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Abstract— We present a technique to infer a model of the
spatio-temporal statistics of a collection of images of dynamic
scenes seen from a moving camera. We use a time-variant
linear dynamical system to jointly model the statistics of the
video signal and the moving vantage point. We propose three
approaches to inference, the first based on the plenoptic function,
the second based on interpolating linear dynamical models, the
third based on approximating the scene as piecewise planar. For
the last two approaches, we also illustrate the potential of the
proposed techniques with a number of experiments. The resulting
algorithms could be useful for video editing where the motion of
the vantage point can be controlled interactively, as well as to
perform stabilized synthetic generation of video sequences.

I. I NTRODUCTION

Images of objects with complex shape, motion and material
properties are commonplace in our visual world: think of a
silk gown, a burning flame, a waterfall. The complexity of
these physical phenomena is far superior to that of the images
that they generate and, therefore, the inverse problem of visual
perception is intrinsically ill-posed. For instance, the rivulets
on the surface of a lake could be the result of homogeneous
material (water) being tossed around by the wind and the cur-
rents; however, the same perception could be elicited by a giant
flat screen where a time-varying signal is projected to match
the appearance of the rivulets, adapted to the viewer’s moving
vantage point. Therefore, unless additional prior assumptions
are available (as usually done in “shape from X” algorithms),
one has to give up the goal of inferring“the” model of the
physical world, and settle for a much poorer representation,
one that can explain the measured data. What representation
to choose depends on the task at hand.

In this paper, we are interested in inferring models of the
spatio-temporal statistical properties of visual scenes that can
be used to generate synthetic sequences of images, where both
the temporal statistics and the motion of the vantage point can
be edited.

A. Related work and contributions of this paper

Our goal is simple to state: we are given images of a
dynamic scene that exhibit some sort of spatio-temporal regu-
larity, taken from a moving camera, and we want to extract a
model so that we can re-play the sequence from an arbitrary
vantage point. As simple as the goal sounds, the discussion
above suggests that it is unattainable. Since we know at the
outset that we cannot retrieve a physically correct model of
the shape, dynamics and material properties of the scene, we
will let our task guide our assumptions on the representation
to lead to a well-posed inference problem.

We will model the images (or filtered versions of the
images) as the output of a time-varying dynamical model. The
model, together with a stochastic input, represents the dynamic
variability of the image sequence. In addition, we explicitly
model the vantage point, so that during the synthesis, we
can change it arbitrarily and render sequences from a camera
undergoing a virtual motion.

Several algorithms have been proposed for interpolating and
extrapolating views of a scene without explicit reconstruction
(see for instance [1], [2] and references therein), as well as
techniques to model changes in the viewpoint that use little
or no scene structure information (e.g. [3], [4] and also [5],
[6], that use the Bidirectional Texture Function [7]). All of
these techniques, however, require the scene to be static (or
a large number of static calibrated cameras), whereas we are
interested specifically in modeling dynamic scenes.

The literature on modeling dynamic scenes is also sizeable
(e.g. [8], [9] and references therein). Most of these techniques,
however, consider scenes made of a number of rigid objects,
whereas we are interested in scenes where the temporal
dynamics of the entire scene can be modeled, and no rigidity
constraints are available.

Image-based rendering techniques are available for specific
classes of non-rigid objects, (e.g. for facial expression anima-
tions [10], [11]). Here instead, we are interested in scenes for
which no prior information is available, and allow complex
shape, motion, and material properties. We will, however,
make assumptions on the “temporal regularity” of the scene,
in ways that we will explain in later sections.

This latter class of scenes has recently received some
attention, and there are techniques to model changes in the
dynamics of such scenes (e.g. [12], [13], [14], [15] end
references therein). Therefore, one can find techniques to
model only changes in the viewpoint, as mentioned above,
or only changes in the dynamics of the scene.

