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Abstract— Gaussian Scale-space describes the local structure
of images. This paper shows a stochastic analysis of the diffusion
equation as put forward by Koenderink (1984) for regular
images. Important classes of the stochastic process which are
structurally described by the diffusion analysis include Brownian
fractals, Markovian textures, and fragmentation processes. The
analysis shows the diffusion coefficient to relate to the local
autocorrelation function over the diffusion process. Diffusion
of the multiplicative image formation process directly leads to
power-law statistics over the diffusion scale, and to Weibull
statistics in the spatial domain.

I. INTRODUCTION

The observation of images is governed by a long-term
scaling regime, which diffuses the scene irradiance to a
resolution limited sensory observation. The statistics of the
imaging process is governed by a enormous scale range. On
the quantum scale, the stochastic process of photon scattering
determines spatial interactions. On a microscopic scale, the
rough surface of materials cause multiple scattering, blocking,
and vignetting. At meso-scale, long-range correlations are
imposed by shadow and shading effects, object borders, and
interreflections. Finally, at a macro-scale, occlusion and clutter
dominate image statistics.

In all these cases, I consider the spatio-spectral energy
distribution impinging on an image sensor to be the result
of a stochastic process. Hence, the image before observation
may be characterized by the probability density describing the
random nature of the energy fluctuations, and the correlation
function describing how a localized fluctuation influences the
local, regional, or total energy density. The observation may
be considered to continue this correlation function under a
Gaussian diffusion regime.

Note that the diffusion process is not only governed by
the sensory system, that is the lens system, photoreceptor
sensitivity and dimensions, and photoreceptor spacing. Besides
these diffusion effects imposed by a resolution limited imag-
ing system, the interaction between light and matter causes
diffuse reflectance. The diffusion process is formalized by the
Kubelka-Munk equations [1], [2]. Furthermore, interaction be-
tween reflected light, and the often non-homogeneous medium
it travels through, causes diffusion captured by the Lambert-
Beer law [3]. These diffusion processes are not necessarily
linear, and interference effects certainly result in a non-causal
relation between the energy density as falling on the imaging
sensor and the original material surface.
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An important non-linear effect introduced by the observa-
tion of a three-dimensional world is the effect of occlusion and
shadow. Occlusion is the event that an imaged object is partly
invisible due to hiding by another object which is in the field
of view. Shadow is the effect caused by the light source being
held from irradiating an object due to blocking of another
object. Both effects introduce singularities in the bidirectional
reflectance distribution function (BRDF). As these effects will
be present at any scale, the BRDF consists of infinite many
discontinuities [4]. Observation of such a typical BRDF may
have implication beyond the causal Gaussian observations [5].
The diffusion processes before the retina will be reflected in
the statistics of the observation process.

Consider the observation of a surface at macro-scale, for
which several orders of magnitude have to be covered by the
diffusing process to transform the photon-scale characteristics
into surface reflection properties. On the other hand, the scale
difference between one objects and a few objects interacting
to cause occlusion and shadow effects, is typically covered
by a small scale step. Both scaling processes are typically
present in a general image. Hence, any statistical theory to
describe natural image statistics should consider several orders
of magnitude in scale. In this respect, fractals are long range
scale idealizations [6], representing the result over a long
diffusion regime.

In this paper, I consider the scaling behavior of multiplica-
tive stochastic processes. Hence, the processes as resulting
from a smoothly varying illumination flux modified by a
multiplicative, high frequent, stochastic reflectance function.
Multiplicative image formation process is statistically mod-
elled and shown to result in a power-law correlation function
when observed at a finite scale. The scaling behaviour of the
stochastic process is shown to relate the diffusion coefficient
to the autocorrelation function over the diffusion process.

II. IMAGE FORMATION AND POWER-LAW STATISTICS

Consider an infinitesimal small surface patch of homoge-
neous reflectance. When illuminated by incident light with
spectral distribution e(λ), light scattering within the mate-
rial causes diffuse body reflection, while Fresnel interface
reflectance occurs at the surface boundaries. I consider the
Kubelka-Munk theory as a general model for color image
formation, for simplicity formulated in one dimension:

E(λ, x) = Φ(x)e(λ, x) (1 − ρ(x))
2
R(λ, x)+Φ(x)e(λ, x)ρ(x)

(1)
where x denotes the position at the imaging plane and λ the
wavelength. Further, e(λ, x) denotes the illumination spec-
trum, ρ(x) the Fresnel reflectance at x, and Φ(x) the flux



of the light due to the angle between surface normal and
light source direction. The surface albedo function is defined
by R(λ, x). The Fresnel reflectance is dominant at surface
points for which the viewing direction coincides with the light
source direction. This unlikely event will not dominate image
formation in general, although it may have consequences
for specific images. Hence, Lambertian reflection dominates
image formation, in which case ρ(x) ≈ 0. Note that the
restriction is easily eliminated later on.

