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Abstract— Human skin is a complex surface, with fine scale
geometry and local optical properties that make its appearance
difficult to model. Also, the conditions under which the skin
surface is viewed and illuminated greatly affect its appearance.
In this work, we capture the dependency of skin appearance on
imaging parameters using bidirectional imaging. We construct
a new skin texture database, containing bidirectional measure-
ments of normal skin and of skin affected by various disorders.
The complete database contains more than 3500 images, and
is made publicly available for further research. Furthermore,
we present two computational models for use in skin texture
recognition. Both models are image-based representations of skin
appearance that account for the varied appearance of the skin
with changes in illumination and viewing direction. We employ
these models in two contexts: discrimination between different
skin disorders (e.g. psoriasis vs. acne), and classification of facial
locations based on facial skin texture (e.g. forehead vs. chin).
The classification experiments demonstrate the usefulness of the
modeling and measurement methods.

I. INTRODUCTION

Modeling of human skin is an important task for both com-
puter vision and graphics. For computer vision, accurate mod-
els of skin texture can greatly assist algorithms for human face
recognition or facial feature tracking. In computer graphics,
facial animation is an important problem which necessitates
reliable skin texture models. In addition to computer vision
and graphics, accurate skin models are useful in dermatology
and several industrial fields. In dermatology, these skin models
can be used to develop methods for computer-assisted diag-
nosis of skin disorders, while in the pharmaceutical industry,
quantification is useful when applied to measuring healing
progress.

However, human skin is a 3D textured surface, with local
optical properties and fine scale geometry, that make its
appearance difficult to model. The conditions under which the
skin surface is imaged greatly affect its appearance, due to ef-
fects such as occlusions, foreshortening or shadowing. Recent
work in texture recognition concerned with the dependency of
surface appearance on the viewing and lighting conditions in-
clude [2][6][8][15][12][21][3][17][9][16][23][4][5]. The work
in [7][8] has introduced the notion of bidirectional texture
function (BTF) to describe image texture as a function of
the viewing and illumination directions. While the BTFs of
various real world surfaces have been of interest in the past,
e.g. the CUReT database [8], databases of skin texture BTFs
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Fig. 1. Rows 1 and 2: examples of normal skin, corresponding to two subjects
and to each of the four face locations (forehead, cheek, chin and nose) imaged
for each subject. Notice that the skin features vary from one subject to another,
and also from one region to another. Rows 3 and 4: examples from the clinical
component of the database. Row 3 shows bidirectional images of psoriasis,
located on the upper arm of a young female patient, while row 4 illustrates
images of acute allergic contact dermatitis, located below the patient’s knee.

have not been available until now. In this work we present
a novel skin texture database called Rutgers Skin Texture
Database (URL http://www.rutgers.edu/rutgers_texture), which
contains more than 3500 skin texture images. Each skin
surface in the database is represented by a set of texture
images, captured under different combinations of imaging pa-
rameters. The database has two components: (1) a normal skin
component for recognition and rendering in computer vision
and graphics; (2) a skin disorder component for quantitative
imaging in dermatology.

In addition to the measurements and the bidirectional imag-
ing methods employed to construct the database, we also
present two texture modeling methods which we employ
for texture recognition in two contexts: classification of skin
disorders (e.g. psoriasis vs. acne), and classification of facial
regions (e.g. forehead vs. chin). Both models are image
based, and support recognition methods that have several
desirable properties. Specifically, a single image can be used
for fast non-iterative recognition, the illumination and viewing
directions of the images need not be known, and no image
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Fig. 2. Illustration of the face locations imaged during the construction of
the normal skin component of the database. These facial texture images are
employed during the experiments described in Section 1V-B.

alignment is needed.

The rest of the paper is structured as follows: Section
Il presents details about the database, as well as the bidi-
rectional imaging methods employed during construction of
the database, Section Il describes the two texture modeling
methods we propose for use in skin texture classification, and
Section 1V describes the experimental results.