The first attempt to model changes in both vantage point
and dynamics of the scene is, to the best of our knowledge,
the work of Fitzgibbon [13]. There, the author was looking
for sequence registration for nowhere static scenes where the
decomposition into parametric camera motion and stochastic
motion of the scene is still possible.

Of the three approaches we suggest in Sect. III, [13] is most
closely related to the third, which considers a homographic
approximation of the scene, although with a different purpose
(matching and registration for [13], modeling for synthesis in
our case). Even so, we use an alternating minimization where
each step is guaranteed to reduce the global cost, which is



different from [13]. In addition, we propose and experiment
with direct dynamical model interpolation. Also, we propose
modeling the dynamics of the plenoptic function [16] directly.

In the next section we introduce the formalism to be used
throughout the paper, and in Section III we propose three
approaches to model moving images of dynamic scenes for
the purpose of view synthesis and rendering. The performance
of two of these approaches are explored in the experimental
Section IV.

II. FORMALIZATION OF THE PROBLEM

Let X ∈ R3, and I(X, t) ∈ R+ be the “energy” of a
particle in positionX in space at timet. An imagey(x, t)
at a pixelx ∈ Ω ⊂ R2 and at timet, is in general obtained
by integrating the energy along the projection rayxλ ∈ R3,
whereλ ∈ R+ andx is expressed in homogeneous (projective)
coordinates:y(x, t) =

∫
R+

I(xλ, t)dλ. If we assume that
particles are opaque, or that they are concentrated on a surface,
then the integral reduces to the value ofI at the particular
X that corresponds tox = π(X), whereπ is the canonical
projection: if X = xλ, then π(X) = x. More in general,
let P (x) ∈ R3 be the surface in space that contributes to the
image irradiancey at x, and let the viewpoint move according
to a motion described by a groupg(t) (Euclidean, affine
or projective). Therefore, under these assumptions, we have
y(x, t) = I(g(t)P (x), t)+w(x, t) wherew is a measurement
noise term that we assume to be white and zero-mean. Now, if
we further allow the surfaceP to change over time, we have
the image formation model in the most general form that we
will address in this paper:

y(x, t) = I (g(t)P (x, t), t) + w(x, t). (1)

The goal is, given measurements ofy(x, t) for x ∈ Ω ⊂
R2 and t = 1, . . . , τ , to recover a model of the form above,
consisting of the unknownsI(·, ·), g(·) and P (·, ·), such that
novel sequences can be generated by altering the model or
controlling its states.

A. Reduction of the model

Unfortunately, the model (1) is “too rich,” in that given any
measured sequence{y(x, t), x ∈ Ω, 0 ≤ t ≤ τ} there exist
infinitely many modelsI, g, P that generate them. Therefore,
learning would be subject to overfitting and the resulting
model would have little predictive power. In fact, if we write
the model (1) in more compact form asIt ◦ g ◦ Pt, then
it is immediate to see that, for any choicẽg ∈ SE(3) and
arbitrary P̃ (x, t), we can always choosẽI(X, t) that satisfies
the equationIt ◦ g ◦ Pt = Ĩt ◦ g̃ ◦ P̃t. Therefore, we need to
restrict the class of allowable energy fieldsI. In the following,
we will assume thatI are subject to a temporal dynamics that
is second-order stationary. That is,I(X, t) is allowableif there
exist C(X), A andξ(t) such that

{
ξ(t + 1) = Aξ(t) + v(t) ξ(0) = ξ0 ; v ∼ N (0, Q)
y(x, t) = C(X)ξ(t) + w(x, t)

(2)

for somev, w white, zero-mean Gaussian random processes,
andI(X, t) = C(X)ξ(t). In other words,I(·, t) is a 3D linear
dynamic texture [14]. Notice thatI(X, t) cannot be measured
for all X ∈ R3, but it is instead sampled on a set of measure
zero determined byX(t) = g(t)P (x, t).