In a complex scene as natural images, material patches will
often not be directly illuminated by sunlight. Diffusion of the
sunlight due to atmospheric circumstances causes a diffuse
light flux. Furthermore, light will be affected by multiple
reflections on macro-scale objects, and inter-reflections due to
the microscopic surface roughness. All these effects interact on
the light, that is, a fraction of the light is reflected towards the
surface patch which is imaged. Hence, if I consider a single ray
of light, the intensity of the light finally reaching the camera
is the result of several multiplicative processes,

E(λ, x) = α1(λ, x)α2(λ, x) . . . αn(λ, x)e(λ, x) (2)

the factors 0 < αi < 1 denoting the fraction of light reflected
at each interaction.

Furthermore, note that an infinitesimal surface patch will
not be illuminated by a single lightray, rather by a plurality
of lightrays, each affected by various multiplicative processes.
Hence, light from a surface patch imaged by a camera sensor is
the effective result of a superposition of various multiplicative
processes. As a consequence, there is a lower bound on the
reflected intensity, larger than zero, as always some light will
reach the material surface. Furthermore, materials can not be
completely absorbing, and always some Fresnel reflectance
will be present. Hence, no truly ”black” exists, as some light
will be reflected. An upper bound on the reflected intensity
is given by the fact that in general no light is added to the
illumination intensity. Hence αi < 1 results in a converging
process towards zero. These boundaries turn out to impose a
dramatic effect on image statistics.

The whole process is of a stochastic nature, i.e. the in-
dividual αi are the results of coincidental interactions be-
tween various materials causing reflection and absorptions.
Where the diffuse lightsource e(λ, x) is a slowly varying
function of x, the αi are high frequency variations caused
by material roughness, interreflections, occlusions, and mask-
ing. As proven by Levy and Solomon, the boundaries on
the multiplicative process impose the constrained converging
multiplicative process to lead to a power-law distribution in
the resulting variable E(.) [7].

Following [8], the proof is simply obtained by applying a
log transform on (eq. 2), li = log αi and y = log E, and
rewriting (eq. 2) in a recurrent relation

yi+1 = yi + li . (3)

In the transformed domain, the process describes a random
walk with a drift 〈l〉 < 0. The lower boundary ensures
convergence of the process rather than escape to −∞. The

process is described by the master equation [7]

P (y, i + 1) =

∫

∞

−∞

π(l)P (y − l, i)dl , (4)

where π(l) denotes the transformed distribution of the original
probability density Π of αi. Exact solution of the master
equation is obtained by considering the maximum value ymax

reached by the random walk over all times. The problem
has been solved [9] using renewal theory. In summary, a
superposition of random walkers establish a uniform flux
directed towards −∞. The density of these walkers in the
positive direction is decaying, given by a Wiener-Hopf integral
[8] of which the solution is

Pmax(max(0, ymax)) e−µymax , (5)

with µ given by
∫

∞

0

Π(α)αµdα = 1 . (6)

Hence, the power-law distribution is controlled by the extreme
values of the diffusion process. Substituting the original vari-
ables for the transformations y, l yields a power-law,

P (E) = cE−µ , (7)

c representing a scaling constant. Details on the derivation are
given by Sornette and Cont [8].

An alternative approach is to approximate the master equa-
tion by a Fokker-Planck equation,

∂P (y, i)

∂i
= −v

∂P (y, i)

∂y
+ D

∂2P (y, i)

∂y2
, (8)

where v = 〈l〉 and D =
〈

l2
〉

− 〈l〉2. The details of π are not
important for large i. The Langevin equation of the process is
approximated by

dy

di
= v + η(i) , (9)

which exemplifies the competition between drift v and diffu-
sion η(i).

Note that a stochastic variable of the form wi+1 = bi+aiwi,
with ai and bi inducing random fluctuations, also leads to a
power-law [8]. Hence, we may eliminate our assumption of
pure Lambertian reflection, yielding the derived results to hold
in general image formation.

