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Abstract— We extend the machinery of existing texture synthe-
sis methods to handle texture images where each pixel contains
not only RGB values, but reflectance functions. Like conventional
texture synthesis methods, we can use photographs of surface
textures as examples to base synthesis from. However multiple
photographs of the same surface are used to characterize the
surface across lighting variation, and synthesis is based on
these source images. Our approach performs synthesis directly
in the space of reflectance functions and does not require
any intermediate 3D reconstruction of the target surface. The
resulting synthetic reflectance textures can be rendered in real-
time with continuous control of lighting direction.

I. I NTRODUCTION

The characterization of real world textures and surfaces
is an important aspect of enabling photorealistic rendering.
Powerful texture synthesis methods were developed in the late
80’s and 90’s that are able to synthesize new texture samples
from photographic examples (e.g.[1], [2], [3], [4], [5]). These
methods have practical ramifications for 3D computer graphics
since they can simplify the texture mapping process in several
ways. First, larger patches of a texture can be produced,
yielding more source material for the texture mapping process.
Second, textures may be synthesized with periodic boundary
conditions, producing textures that can be seamlessly tiled,
with the high image quality of photographs.

Although powerful, these texture synthesis methods have
limitations that we address in this paper. Since the example
photographs used as input to the texture synthesis algorithms
are captured under specific lighting conditions, the synthe-
sized textures have these same lighting conditions ’baked in’.
Although the results will be convincing when those lighting
conditions match the lighting conditions that the texture patch
finds itself on the 3D object, in general this will not be the
case. Due to the surface microstructure, the modifications in
surface appearance due to 3D object geometry are poorly
approximated by attenuating the surface intensity. Figure 2
demonstrates this behavior, when rendering results using a
light-dependent texture model are compared to the rendering
of the same texture modeled without lighting dependency.

Image-based re-lighting methods [6], [7], [8] provide a so-
lution to this quandary. In this approach, multiple photographs
of a surface, person or object are taken under varying lighting
conditions and viewing directions, and a reflectance model
characterizing the surface appearance is constructed. Using
this model very realistic renderings of the original can be
produced under arbitrary lighting and viewing conditions.

In this paper we demonstrate how the image-based re-
lighting methods can be directly leveraged for the purposes of
synthesizing light dependent textures. These synthetic textures
can be produced having the practical advantages of tileabil-
ity and photorealism that texture synthesis methods provide,
combined with the lighting control of image-based reflectance
functions. The main advantage of the suggested approach is
that no intermediate 3D reconstruction is needed for synthesis
and the process is applied directly to the image domain.

II. SURFACE REFLECTANCECHARACTERIZATION

The reflectance properties of a textured opaque material
can be exhaustively specified by its Bidirectional Texture
Function (BTF) introduced in [9]. The BTF measures the ratio
of radianceL exiting a surface at direction(φe, θe), to the
incidence irradianceI striking the surface in a differential solid
angle from direction(φi, θi):

BTFr,g,b(φi, θi, φe, θe, u, v) =
dL(φe, θe, u, v)
dI(φi, θi, u, v)

where the spatial variation is indexed by(u, v). The BTF can
efficiently specify3D texturesurfaces, whose characteristics
arise from spatial variations of both albedo and surface normal.
Thus, the BTF function can implicitly characterize appear-
ance effects such as shading, shadows, self occlusions, inter-
reflections, mutual shadowing, etc. However, storage require-
ments for the BTF can be prohibitive for real-time computer
graphics applications, due to the high dimensionality (6 d.o.f.).

In this paper we restrict ourselves to a less general, but
more tractable representation we called the Unidirectional
Texture Function, or UTF. Unlike the BTF, the UTF includes a
dependence on only one direction, namely that of the incident
light:

UTFr,g,b(φi, θi, u, v)

One attraction of the UTF is that it is extremely easy to
collect for a real world material. It requires only a stationary
digital camera and a movable light source, and specifically
does not require any camera calibration and geometric rea-
soning as one needs for acquiring a BTF. By sacrificing the
dependence on view direction, we loose the ability to capture
view dependent phenomena such as specular highlights. How-
ever, since surface normals are easily calculated from a UTF
representation (which is the angle giving the maximal UTF
value [7]) , specular highlights can be artificially reintroduced
into the UTF rendering process.



III. PREVIOUS BTF/UTF TEXTURE SYNTHESIS

There has been extensive work in the area of 2D texture
synthesis (e.g. [1], [2], [3], [10], [4], [5]. However, the
synthesis of reflectance textures from examples is conceptu-
ally different from the 2D texture synthesis. A collection of
images of a particular surface acquired under various lighting
conditions cannot be treated as an independent collection of
2D textures. There are strong correlations between the sampled
images, as all of them are instances of a unique underlying
physical surface. These correlations have to be maintained
while synthesizing a novel reflectance texture.