Il. SKIN TEXTURE DATABASE

We present a skin texture database comprised of more than
3500 images, obtained under controlled imaging conditions.
The database has two components.

The first component of the database is the normal skin
component, with more than 2400 texture images of normal
facial skin corresponding to 20 human faces, 4 locations on
the face (forehead, cheek, chin and nose, as illustrated in
Figure 2) and 32 combinations of imaging angles for each
imaged surface (four camera poses, and eight light directions
for each camera pose). The images in the database are acquired
from both female and male subjects (7 females and 13 males),
while the subjects age ranges from 24 to 53. The size of the
imaged skin patch is about 3 cm x 3 cm. Rows 1 and 2 of
Figure 1 show examples of texture images corresponding to
each of the four imaged regions, for two different subjects.
Notice the visual differences between texture images across
various regions and from one subject to another. Skin features
like pores, freckles, wrinkles or moles can differ in both size
and shape, making skin modeling a difficult task. Also, the
appearance of skin is influenced by factors like age and gender
of the subject. This component of the database can be used as
a testbed for a variety of applications of interest for computer
vision and graphics, i.e. classification and synthesis methods.

The second component contains texture measurements of
skin affected by various disorders. We present 75 clinical
cases, which include conditions like acne, rosacea, psoria-
sis, sebhorreic keratosis, dermatomyositis, actinic keratosis,
congenital melanocytic nevus, keratosis pilaris, and dermatofi-
broma. Each case may correspond to a different patient and
a different body location. Depending on the location of the
disorder, there are images from the face, arms, legs, back
and abdomen. Each case has been measured with multiple
texture images, and each image is characterized by a certain

combination of imaging conditions. More specifically, 28
cases are captured using imaging method 1, as described in
Section II-A, and each case is represented by 10 images. The
remaining 47 cases are imaged with method 2, also described
in Section II-A, and each case is imaged under approximately
24 imaging conditions. The varying number of images per case
is due to the difficult positioning of some lesions, affecting
the visibility for some combinations of imaging conditions.
The size of the imaged skin patch is dependent on the size
of the lesion, however is not larger than 5 cm x 5 cm. As
an example, consider row 3 of Figure 1, which illustrates
a case of psoriasis. The images show that the bidirectional
imaging captures the visual characteristics of this disorder,
i.e. the inflammation, redness, and thickness of skin areas with
silvery scale. Row 4 of Figure 1 shows bidirectional images of
a case of acute allergic contact dermatitis. Again, the image set
as opposed to a single image captures features of the disease,
e.g. fine scale bumpiness, redness, and shininess.

The complete database is made publicly available for further
research. While the normal skin component is meant to further
stimulate skin texture research and algorithm development for
computer vision and graphics, the clinical component will
constitute an effective teaching tool for the medical community
and an informative reference for patients.

A. Skin Imaging Methods

To obtain bidirectional measurements, there are four imag-
ing parameters: the polar and the azimuthal angles of the
viewing direction, and the polar and the azimuthal angles of
the illumination direction. Bidirectional measurements can be
quite difficult to obtain due to mechanical requirements of the
setup. When the sample is non-planar, non-rigid and not-fixed,
as is the case for human skin, measurements are even more
cumbersome. Consequently, our methods for bidirectional
imaging are developed with convenience of imaging human
subjects in mind. The sampling of the full space of imaging
angles is not dense, but the range of angles is sufficiently
large that the observed images show complementary detail. For
example, consider row 3 of Figure 1, which presents images
of the same skin surface affected by psoriasis, images obtained
with different imaging conditions. Notice how well the color
variation appears when the light falls frontally to the surface
(the first and third images from the left), and how the surface
geometric detail becomes apparent when the light direction is
more oblique (the second and fourth images from the left).