Note that the exact probability distribution π from which
the αi are drawn is not of importance. The process arises
as a consequence of the central limit theorem in the log-
transformed domain. Hence, power-law behavior for multi-
plicative processes is as natural as Boltzmann laws for additive
fluctuations [7].

III. MULTI-SCALE OBSERVATION AND MULTIPLICATIVE

FLUCTUATIONS

Image formation is a multiplicative process, covered by
power-law behavior if a large number of fluctuations is ap-
plied. Observation of an image is well known to be covered
by linear correlation between a sensor of limited resolution
and the intensity of the light. The convolution operator av-
erages over the multiplicative stochastic process. Hence, it



is not directly clear when the process is still dominated by
multiplicative fluctuations, and when the additive nature of
convolution takes over. Intuitively, the multiplicative process
will dominate as long as spatial observations are correlated,
that is, the spatial distribution is affected by one source of
multiplicative fluctuations. In that case, the weighted sum
reflects the multiplicative nature of the fluctuations. When
the spatial extent is such that large parts of the sensor area
are uncorrelated, the observation may be considered as the
summation of independent stochastic processes. The latter
case will result in Gaussian statistics, due to the central limit
theorem.

To explain this trade-off, consider the observation of a
multiplicative process at two scales a small distance apart.
Observation of the multiplicative stochastic process by a
sensor of limited size implies correlation of the signal with
the sensor sensitivity function, the sensor being limited in
resolution due to some spatial extent t. The scaling behavior
of the resulting measurement is examined when changing the
spatial extent t to t + ∆t, in which case

Êt+∆t = aαet + bβe∆t . (10)

Here, et refers to the diffuse light flux falling onto the surface
patch imaged by the sensor of original size t, and e∆t the
additional surface area covered by the increase in sensor size
∆t. The factors a and b denote a simplified view on convolu-
tion, and represent spatial weighing terms. The factors α and β
represent the stochastic multiplicative variables due to various
light reflections from the surface area. The new measurement
at decreased resolution is composed of the superposition of
multiplicative process, which again can be proven to follow
a power-law statistic [8]. The result is independent of the
sensor sensitivity as long as the stochastic reflectance process
dominates statistics rather than the deterministic process of
convolution.

IV. SPATIAL DIFFUSION OF A POWER-LAW CORRELATED

PROCESS

So far I modelled the stochastic process of intensity fluctu-
ations, driven by a multiplicative process, without considering
large spatial extent. Here I will follow Mannella, Grigolini,
and West [6] to introduce diffusion of a power-law correlated
process. Hence, formalizing the observation process as intu-
itively sketched in the preceding paragraph.

Assume a variable x(t) which undergoes a motion induced
by a random variable ε(t),

dx

dt
= ε . (11)

A single trajectory is given by time integration,

x(t) =

∫ t

0

ε(t′)dt′ + x(0) . (12)

As the stochastic behavior of x(t) is of interest rather than
single trajectories, the mean values of the moments of x(t)
are of importance. Furthermore, assume ε(t) fluctuates around

zero, thus the first moment 〈x(t)〉 = 〈x(0)〉. The second
moment is given by

〈

x2(t)
〉

=

∫ t

0

∫ t

0

〈ε(t′)ε(t′′)〉 dt′′ dt′

+ 2

∫ t

0

〈ε(t′)x(0)〉 dt′ +
〈

x2(0)
〉

. (13)

Assuming no correlation between ε(t) and the initial value
x(0), the second integral in (eq. 13) vanishes. Furthermore, by
assuming the random process ε(t) to be stationary, the motion
equation yields [6]

d

dt

〈

x2(t)
〉

= 2

∫ t

0

〈ε(τ)ε(0)〉 dτ (14)

So far the only assumptions made are independence between
x(0) and ε, and stationarity of ε. When also the assumption of
second-order stationarity is made, that is, ε is approximated by
its second-order statistics. In this case, the statistical process
x is Gaussian. Now consider an image as an integration of the
total distribution ρ over all degrees of freedom Γ that are not
of interest (see [6] for details),

E(x, t) =

∫

ρ(x, εΓ)dεdΓ . (15)

After some manipulation, one obtains the final diffusion equa-
tion

∂E(x, t)

∂t
= α(t)

∂2E(x, t)

∂x2
. (16)

Note that (eq. 16) is equivalent to (eq. 14), i.e. multiplication
by x2 and integrating over x yields (eq. 14).