Relative to the volume of previous work in the area of
2D texture synthesis, there are only a handful of papers
relevant to the synthesis of reflectance textures. Note, that
the synthesized and the example textures have 4D reflectance
functions assigned to each pixel. Working explicitly with
this data is computationally prohibited. Thus, some sort of
dimensionality reduction prior to synthesis must be applied.

Liu et. al. [11] use a texture’s height-field along with an
albedo map as an intermediate representation for BTF. This
representation is reconstructed from the texture examples, us-
ing shape-from-shading techniques. Then, a synthesis scheme
is applied directly to the height-field, using non-parametric
sampling [1], resulting in a representation of a novel texture
from which a new BTF is derived. Leung and Malik [12]
suggests using the 3Dtexton mapas a basis for generating
a novel 3D texture. This approach is similar in spirit to
[11] where a texton map is used as an intermediate compact
representation. The texture’s BTF can be derived from this
representation similarly to the height-field map. Tong et. al.
[13] also use the texton map representation as a basis for
synthesis directly on a 3D object.

All previously suggested methods use an intermediate com-
pact representation for BTF, which requires some sort of 3D
reconstruction. In Addition to the fact that this reconstruction
is computationally intensive, it incorporates inaccuracies in
the synthesized textures since accurate 3D reconstruction of
complicated textures (such as fur, sponge, etc.) is impractical.

This paper suggests a new technique for 3D texture syn-
thesis, which takes advantage of the image-based re-relighting
methods. The texture synthesis works directly with the ac-
quired data with no intermediate 3D models. Our texture rep-
resentation is that of a UTF modelled with polynomial texture
maps (PTM) [7]. By sacrificing the view dependence of a BTF
we gain a compact texture representation well matched to the
rendering process, but also directly employed for synthesis.
The PTMs, produced by our synthesis method can be then
used in place of conventional texture maps and applied to 3D
objects, providing interactive and realistic control of lighting
effects, such as shading, self shadowing, interreflections, and
surface scattering.

IV. B LOCK BASED TEXTURE SYNTHESIS

Viewing a texture image as a realization of a homogenous
Markovian process implies that the color distributions of a
texture blockW are completely characterized by its causal

neighborhoodNW , and that this characterization is spatially
invariant (Figure 1). Therefore, the conditional probability
P (W |NW ) completely determines the texture characteristics.
In this paper we build on a collection of techniques, which are
referred to asblock-basedtexture synthesis [3], [14]. In these
methods, the Markovian process parameters are not estimated
but rather the process is emulated by sampling directly from
the example texture. Hence, a realization of the conditional
probability P (W |NW ) is achieved by randomly choosing a
block from amongst all blocksWi in the texture example
satisfying: ∑

u,v

‖NW −NWi
‖2 < δ

where δ is a predefined threshold, as shown in Figure 1.
In the works of [3] and [14] blocks of texture are copied
from the source images into the synthesized texture, based
on the similarity of their neighborhoods. Overlapping block
regions are either alpha blended or optimal boundary cuts
are calculated between each neighboring blocks, so that block
stitching looks smooth.
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Fig. 1. Copying blocks with similar causal neighborhoods

This paper extends the block-based method from working
on images containing color values, to ’images’ of reflectance
functions. We view a UTF image as a texture of functions
rather than a texture of values. Thus, a UTF image is regarded
as a realization of a Markovian process in the spatial domain.
However, the stochastic process is performed over functions
rather than over values. According to this view, a function
index ψ = Ψ{g(φ, θ)} is assigned to each pixel reflectance
function g(φ, θ), and the function index,ψ, is regarded as a
random variable, over which a stochastic process is defined.

A Markovian process over functions implies that the distri-
bution of functions attached to a texture block W is charac-
terized by the conditional probability:

P (Ψ{W}|Ψ{NW })
where Ψ{W} and Ψ{NW } are the indices of the function
arrays attached to the blockW and its neighborhoodNW

respectively. The conditional distribution above characterizes
a UTF process, which can be imitated using non-parametric
synthesis similarly to the synthesis of conventional textures.
The only difference is that we have to perform the neigh-
borhood comparisons on function indices, and that copied
blocks are composed of an array of function indices. Two
questions remain open. First, how can we obtain a continuous



representation of reflectance functions from a finite set of
texture images, each at a specific lighting condition? Second,
how can we attach an index for each possible reflectance
function? The Polynomial Texture Maps or PTM [7] which
was developed for image-based re-lighting purposes can give
the solutions for these two questions.