As restrictive as this model may appear, it is not enough
to guarantee a one-to-one correspondence between parameters
and output realizations. In fact, givenC, g, P and ξ, one
can always findC̃, g̃, P̃ , ξ̃ that satisfyC̃(g̃(t)P̃ (x, t))ξ̃(t) =
C(g(t)P (x, t))ξ(t). Indeed, one can choose a functioñC(·)
and g̃(t) arbitrarily, and always findP (x, t) that satisfies
the equation above. Therefore, we need to restrictP . One
possibility is to assume thatP is a static surface, and only the
viewpoint g(t) and the radianceI(·, t) are allowed to change
over time. In that case, we have

I(X, t) = C(g(t)P (x))ξ(t) . (3)

III. T HREE APPROACHES

In the next three subsections we propose three approaches to
learn and synthesize dynamic textures as seen from a moving
camera. In Section III-A we propose an operative model that
is conceptually straightforward but difficult to implement in
practice, because it requires a large number of calibrated
and synchronized cameras. In Section III-B we propose an
interpolation technique to interpolate time-invariant instances
of the general model proposed in Section III-A, and does
not require calibration. Finally, in Section III-C we propose
a further reduction of model (3) in which we assume thatP
is not only a static surface, but can be approximated locally
by a plane.

A. The Dynamic Lumigraph

The first and conceptually simplest approach to modeling
and learning dynamic textures as seen from a moving vantage
point is to start directly from the model (2), and collect data
for a large set of “voxels”X and viewpointsg. At that point,
synthesis is trivially performed by choosingg(t) andP via

ysynth(x, t; g(t), P (x, t)) = C(g(t)P (x, t))ξ(t). (4)

This approach is equivalent to a dynamic version of the so-
called Lumigraph [3], and aims at modeling the plenoptic
function [16] directly, this is why we refer to sequences mod-
eled by (2) and (4) asplenoptic dynamic textures. Although
conceptually viable, this approach is impractical because it
would require a large number of synchronized cameras, one
per desired locationg. In the Lumigraph, the camera is moved,
so that time is used to sample space, a trick that we cannot
apply here since we need to sample both in space and time as
our scene is not static. Since we do not have an experimental
facility that would allow us to collect synchronized images,
this avenue is not pursued in the experimental Section IV.
Another research group is currently building a rig of 128
calibrated and synchronized cameras, so testing this approach
will be feasible within the next few years.
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Fig. 1. (a) interpolation of the camera trajectory inSE(3), requires knowledge of the extrinsic calibration, which can be obtained with a laborious procedure.
(b) interpolation in the space of model parameters can be easily attained by building the connectivity graph by computing mutual distances among each model.
(c) under the homographic approximation, one can estimate model parameters along a one-dimensional subset of camera trajectories.

B. Model interpolation

Consider a camera trajectory, represented byg(t) ∈ SE(3).
This is a one-dimensional subset of the six-dimensional space
of all possible camera poses, and we are interested in inter-
polating and extrapolating the viewpoint so as to be able to
move the camera arbitrarily in space.

If enough viewpointsg(t) are sampled uniformly inSE(3),
then one could think of generating synthetic sequences by
interpolating models of the form (2) from neighboringg’s.
Naturally, thisrequires knowing the pose of the camerathat
captured the original data, i.e. that the (extrinsic) calibration
of the camera be known. Most often, however, the camera
pose is not known precisely, which is another shortcoming of
the straightforward extension of the Lumigraph to dynamic
objects.

Consider now the set of models corresponding to a trajec-
tory of viewpoint samplesg1, g2, . . . , gi (see Figure 1-(a)).
These are points in the space of linear-Gaussian models (see
Figure 1-(b)), which can be endowed with a metric structure,
that allows determining the complete distance graph between
each sample model. Therefore, one can envision generating
synthetic sequences by generating local interpolations in the
space of models. The shortcoming of this method is that one
cannot manipulate the viewpoint directly, and therefore the
editing power is reduced. Interpolation can be performed once
the connectivity graph is available. In order to compute it, one
needs to define a norm in the space of models. This can be
done in a variety of ways. We choose subspace angles among
extended observability subspaces, as proposed by De Cock and
De Moor; the interested reader can refer to [17] for details.

