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Abstract—This paper describes the basic steps of a new spatial arrangement of its specific primitive elements (texels).
technique, called bunch sampling, that enables the realistic From the statistical viewpoint, the same texture is a sample of a
synthesis of spatially homogeneous textures. A geometric shape Ofspatially homogenous MRF describing a particular set of local

the bunch (acting as a texel) and spatial placement grid governing . . - : e
relative positions of the bunches are estimated from the training interactions between the image signals. Combining the both

texture by using a generic Gibbs random field texture model twoO viewpoints, bunch sampling interprets a texture with two
with multiple pairwise pixel interactions. During the synthesis, types of signal interactions, namely, intra-texel and inter-texel

the bunches are randomly sampled from the training texture and ones. The intra-texel interactions govern signal co-occurrences
placed into the large-size goal image with due account of their sige g single texel, while the inter-texel interactions specify
spatial interdependence. L .
spatial interdependence between texels. During the texture
synthesis, bunch sampling keeps both the intra- and inter-
texel interactions revealed in the training prototype in order for
Due to diversity and complexity of natural textures, theithe synthetic texture to inherit statistical features thus overall
analysis and synthesis is generally a complicated probletexture appearance. The intra-texel interactions are preserved
Most of present approaches to texture synthesis are babgdtexel-based sampling, that is, a whole texel is retrieved
on Markov random field (MRF) models and can be roughlyt each sampling step. The inter-texel interactions are kept
divided into two groups, namely, model based probabilistlgy placing texel into the synthetic texture in accord with the
synthesis and non-parametric sampling. placement rule that specifies spatial relation of the adjacent
The model based methods [1], [3], [4], [7]-[9], [17] identifytexels of the training image.
first a particular MRF model of a given training texture spec-
ified usually by a joint Gibbs probability distribution (GPD) ~ !l. BUNCH SAMPLING: ESTIMATION OF A BUNCH

of image signals, and generate textures using Markov Chainagsuyming that all its texels have the same geometric shape,
Monte Carlo (MCMC). Since both the model identification texture is characterised by the geometric shape of, and spatial
(parameter estimation) and the image generation are compyiations between, the texels. Bunch sampling estimates the
tionally intensive processes, these approaches are less feagjBlfnetric shape from the characteristic structure of pairwise

for synthesising large-size textures. Much faster synthesispige| interactions for a generic Gibbs random field (GGRF)
obtained with non-parametric sampling [5], [6], [12]. AlsOqodel [71-[9].

assuming Markovianity of the texture, these techniques treat
the training image as a source of random signal sampl&s Generic Gibbs Random Field Texture Model

related to the 'underlylnglrnargllcngl GPDS: Thel,'y synthesise NeWrhe GGRF texture model involves characteristic translation
textures by direct sampling of image signals and PErmuting, 2 riant second order cligue families, each family containing

and replicating those samples into a goal image. Since heo| hairs with the same relative spatial displacement. Each
synthesis accounts for no explicit texture model, the synthelig ue family, Ce,y = {(z,y),(z + &y +1n) : (z,y) €
’ N/ ) ) ) . )

texture may have _falsg borderg petwe.en the.permuted sampies, +&,y+1n) € R}, has the same strength of interactions
gnd verbatlm rephpaﬂgn of traln.mg singularities. Also, ther etween every two grey levels in the pixels, which is given by
is no theoretically Just|f|ed technique to select the proper SIg&Gibbs potential. The GGRF model belongs to the exponential
of the samples for various textures. families of distributions, and has the grey level co-occurrence
This paper details an alternative approach to fast ©xtUiiagrams (GLCH) for each clique family as its sufficient

synthesis, called bunch sampling in [10], [16], that aims Qtistics. The exponent of the GPD for the GGRF specifies
bridge gaps between the model based synthesis and n@Rs istal interaction energy:

parametric sampling by combining the strength of the both
approaches. The structural approach to texture analysis [11] E= Z Ve, oFe () Q)
considers a homogeneous texture as a regular and repetitive (¢£.7)€EA

I. INTRODUCTION
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Fig. 1. Training texturesl@8 x 128) taken or cut from the digitised Brodatz album [2] and the MIT VisTex texture database [13].
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Fig. 2. MBIMs and the estimated bunches.

whereg is a digital image A denotes a set of the characteristic The partial energies of all the clique families in a large
clique families indexed with the corresponding inter-pixel dissearch window of displacementd% = {(£,n) : |¢] <
placementsV, , andF¢ ,(g) are, respectively, the potentialA, |n| < A} of the size(2A+1) x (2A+1), can be represented
vector and the normalised GLCH vector for the clique familwith a model based interaction map (MBIM). A coordinate
C¢,, collected over the image, ande denotes the dot product. point (¢,7) in the MBIM corresponds to the clique family

The partial energy of the clique famig, ,, € A, C¢ ., and its scalar value represents the partial enéigy(g)
in Eg. (2). Figure. 2 shows the MBIMs for several textures
Een(glVen) = Ven o Fenl(g) (@) with the search windowW of the size65 x 65.

specifies its contribution to the overall interaction energy,

and the higher the partial energy, the more characterisBc Geometric Shape of a Bunch
the family in that texture. The rank of the partial energy is N . . .

used to recover the most characteristic interaction structureAS shown in Fig. 2, the clique families with the top-rank

Lo : . ._partial interaction energies form specific clusters in the MBIM.
of pairwise interactions [9]. As shown later, this interactio .
. tochastic textures such as D4 and D9 have only one central
structure relates to the geometric shape of the texels.