V. PTMS

Polynomial texture maps [Malzbender 01] provide a com-
pact representation for reflectance functions. In this approach,
a real-world surface is photographed multiple times with a
fixed digital camera under varying illuminations directions
{(l(i)u , l

(i)
v )}N

i=1 providing N images:{L(i)(u, v)}N
i=1, where

(lu, lv) denotes the projection of a unit vector whose direction
is (φ, θ) onto the(u, v) plane. The PTM representation of a
texture patch describes, independently for each pixel(u, v), the
luminance variation,L, as a function of(lu, lv). The luminance
is modeled by biquadradic polynomial function inlu, lv:

L(u, v; lu, lv) = a0(u, v)l2u + a1(u, v)l2v + a2(u, v)lulv

+ a3(u, v)lu + a4(u, v)lv + a5(u, v)

where the parameters(a0..a5) are chosen to best fit the
acquired image values, thus minimizing:

∑

i

‖L(u, v; l(i)u , l(i)v )− L(i)(u, v)‖2

Once the coefficients(a0..a5) are estimated for each pixel,
renderings of the surface for arbitrary lighting direction can
be computed in real time using either pure software, or pro-
grammable graphics hardware acceleration, to map them onto
3D surfaces in a manner similar to conventional texture map-
ping. The biquadratic polynomial as the interpolation function
is not mandatory and other bases are possible as well. Note,
however, that the PTM basis functions are closely related to the
low degree spherical harmonics, which are optimally spanning
Lamberian surfaces illuminated under various directions [15],
[16].

VI. 3D TEXTURE SYNTHESIS USINGPTM

Going back to block-based 3D texture synthesis, PTM
coefficients can be efficiently used as the reflectance function
indices over which texture synthesis is applied. Thus, a similar
block-based synthesis scheme can be applied directly to the
6 dimensional vector field(a0..a5). However, care must be
taken: In the 2D texture synthesis, the conditional probability
P (W |NW ) is achieved by sampling similar blocks in the
source texture, where similarity is defined based on the values
in the causal neighborhoods (Equation 6). This scheme cannot
be automatically applied to function indices in the reflectance
texture case. The transformation from function space to in-
dex space does not necessarily preserve function distances,
namely:∫ ∫

‖g1(lu, lv)− g2(lu, lv)‖2dludlv 6= ‖ψ{g1} − ψ{g2}‖2
for any given two functionsg1, g2. This implies also that
function pdf’s are not preserved, and in our case:P (W ) 6=

P (ψ{W}). Therefore, instead of using the original coefficients
of the PTM, we linearly transform the coefficients so that
an orthogonal basis is used. Since orthogonal transformation
is distance preserving, distance between two functions can
be measured directly in the index vectors, and consequently,
function probability and its corresponding index probability
can be used indistinguishably.

In our implementation we have used the 2D Legendre
polynomial basis, which is orthogonal over[−1, 1]2. The 6
basis functions used in the standard PTM (Eq. 8),A =
{l2u, l2v, lulv, lu, lv, 1} were transformed into the orthonormal
basisB:

B =

{
1
2
,

√
3

2
lu,

√
3

2
lv,

3
2
lulv,

√
45
4

l2u −
√

45
12

,

√
45
4

l2v −
√

45
12

}

If a = [a0..a5] are the original PTM coefficients, the new basis
coefficients,b = [b0..b5], are easily calculated by applying a
matrix multiplication b = Ma, where M is a 6x6 matrix
(see [17] for the matrix values). Using the new coefficients,
each pixel(u, v) has an associated index which is constructed
by the 6 dimensional vectorψ{L(u, v)} = [b0..b5]u,v. Using
this indexing, a realization of the conditional probability can
be achieved by randomly choosing a block from amongst all
blocksWi in the texture example satisfying:

∑
u,v

‖ψ{NW (u, v)} − ψ{NWi(u, v)}‖2 < δ

Edge handling between synthesized blocks is performed also
in the orthogonal representations. In our case, the coefficients
in the common boundaries were alpha blended. Since PTM
functions are represented in an orthonormal space, coefficient
blending is equivalent to blending the reflectance functions
with similar weights. In a similar manner optimal cut along the
common boundaries should be performed in the orthonormal
basis as pixel comparisons are meaningful. At the final stage
of the synthesis, an inverse transformation is performed to the
standard PTM representation.