We present two techniques to achieve bidirectional imaging.
Both methods use a Sony DFW-V500 IEEE-1394 digital
camera equipped with InfiniMini video lens with variable
focus from 750mm to 150mm, and video magnification 2.9-
15X. Hlumination intensity and color is monitored by imaging
a white diffuse reflectance target providing an extremely flat
spectral response.

Imaging method 1 uses a light arc and a camera mounted
on a tripod. The various viewing directions are obtained by
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Fig. 3. The illumination setup for imaging method 1. Various light poses are
obtained by mounting the light source on a rotating arc. The light source is
allowed to slide along the arc such that the polar angle of illumination could
be varied, while the arc can be rotated around the vertical axis, providing
variation of azimuthal angle of illumination. The setup allows scanning of
horizontal surfaces.
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Fig. 4. The illumination setup for imaging method 2. Various light poses are
obtained by mounting the light source on a rotating arm. The rotation of the
arm around the horizontal or vertical axis allows variation of the azimuthal
angle of lighting. Also, the light source is allowed to slide onto the arm,
providing variation of the polar angle of lighting. Moreover, the axis around
which the arm is rotated, can be folded by 90° such that the light can span
both vertical (left) and horizontal (right) surfaces.

mounting a digital camera on a manually articulated arm
supported by a tripod. Positioning the light source on sample
points of the hemisphere of all possible directions is obtained
by mounting the lamp on a rotating arc, as illustrated in Figure
3. The light source is allowed to slide along the arc such that
the polar angle of illumination could be varied, while the arc
can be rotated around the vertical axis, providing variation
of azimuthal angle of illumination. The illumination setup
ensures constant distance between the surface of interest and
the light source. The lamp is positioned distant enough from
the surface of interest such that a quasi-collimation of light is
ensured.

Imaging method 2 uses a modified light arc and a camera
manipulator, utilized for the face texture database. These two
methods are essentially the same because in both the camera
and illumination are carefully controlled and a series of images
is obtained. The main difference between the imaging methods
is that our equipment for method 2 can also image a vertical
surface and is more convenient for facial imaging, so that the
subject does not have to lie horizontally under the imaging
equipment. Figure 4 shows the light source of method 2
mounted on a rotating arm which approximates the light arc.
The rotation of the arm around the horizontal or vertical
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Fig. 5. (a) The fiducial marker used for both positioning the camera and
for controlling the illumination direction. (b) The projections in the camera
of the fiducial marker, corresponding to the four camera poses we seek for
facial imaging.
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axis allows variation of the azimuthal angle of lighting. Also,
the light source is allowed to slide onto the arm, providing
variation of the polar angle of lighting. Moreover, the axis
around which the arm is rotated, can be folded by 90¢ such
that the light can span both vertical and horizontal surfaces.
For more convenient positioning of the viewing direction, the
camera is mounted on an articulated arm boom stand allowing
six degrees of freedom. Both the light setup and the camera
manipulator are augmented with mobile carts, allowing the
light and camera to be easily moved.

During both imaging methods, for each surface area, we
take a sampling of camera and lighting positions at approx-
imate directions and employ fiducial markers so that the
camera and lighting position can be recovered more precisely
if needed. Specifically, the fiducial marker we use is a circular
pattern presenting a height marker, as illustrated in Figure 5
(a). The height marker has length equal with the disk radius.
This pattern is attached to the surface of interest such that it is
comprised in the field of view of the camera. Positioning the
camera in one of the desired poses is achieved by inspecting
the projection of the pattern in the image. As an example,
consider the projections corresponding to the four camera
poses we seek for facial imaging, illustrated in Figure 5 (b).
The camera calibration is completed by imaging a known 3-
dimensional object during each imaging session, allowing the
computation of the intrinsic parameters of the camera.