The derived diffusion equation (eq. 16) is equivalent to the
result derived by Koenderink [5]. However, the function α(t)
is defined by the Green-Kubo formula (eq. 14)

α(t) =

∫ t

0

〈ε(τ)ε(0)〉 dτ , (17)

which relates the diffusion constant to the autocorrelation
function of the random fluctuations. This yields a direct
relation between the local detail scale and the power-law
autocorrelation function of the multiplicative process (eq. 7).
Hence, the time axis may be rescaled,

t∗ = t2−µ , (18)

which, after some manipulations [6], leads to the Gaussian
kernel

G(x, t;µ) =
1√

2πt1−µ/2
exp

(

−1

2

x2

t2−µ

)

. (19)

Hence, scale-space sampling of a stochastic process of many
uncorrelated trajectories lead to a Boltzmann law with ex-
ponential decay, for which logarithmic scale sampling has
to be considered. In the case of correlated trajectories, the
logarithmic sampling depends linearly on the fractal dimension
HD = 1−µ/2 of the process, hence leads to a finer sampling
interval.



V. CONSEQUENCE FOR NATURAL IMAGE STATISTICS

Smoothing images by any filter kernel, including obser-
vation by a discrete sensory system, to obtain some multi-
resolution representation will generate a power-law correlation
function between the original image and its smoothed ver-
sions as function of filter size. The theoretical considerations
sketched in Section II predict the results as empirically derived
from large natural image collections [10], [11], [12], [13], [14].

The statistical characteristics of any spatial difference filter
(zero-average filter) is indicative for the correlation function
over scale [15], [16]. Consider a spatial difference filter, which
may be decomposed in a derivative operator and a smoothing
operator [5], [17],

h(x) = H(x) ∗ ∂h

∂x
, (20)

where H(x) denotes the smoothing part of filter h(x). The
spatial derivative may be considered to act on an infinitesimal
scale, whereas the smoothing operator covers the pixel size
and filter scale. Within the infinitesimal scale, the response
of the derivative operator will approximate the square root of
the autocorrelation function over the diffusion scale. Hence,
responses r for filter h applied to natural images will be
power-law distributed. Averaging over a spatial extent implies
the integration over a number of power-laws [18], yielding a
probability distribution of filter responses

P (r) = e−
1

γ | r
β |γ , (21)

which is closely related to the Weibull distribution [19], [20].
In this equation, γ represents the Weibull shape parameter, and
β the width of the distribution.

VI. DISCUSSION AND CONCLUSIONS

Diffusion of the multiplicative process of image formation
leads to a power-law statistic in the Fourier domain. Where
diffusion of additive fluctuations lead to a Boltzmann law,
that is exponential decay of intensity over scale. Diffusion
of unbounded multiplicative fluctuations lead to a log-normal
correlation function. However, in the case of light reflectance
from rough surfaces, the boundaries on the multiplicative
process impose the constrained converging diffusion process
to lead to a power-law correlation function over the diffusion
scale [21], [8]. Hence, the scaling behavior of large image
collections will conform to a power-law, imposed by the
multiplicative nature of light reflectance and light observation,
rather than by “self-similarity”. Integration over numerous
power-laws due to a spatial diffusion process yields a Weibull
type distribution for filter responses. Hence, in general image
collections, the response to any zero-average filter will follow
the Weibull type of distributions. These trivial considerations
predict the results as empirically obtained for large natural
image collections [10], [11], [12], [13], [14].

Under these theoretical considerations, any geometrical en-
tity derived from the long-range power-law correlation func-
tion are essentially derived from shadow and shading effects
in the image. The distribution of contrast is indicative for
the intrinsic size of texture details, as shading is by projec-
tion related to texture patches. Such size distributions may

well be approximated by a sequential fragmentation process.
Fragmentation is the continuous analog of branching random
walks, a well known tool for texture analysis. In this respect,
fragmentation theory may provide an additional tool in texture
analysis and texture feature extraction.

The given analysis does not directly add to the current
methodology in texture analysis, as power-laws are well
known concepts, incorporated in numerous texture analysis
or generation models. Rather, the importance is in the mul-
tiplicative processes, which can be shown to naturally result
in power-law behavior. Furthermore, the given analysis tries
to fit the multi-resolution concept of texture into the well
founded and validated scale-space framework. Hence, the
given analysis provides some new insight in texture analysis
as function of observation scale. That is a new direction which
may prove to be fruitfull in the near future.
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