VII. SEARCH STRATEGY

The main burden of block based texture synthesis is the
search required for each generated block in the synthesized
PTM. For each such block, a full search is performed in the
source PTM, i.e. the distance must be computed between the
block neighborhood and each of then×n neighborhoods of the
source PTM image. Naively applying this search is time con-
suming. Several approaches have been suggested to expedite
this search. Among them, multiscale search [14], tree structure
vector quantization [10], and k-coherence search [13]. All
these approaches improve run time by orders of magnitude at
the expense of approximating the search results. A rejection
scheme, proposed in [18], can dramatically improve run time,
without sacrificing the resulting accuracy. In this approach,
highly dissimilar block neighborhoods in the example PTM
are rejected quickly.

Each PTM block neighborhood, represented in the orthogo-
nal form, is unfolded and represented as a 1D vector. Thus, if a



block neighborhood is composed ofp pixels, its associated 1D
vector is a6p dimensional vector, because each pixel includes
6 PTM coefficients. Using this notation, the error distance
between two block neighborhoodsNW1 and NW2 is defined
as:

d(NW1 , NW2) = ‖NW1 −NW2‖2 =
k∑

i=1

[NW1(i)−NW2(i)]
2

(1)
wherek = 6p. However, it is possible to reject a neighborhood
before evaluating allk = 6p sums if the error distance already
exceeds a thresholdδ. This threshold can be set ahead of
time or can simply be the actual error distance to the best
neighborhood evaluated so far. Equation 1 is still valid when
NW1 andNW2 are represented in a different orthogonal basis,
N̂W1 , N̂W2 . Thus,

d(NW1 , NW2) ≥
∑̀

i=1

[N̂W1(i)− N̂W2(i)]
2 (2)

for any ` ≤ 6p. If we choose a basis that concentrates vector
energy in the first few entries, we can achieve a tight lower
bound with very few calculations. Such a representation can
be calculated by applying the Singular Value Decomposition
on the entire neighborhood ensemble, or by using a basis
set which is known to have energy compactness for natural
images, such as the DCT basis, the Harr Wavelets or the Walsh
Hadamard which can be computed very efficiently [18].

Using this lower bound (eq. 12), a very fast search scheme
can be applied as follows: First, each neighborhood vector in
the example PTM is projected onto the first basis-vectorU1,
resulting in ann×n array of scalar values (applied only once).
Given a new block neighborhood,NW , from the synthesized
image, we projectNW onto U1, and calculate a lower bound
on the neighborhood distance for each neighborhood in the
example PTM using eq. 2 (wherè = 1). Note, that this
lower bound is achieved by applying a single subtraction
and a single multiplication per example neighborhood. Each
neighborhood, whose lower bound is above the thresholdδ, is
rejected and discarded in further calculations. Typically, 90%
of the neighborhoods are rejected after the first projection.
For the resulting neighborhoods we continue with the second
basis-vectorU2, increasing the lower bound, and rejecting
additional neighborhoods. This process continues with con-
secutive basis-vectors. After very few projections (around 3),
only a few candidates remain, for which the actual distances
are calculated. A typical run time for synthesis of a 512x512
patch composed of 30x30 blocks is approximately 3-5 minutes
using this approach, compared to 30-60 minutes for the brute
force search.

VIII. R ESULTS

Figures 2-4 show results of reflectance texture synthesis
from photographic examples collected under 50 light direc-
tions. Figure 3 shows a single source photograph along with
synthesis results under varying lighting. Figures 4 demonstrate
various synthesized reflectance textures applied to 3D objects,

also under a number of lighting directions. These objects can
all be illuminated and viewed in real-time. Figure 2 shows the
difference between 3D texture mapping, and the conventional
texture mapping.

IX. CONCLUSION

We have presented a texture synthesis method that results
in the construction of images of reflectance functions instead
of simply color values. This synthesis is performed directly
using the representation of polynomial texture maps, thus
the resulting texture maps can be rendered in real time
on modern graphics hardware with parametric control over
lighting direction. At the heart of our approach is the ability
to compare pixels of reflectance functions directly in place
of comparing pixel RGB values. This same approach allows
any texture synthesis method that compares pixel colors to be
extended in the analogous manner to support the synthesis of
reflectance function textures.
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Fig. 2. Bottom: Synthetic sponge material with varying reflectance function per textel. Top: Synthetic sponge without reflectance functions (conventional
texture map).

Fig. 3. Left: Section of original source image under one lighting condition. Right: Synthetic texture under varying lighting directions.

Fig. 4. Synthesized sponge, popcorn kernels,and black-eyed peas texture mapped under varying lighting directions.


