family
Cξ,η collected over the imageg, and• denotes the dot product.
The partial energy of the clique familyCξ,η ∈ A,

Eξ,η(g|Vξ,η) = Vξ,η • Fξ,η(g) (2)

specifies its contribution to the overall interaction energy,
and the higher the partial energy, the more characteristic
the family in that texture. The rank of the partial energy is
used to recover the most characteristic interaction structure
of pairwise interactions [9]. As shown later, this interaction
structure relates to the geometric shape of the texels.

The potentialVξ,η can be estimated using an MCMC pro-
cess of stochastic approximation. However, since only the rank
of the partial energy is of interest to recover the characteristic
interaction structure, the analytic first approximation of the
relative partial energyE0

ξ,η(g0) turns out to be sufficient to
rank the clique families in their energies [9]. The partial energy
is proportional to the variance of the normalised GLCH vector
collected for the clique familyCξ,η over the training image
g0:

E0
ξ,η(g0) ∝ (Fξ,η(g0)− FIRF) • Fξ,η(g0) (3)

whereFIRF is the normalised GLCH vector for the indepen-
dent random field.

The partial energies of all the clique families in a large
search window of displacements,W = {(ξ, η) : |ξ| ≤
∆, |η| ≤ ∆} of the size(2∆+1)×(2∆+1), can be represented
with a model based interaction map (MBIM). A coordinate
point (ξ, η) in the MBIM corresponds to the clique family
Cξ,η, and its scalar value represents the partial energyEξ,η(g)
in Eq. (2). Figure. 2 shows the MBIMs for several textures
with the search windowW of the size65× 65.

B. Geometric Shape of a Bunch

As shown in Fig. 2, the clique families with the top-rank
partial interaction energies form specific clusters in the MBIM.
Stochastic textures such as D4 and D9 have only one central
cluster indicating that the close range pixel interactions, which
relate mainly to a uniform background, dominate in those
textures. On the contrary, the peripheral clusters in the MBIMs
of the regular mosaics like D34 and D101 in Fig. 2 reveal the
repetitive patterns of these types of texture.

The essentially different nature of two texture types leads
to different strategies of specifying the geometric shape of
the bunches. For the stochastic textures, those clique families
that form the central cluster of the MBIM define together the
geometric shape of the bunches. For the highly structured
regular mosaics, the spatial arrangement of the peripheral
clusters is more important, and the bunch shape is better
specified by the clique families corresponding to the peak
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Fig. 3. Parameters for the placement grid for the texture D34.

points of peripheral clusters that are the nearest neighbours
of the centre of the MBIM.

The selected clique families,A∗ ∈ A, for either the
stochastic textures or the regular mosaics have the top-rank
partial energies, so that one might assume that these fami-
lies determine visual appearance of the texture. The size of
bunches|A∗| for regular mosaics is usually very small, e.g.,
only 4 pixels in the bunch for the texture D101 in Fig. 2. But
as shown later, even these simple structures are quite adequate
to describe and synthesise the regular textures.

C. Placement Grid for Bunches

The bunch sampling specifies the placement rule in terms of
relative positions of each signal bunch (or texel) with respect
to others. In order to preserve the overall realistic visual
appearance of the texture, every bunch must have the same
relative position in both the synthetic and training textures.

Assuming that non-overlapping bunches are conditionally
independent, the texture is first tesselated with a grid derived
from the estimated geometric shape of the bunch. Each cell
of the grid is a compact bounding parallelogram around the
bunch that can be calculated by the method proposed in [14],
[15]. The cell is specified with four parameters,(θx, θy,m, n).
The anglesθx andθy give the guiding orientation of the cell
sides with respect to the image coordinate axes, and the side
sizesm andn are the maximum spans of the bunch along the
guiding directions. Figure 3 shows how these four parameters
relate to the bunch shape. With such a tessellation, the relative
position of a bunch is defined as the shift of the bunch from
the closest cell in the placement grid, as shown in Fig. 4.

III. B UNCH SAMPLING : TEXTURE SYNTHESIS

Given the geometric shape and the placement grids for
bunches, a new texture of an arbitrary size is synthesised by
direct sampling of signal bunches from the training image
with their subsequent replication and random placement. At
each step, a bunch of signals, representing a particular texel,
is randomly sampled from the training image using a mask
of the estimated geometric shape. The bunch is then placed
into the synthetic texture in a position so that it has the
same relative shift with respect to the both placement grids
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Fig. 4. Tessellation of the texture D34 and relative positions of the bunches:
(0, 0) for the bunch ‘a’ and(δx, δy) for the bunch ‘b’.

tessellating the training and the synthetic textures. Usually
more than one candidate position satisfies the constraint for
every bunch, therefore a random position needs to be selected.
Signal collisions may happen when a new bunch has to be
placed into an area that has been partly or totally occupied
by the previously placed bunches. As shown in [10], a simple
heuristic rule of preserving the already placed signals resolves
satisfactorily these collisions. A new texture is generated until
the goal image canvas is fully covered by the image signals
transferred from the training texture.

Such a synthesis is very fast because the computation time
depends on the size of the synthetic image|g| and the size of

bunch|A∗|, which is O
(
|g|
|A∗|

)
.

IV. RESULTS AND DISCUSSION

Figures 5 and 6 show the examples of textures synthesised
from the training samples in Fig. 1, using bunch sampling.
A few more training textures and the corresponding synthetic
ones are presented in Figs 7 and 8, respectively. In most of
these cases, the synthetic textures are visually quite similar to
their prototypes.

At the analysis stage, the bunch sampling exploits the
GGRF texture model for deriving the most characteristic texel
shape and spatial interdependence between the texels from
the sufficient signal statistics. Based on these results, the very
fast texture synthesis is achieved by copying, replicating and
pasting the texels with due account of their spatial relationship.

In its basic idea, the bunch sampling is similar to an
approach to the synthesis of the near-regular textures proposed
in [18]. In this latter approach the periodicity of regular
textures is recovered from the translation symmetries of the
autocorrelation pattern of the texture. Since it is based on
statistics of pairwise signal products over the clique families,
the autocorrelation describes the interaction structure in a less
definite way than the general statistics of pairwise signal
co-occurrences in the GGRF model. Thus bunch sampling
has less difficulties in deriving the texel shape, resulting
in more detailed texels. This enables the derivation of an
efficient tiling scheme for the synthesis of both regular and
stochastic textures. However, the major limitation of bunch



D4 D9 D34 D101

Fig. 5. Synthetic textures D4, D9, D34 and D101 (512× 512).

D3: |A∗|=6 D6: |A∗|=4 D29: |A∗|=82 D57: |A∗|=72

flower0002:|A∗|=122 food0002:|A∗|=58 grass0002:|A∗| = 52 metal0003:|A∗|=28

Fig. 6. Synthetic textures D3, D6, D29, D57, flower0002, food0002, grass0002 and metal0003 (512× 300).

sampling is that it fails to handle the inhomogeneity in textures
due to the use of bunches with rigid geometric shape, as
exemplified by the synthetic textures “Brick wall” (D95) and
“Brick” (brick0004) in Fig. 8. Our future work will pursue
the goal of geometrically adapting the bunches (texels) with
respect to each other as to “rectify” a weak homogeneity of
natural periodic textures.
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Fig. 7. More example of training textures (128× 128)
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