The potentialV , can be estimated using an MCMC pro_cIuster indicating that the close range pixel interactions, which

. L : relate mainly to a uniform background, dominate in those
cess of stochastic approximation. However, since only the r Tk . ' )
PP Y a[nex'[ures. On the contrary, the peripheral clusters in the MBIMs

pf the p_art|al energy is of mteres_t to. recover thg Ch.araCte”sd?the regular mosaics like D34 and D101 in Fig. 2 reveal the
interaction structure, the analytic first approximation of the

relative partial energy?  (g) turns out to be sufficient to repetitive patterns of these types of texture.

rank the clique families in their energies [9]. The partial ener -I;jh; essentially qn‘ferefnt ”atW? of tr\]/vo texture .typehs Ieadsf
is proportional to the variance of the normalised GLCH vect%é ifferent strategies of specifying the geometric shape o

. : N the bunches. For the stochastic textures, those clique families
collected for the clique famil over the training image Co
0. q e g g that form the central cluster of the MBIM define together the

g . . .
EO (g0 F 0 _F F 0 3) geometric shr_:\pe of the bynches. For the highly stru_ctured
en(8) < (Fe,(g") — Firr) o Fe (g") (3) regular mosaics, the spatial arrangement of the peripheral
whereFirr is the normalised GLCH vector for the indepenelusters is more important, and the bunch shape is better
dent random field. specified by the clique families corresponding to the peak
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Fig. 4. Tessellation of the texture D34 and relative positions of the bunches:

Fig. 3. Parameters for the placement grid for the texture D34.
(0,0) for the bunch ‘a’ andé, é,) for the bunch ‘b’.

points of peripheral clusters that are the nearest neighbours ] o )
tessellating the training and the synthetic textures. Usually

of the centre of the MBIM. ) " L :
The selected clique familiesA* ¢ A, for either the MOre than one candidate position satisfies the constraint for

stochastic textures or the regular mosaics have the top-r&e"y bunc_h{ therefore a random position needs to be selected.
partial energies, so that one might assume that these fagjgnal collisions may happen when a new bunch has to be

lies determine visual appearance of the texture. The sizeRbced into an area that has been partly or totally occupied
bunches|/A*| for regular mosaics is usually very small, e.gY the previously placed bunches. As shown in [10], a simple
only 4 pixels in the bunch for the texture D101 in Fig. 2. gupeuristic rule of preserving the already placed signals resolves

as shown later, even these simple structures are quite adeggatisfactorily these collisions. A new texture is generated until
the goal image canvas is fully covered by the image signals

to describe and synthesise the regular textures. =
transferred from the training texture.
C. Placement Grid for Bunches Such a synthesis is very fast because the computation time

The bunch sampling specifies the placement rule in terms@iPends on the size of trllel synthetic imagleand the size of
g

relative positions of each signal bunch (or texel) with respelsunch|A*|, which is O (|A*|

to others. In order to preserve the overall realistic visual
IV. RESULTS ANDDISCUSSION

appearance of the texture, every bunch must have the same
relative position in both the synthetic and training textures. Figures 5 and 6 show the examples of textures synthesised

Assuming that non-overlapping bunches are conditionalffom the training samples in Fig. 1, using bunch sampling.
independent, the texture is first tesselated with a grid derivAdfew more training textures and the corresponding synthetic
from the estimated geometric shape of the bunch. Each aafies are presented in Figs 7 and 8, respectively. In most of
of the grid is a compact bounding parallelogram around tlieese cases, the synthetic textures are visually quite similar to
bunch that can be calculated by the method proposed in [1#igir prototypes.

[15]. The cell is specified with four paramete(8,, 8,,, m, n). At the analysis stage, the bunch sampling exploits the
The angle9), and@, give the guiding orientation of the cell GGRF texture model for deriving the most characteristic texel
sides with respect to the image coordinate axes, and the sitiape and spatial interdependence between the texels from
sizesm andn are the maximum spans of the bunch along thbe sufficient signal statistics. Based on these results, the very
guiding directions. Figure 3 shows how these four parametdast texture synthesis is achieved by copying, replicating and
relate to the bunch shape. With such a tessellation, the relatpasting the texels with due account of their spatial relationship.
position of a bunch is defined as the shift of the bunch from In its basic idea, the bunch sampling is similar to an

the closest cell in the placement grid, as shown in Fig. 4. approach to the synthesis of the near-regular textures proposed
in [18]. In this latter approach the periodicity of regular

1. BUNCH SAMPLING: TEXTURE SYNTHESIS textures is recovered from the translation symmetries of the

Given the geometric shape and the placement grids famtocorrelation pattern of the texture. Since it is based on
bunches, a new texture of an arbitrary size is synthesised digitistics of pairwise signal products over the clique families,
direct sampling of signal bunches from the training imagie autocorrelation describes the interaction structure in a less
with their subsequent replication and random placement. ééfinite way than the general statistics of pairwise signal
each step, a bunch of signals, representing a particular texel;occurrences in the GGRF model. Thus bunch sampling
is randomly sampled from the training image using a masias less difficulties in deriving the texel shape, resulting
of the estimated geometric shape. The bunch is then plaégedmore detailed texels. This enables the derivation of an
into the synthetic texture in a position so that it has thefficient tiling scheme for the synthesis of both regular and
same relative shift with respect to the both placement gridtochastic textures. However, the major limitation of bunch
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Fig. 5. Synthetic textures D4, D9, D34 and D1Gl % x 512).
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Fig. 6. Synthetic textures D3, D6, D29, D57, flower0002, food0002, grass0002 and metai@003 $00).
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Fig. 7. More example of training texture$28 x 128)
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Fig. 8. Synthetic texturess{2 x 512) from the training samples in Fig. 7
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