In order to compute the interpolation between two models,
we need to compute geodesics in the space of models. As
pointed out in [14], the matricesA, C, andQ, are supposed to
have a certain structure. In particular,C must have orthonor-
mal columns,A must have the eigenvalues within the unit
circle of the complex plane, andQ must be symmetric positive
definite. Computing geodesics in such a manifold is an open
problem, and in Section IV we show some results attained
using a sub-optimal technique (which uses rotations and
SVDs), that still enforces the properties of model parameters.

C. Piecewise planar approximation

In this section we suppose that the scene can be roughly
approximated by a plane, so thatg(t)P (x) can be represented
as a homography of the image plane1 H(t) ∈ R3×3/R,
and therefore we haveI(X, t) = C(H(t)x)ξ(t), where x
is expressed in homogeneous coordinates. We also need a
dynamical model for the evolution ofH(t): in lack of a better
model we will assume it to be a first-order random walk.
Summarizing this simplified model, we have





ξ(t + 1) = Aξ(t) + v(t) ξ(0) = ξ0 ; v ∼ N (0, Q)
H(t + 1) = H(t) + vH(t) H(0) = I

y(x, t) = C(H(t)x)ξ(t) + w(x, t) .
(5)

Now, given {y(x, t), x ∈ Ω, t = 1, . . . , τ}, the problem of
inferring a model consists of estimatingA, C(·), H(t), ξ(t) as
well as the covariance of the noise termsv, vH and w. The
matrix C is inferred only along the one-dimensional subset of
camera trajectories, and therefore synthesis will be limited to
a (homographic) neighborhood of this trajectory2. This setup
is illustrated in Figure 1-(c).

The pedestrian way to infer the state of model (5) consists
of first estimating the homography off-line, for instance by
registering a set of point features that are known to be static,
and then applying any of the modeling algorithms as if the
viewpoint was fixed3, for instance [14], [15].

A more convenient and practical algorithm, which we
explore in Section IV, consists of setting up an alternating
minimization problem where we start witĥH0 = I, ξ̂0 = 0,
and at a generic iterationi, we alternate a step of the subspace
identification algorithm N4SID (see [18] for details)

Âi+1, Ĉi+1, Q̂i+1 = N4SID({y(Ĥ−1
i x, t)}t=1,...,τ ) , (6)

1If the plane has normal vectorν ∈ R3 relative to the camera frame, and
moves with a Euclidean motiong(t) ∈ SE(3), represented by a rotation
matrix R(t) ∈ SO(3) and a translation vectorT (t) ∈ R3, then H(t) =
R(t) + T (t)νT up to a scale factor.

2Naturally, if the scene is planar, this neighborhood spans the entire space,
and therefore one can generate views from an arbitrary vantage point

3This corresponds to defining̃y(x, t)
.
= y(H−1x, t) = y(x̃(t), t) =

C(x̃(t), t)ξ(t)+w(x̃(t), t) where, by assumption,C(x̃(t), t) = C(x̃(0), 0)
is constant.



with a step along the gradient of the cost functionφi
.=∑

t ‖y(H−1
i x, t)−Ĉi+1ξ̂(t)‖2, subject toξ̂(t+1) = Âi+1ξ̂(t).