I1l1. SKIN TEXTURE MODELING

Many standard approaches in texture modeling characterize
an image texture with a feature distribution. Bidirectional
texture necessitates a model which should account for the
appearance variation with the imaging conditions. Our mod-
eling methods use a feature distribution which is a function
of the imaging conditions, i.e. the model is a bidirectional
feature histogram. We develop two models which both employ
the bidirectional feature histogram, but differ in defining the
image feature. While the feature in the first model is an image
texton, obtained by clustering the output of oriented multiscale
filters, the feature in the second model is a symbolic texture
primitive, defined as a spatial configuration of indices of filters
with maximal response at a pixel. In this section we give the
details of these two methods.



¥

Fig. 6. [lllustration of the set of five dermatological disorders we classify dur-

ing the experiments described in Section IV-A: acne, congenital melanocytic
nevus (medium sized), keratosis pilaris, psoriasis, and acute allergic contact
dermatitis.

A. Image Textons as Features

Due to various evidences of similar processing in human vi-
sion, a classical computational approach for encoding the local
texture feature employs multichannel filtering [1][10][14][11].
In our work, we obtain a computational description of the
local texture attribute by using a multiresolution filter bank
consisting of oriented derivatives of Gaussians and center
surround derivatives, on three scales. Each pixel of a texture
image is represented by three multidimensional feature vectors
obtained by grouping the corresponding filter responses over
scale. To simplify our discussion, we will refer to a single
scale, however the processing is done in parallel for all three
scales. Our method differs from the method in [11] because the
resulting feature vector does not encode the variation of local
appearance as the viewing and illumination directions change.
Instead, we account for the change in appearance with imaging
conditions globally, by populating the feature space with fea-
ture vectors from sampled BTFs. We cluster the feature space
to determine the representatives among the population, called
the image textons. Specifically, we invoke k-means algorithm,
which is based on the first order statistics of data, and finds
a predefined number of centers in the data space. Empirical
results suggest that the resulting set of representatives in the
space spanned by the local structural feature vectors, namely
the image texton library, is generic enough to represent a large
set of texture samples. The histogram of image textons is
used to encode the global distribution of the local structural
attribute over the texture image. We represent the surface using
a collection of image texton histograms, acquired as a function
of viewing and illumination direction.

B. Symbolic Texture Primitives as Features

Though the image texton method works well when inter-
class variability is large, there are several drawbacks to this
approach. Clustering in high dimensional space is difficult and
the results are highly dependent on the prechosen number
of clusters. Furthermore, pixels which have very different
filter responses are often part of the same perceptual texture
primitive.

We seek a simplified representation that preserves the com-
monality of edges with the same orientation regardless of the
strength of the filter response. The important entity is the label
of the filter that has a large response relative to the other filters.
If we use a filter bank F, consisting of N filters {F1,....FN},
the index of the filter with the maximal response is retained

as the feature for each pixel. In this sense, the feature is
symbolic. While a single symbolic feature is not particularly
descriptive, we observe that the local configuration of these
symbolic features is a simple and useful texture primitive. The
dimensionality of the texture primitive depends on the number
of pixels in the local configuration and can be kept quite low.
No clustering is necessary as the texture primitive is directly
defined by the spatial arrangement of symbolic features.

C. The Recognition Method

The recognition method consists of three main tasks: (1)
creation of the library of representative features (either image
textons or symbolic primitives), (2) training, and (3) classifi-
cation. A subset of texture images is processed to determine
the collection of representative features. Each training image
provides a feature histogram and several training images
obtained with different imaging parameters are collected for
each texture class. The histograms from all training images
for all texture classes are used to create an eigenspace, then
the primitive histograms from a certain class are projected to
points in this eigenspace, which represent a sampling of the
manifold of points for the appearance of this texture class. In
theory, the entire manifold would be obtained by histograms
from the continuum of all possible viewing and illumination
directions. For recognition, the feature histograms from novel
texture images are projected into the eigenspace and compared
with each point in the training set. The class of the nearest
neighbor is the classification result.

IV. EXPERIMENTAL RESULTS
A. Classification of Skin Disorders

We employ the texture modeling approach based on im-
age textons as texture features in the context of a simple
classification experiment, where we attempt to discriminate
between five instances of skin disorders: acne, congenital
melanocytic nevus (medium sized), keratosis pilaris, psoriasis,
and acute allergic contact dermatitis. Figure 6 shows images
corresponding to each disorder considered for classification.
Each class is characterized by a set of 24 bidirectional images
captured from a certain patient. To compute the model, i.e.
the bidirectional feature histogram, each image is converted to
grayscale, and is manually segmented such that only the largest
quasi-planar surface is considered during the experiments. We
employ a filter bank consisting of 45 oriented derivatives of
Gaussian and Laplacian of Gaussian filters. These filters are
chosen to efficiently identify the local oriented features evident
in skin structures.

Each image is processed to compute the corresponding
image texton histogram, which encodes the statistical distri-
bution over the image of conspicuous spatial features, such
as oriented edges or spot-like features. As the image texton
library we employ a collection of image textons obtained
from images from the CUReT database [7][8], which is a
rich collection of 61 real world surfaces, each characterized



- e,

E."" -

F1 F2 F3 F4 F5

@

*»%% ‘f« x
X
XXXXX
X
X

P3 P4 P5

(b)

Fig. 7. (a) The set of five filters (Fi, i=1...5) used during the face skin
modeling: four oriented Gaussian derivative filters, and one Laplacian of
Gaussian derivative filter. (b) The set of five local configurations (Pi, i=1...5)
used for constructing the symbolic primitives.
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by a BTF sampled in more than 200 points. The reason for
using this image texton library and not one derived from skin
images, is to verify the assumption that our image texton
library is generic enough to represent skin images, though it
has been derived from images corresponding to different types
of surfaces.

During training, the size of the train set of each class is
varied from 12 to 20, therefore the size of the testing set
varies from 12 to 4. The recognition rate as a function of
the size of the training set is illustrated in Figure 8. Three
of the classes (congenital melanocytic nevus - medium sized,
keratosis pilaris, psoriasis) are 100% recognized, independent
of the size of the training set, while the other two cases
(acne and acute allergic contact dermatitis) are somewhat more
difficult, attaining a recognition rate of 75%. By visually
inspecting the images we observe that indeed the common
characteristics of cases 1 and 5 are more subtle, and this is
reflected by the reduced recognition rate. Globally, we obtain
an excellent recognition rate of 90%, and this result shows
that out modeling method successfully captures skin features.
This result is even stronger when one considers that the texton
library is computed based on non-skin images.

B. Classification of Facial Regions Based on Skin Texture

We construct the skin texture representation using symbolic
texture primitives as described in Section 111-B. We define the
symbolic texture feature by employing a filter bank consisting
of five filters: 4 oriented Gaussian derivative filters, and one
Laplacian of Gaussian filter. These filters, illustrated in Figure
7 (a), are chosen to efficiently identify the local oriented
patterns evident in facial skin structures, such as wrinkles or
pores. Each filter has size 15x15. We define several types
of symbolic texture primitives by grouping symbolic features
corresponding to nine neighboring pixels. Specifically, we
define five types of local configurations, denoted by Pi, i=1...5,
and illustrated in Figure 7 (b). As described in Section I11-B,
a symbolic feature corresponding to a pixel in the image is
the index of the maximal response filter at that pixel. The
pertinent question is how a featureless region in the image
would be characterized in this context. To solve this issue we
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Fig. 8. Classification of skin disorders. Recognition rate as a function of the
number of training images for each class.

define a synthetic filter, denoted by FO, which corresponds to
pixels in the image where features are weak, that is, where
the maximum filter response is not larger than a threshold.
Therefore the symbolic texture primitive can be viewed as a
string of nine features, where each feature can have values in
the set {0,...,5}. A comprehensive set of primitives can be
quite extensive, therefore the dimensionality of the primitive
histogram can be very large. To avoid this problem we prune
the initial set of primitives to a subset consisting of primitives
with high probability of occurrence in the image. Also, this
reasoning is consistent with the repetitiveness of the local
structure that is characteristic property of texture images.