This results in

Ĥ−1
i+1(t) = Ĥ−1

i (t) + αi
∂φi

∂H−1
i (t)

(Ĥ−1
i (t)) , (7)

where4 ∂φi

∂H−1
i (t)

(Ĥ−1
i (t)) is given by the expression

2
∑

x∈Ω

(y(Ĥ−1
i x, t)− Ĉi+1ξ̂(t))∇y(Ĥ−1

i x, t)D(Ĥ−1
i x, t) ,

(8)
in which, if we callx(t) = H−1(t)x, D(x, t) is given by

1
x3(t)

[
xT 0 −x1(t)

x3(t)
[x1, x2]

0 xT −x1(t)
x3(t)

[x1, x2]

]
∈ R2×8. (9)

Once the model is identified, and̂A, Ĉ, andQ̂ are given, one
can easily generate novel sequences by choosing an arbitrary
camera path{(R(t), T (t))}t=1,2,..., sampling an input noise
v ∼ N (0, Q̂), and generatingH(t) = R(t) + T (t)νT . The
sequence of imagesysynth(t) is then produced by iterating
the model (5) forward in time starting from an arbitrary initial
condition5.

IV. EXPERIMENTS

We tested the approach described in Section III-B on two
data sets that we callinverted-fountainandwaterfall. The first
one consists of 6 sequences of 120 color frames of350 ×
240 pixels. From the first to the last sequence the camera is
approximately sampling a circular trajectory that pans around
the inverted-fountain, see Figure 2-(a) for a sample of the data
set. The second data set consists of 21 sequences of 120 color
frames of320 × 240 pixels, that almost uniformly sample a
portion of the 3D space.

For the inverted-fountain data set we do synthesis by
concatenating forward and backward the 6 models inferred by
the 6 sequences. The resulting movie appears to be made by a
camera that is panning smoothly around the inverted-fountain
on a circular trajectory, as we would have expected to see.
The movie is 240 frames long.

For the waterfall data set we compute the connectivity graph
and we extract 6 models along a path that goes through 3
key-models. The key-models were selected manually while
the other three were selected automatically by minimizing the
path in the connectivity graph. From the first key-model to the
second one the camera is moving closer to the scene; from the
second to the third key-model the camera is panning around

4Equation (7) entails a slight abuse of notation, since it applies toH
represented as a9−dimensional vector (rather than a3 × 3 matrix), with
the componenth33 set to one. This technique is related to the work of
Fitzgibbon [13], although the use of N4SID simplifies the optimization task
and guarantees (local) convergence due to the optimality and asymptotic
efficiency of the algorithm [19].

5Indeed, by allowing more general changes inH(t) one can simulate
changes of the internal parameters of the camera and simulate changes in
focal length (zoom), aperture (field of view) etc. Since the synthesis phase
is computationally trivial, the viewpoint can be manipulated interactively (in
real time), for instance from an input device with six degrees of freedom,
such as a joystick.

the scene; from the third key-model we simply go back to the
second. The resulting movie appears to be made by a camera
that is moving forward and then panning around the scene
back and forth. The movie is 200 frames long.

We tested the procedure described in Section III-C with two
sequences that we callfountain-cornerand waterfall-2. The
former has 170, and the latter 130 color frames of350× 240
pixels. The state dimension for all the models we used was set
to 50. The rows (e) and (g) of Figure 2 show samples of the
original sequences, and the same samples after the rectification
with respect to the estimated homographies. The rows (f) and
(h) show some synthesized frames. The synthesized movies
are 200 frames long, and the frame dimension is175 × 120
pixels.

Notice that the piecewise planar technique can also be used
to stabilize scenes with complex dynamics. For instance, the
original movie waterfall-2 is very jittery (due to the hand-held
camera), while during the synthesis one can generate arbitrary
smooth motions, and preserve the dynamic appearance.

V. CONCLUSIONS

We have presented three approaches to model the spatio-
temporal statistics of a collection of images as seen from a
moving camera. For two of them we proposed algorithms
for identifying the model and perform synthesis of plenoptic
dynamic textures. Although the model does not capture the
physics of the scene, it is sufficient to “explain” the measured
data and extrapolate the appearance of the images in space and
time. Unlike the model interpolation approach, the piecewise
planar approximation allows full editing power in terms of
controlling the motion of the vantage point. This technique
could also be used to stabilize scenes with complex dynamics.
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