We construct the set of representative symbolic primitives
by using 384 images from 3 randomly selected subjects and
for all four locations per subject. We first construct the set
of all symbolic primitives from all 384 skin images, then
we eliminate the ones with low probability. The resulting set
of representative symbolic primitives is further employed for
labeling the images, and to construct the primitive histogram
for each image.

By examining the skin texture images in the database,
we observe that there are local features of skin which vary
with the location on the face. For example, the pores on
the chin seem smaller than the ones on the forehead. Also,
there are wrinkles on the forehead which are not present on
the chin, or they appear different on the nose. However, we
notice that there is a great similarity between the appearance
of forehead and cheek, especially if they are imaged from
the same subject. Consequently, we design a recognition
experiment which discriminates between three locations on
the face: forehead, chin and nose. We use skin texture images
from all 20 subjects, therefore the total number of skin images
employed for this experiment is 1920 (20 subjects, 3 locations
per subject, 32 imaging conditions per location). Each face
region to be classified is represented by a set of 20x32 = 640
texture images. We achieve classification of face regions by
using individually each type of local configuration Pi, i=1...5,
as well as using all Pi, i=1...5 combined. The training set is
constructed with a subset of images from all subjects. The
size of the training set is varied from 320 to 520 texture
images for each face location. Classification is achieved with
the remaining images, which are characterized by completely
different imaging conditions than the ones for the training
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Fig. 9. Classification of face regions. (a) Recognition rates vs. the size of

the training set plotted for six scenarios: using all five types of primitives
for recognition (global), and using each configuration separately (B,7 =
1,...,5). (b) The global recognition rate as well as the recognition rates for
individual classes (forehead, chin, nose) vs. the size of the training set.

images. The recognition rate as a function of the size of
the training set is plotted in Figure 9. We achieve a global
recognition rate of 87%. Notice from Figure 9 (a) that there
is a slight difference in the performance of various types
local configurations. However, the combination of Pi, i=1...5
has more descriptive power than a single configuration. The
global recognition rate as well as the individual recognition
rates for each region to be classified are shown in Figure 9
(b). Notice that while the classification performance for nose
skin is quite good, the forehead skin is less recognizable.
By visually inspecting the images we observe that indeed
the common characteristics of forehead skin images are more
subtle than those of nose skin images.

V. CONCLUSION

In this work we introduce a novel skin BTF database, called
Rutgers Skin Texture Database!, which contains more than
3500 bidirectional texture images of normal facial skin, as
well as of skin affected by various disorders, like psoriasis,
acne or keratosis pilaris. The images in the database are
captured under controlled view/lighting conditions. Also, we
describe the bidirectional imaging methods employed during
the construction of the database. In addition, we present two
image-based surface modeling methods, which we employ in
two contexts: classification of skin disorders, and recognition
of facial regions based on skin texture. The recognition rates
are good, demonstrating the usefulness of our modeling tech-
niques in capturing textural features of the skin surface.

The ability to recognize or classify skin textures has a wide
range of useful multidisciplinary applications. For example,
skin texture as a biometric can be used to assist face recog-
nition in security applications. Biomedical evaluation of skin
appearance with this method can provide quantitative measures
to test topical skin treatments. Computer-assisted diagnosis in
dermatology is another potential application.

Future work includes expanding the current texture model to
support efficient synthesis. The difficulty in using image-based
representations for synthesis is that even large measurements

Lhitp://www.caip.rutgers.edu/rutgers_texture

are still a sparse sampling of the continuous six-dimensional
bidirectional texture function. A combined approach of geom-
etry or geometric transformations and image-based rendering
is needed, although exactly how this combination is achieved
is an open issue.
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