Simulation of Rain in Videos

Sonia Starik

Michael Werman

School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel
Jerusalem, Israel
E-mail: {starik,werman}@cs.huji.ac.il

Abstract

This paper treats the addition of simulated rain to a video
sequence. In order to derive a fast and simple algorithm
for rain simulation that produces realistic results, we inves-
tigated visual properties of rainfall in videos, in terms of
time and space.

Assuming partial knowledge of the intrinsic camera pa-
rameters and user-defined parameters regarding rain inten-
sity and velocity, we derive visual properties of the rain
“strokes” in the video space and show how to use these
strokes to modify the video to give a realistic impression of
rain.

1. Introduction

Adding artificial rain to a video is an interesting task, which
does not seem to have been addressed much. Several papers
dealt with snow simulation, but the task of rain generation
is different. A common approach to snow simulation is to
build a particle system ([8],[10],[11],[5]), where the parti-
cles (snowflakes) are rendered in the 3D world, simulating
the snowflakes motion. It is also possible to simulate rain
using such a particle model with a motion that describes rain
fall behavior (for example, [6] or demo at [1]). However, it
turns out to be unnecessary to use such a complicated tool,
since the falling trajectory of a raindrop is much simpler
than that of a snowflake. In addition, a raindrop’s motion
is much faster, thus less information about motion between
frames needs to be computed. In this work we build a sim-
ple model which does not model a 3D scene, but works di-
rectly on a video sequence.

We investigate visual properties of a rainfall projected
onto a video sequence, in terms of time and space. An in-
teresting observation is that one cannot usually recognize
rainfall by looking at a single frame, but it can easily be rec-
ognized when looking at a video. Thus, rain can be thought
of as a dynamic rather than as a spatial feature. Several
research has been done on synthesis of dynamic textures
([2],[91,[4]). In these works models that capture the statis-

tics of a sequence of images are learned and then used to
predict future appearances of the textures, thus generating
infinitely long sequence from a short input “example” se-
quence. Rather then learning the behavior of texture sam-
ples, we apply rainfall to an input video sequence given only
a set of rough parameters defining the desired rainfall inten-
sity and some parameters regarding the camera. We show
that temporal independence between the rain frames can be
assumed and reduce the problem to generating independent
rain frames.

Intuitively, the temporal dependencies between rain-
drops appearances are essential for creating sequential rain
simulation. However, we found out that the raindrops’ mo-
tion cannot be tracked by human perception (probably due
to the fast motion and high density of the drops, and to the
discontinuity of the camera shots), a fact discovered by ex-
periments that we carried out. Using videos of real rainfall
on stable natural scene backgrounds, we mixed up the video
frames in a random order and the results looked as natural
as the original videos. Therefore, temporal independence of
rain frames can be assumed, reducing the problem to gener-
ating a set of independent rain frames.

In order to generate a single rain frame, we assume some
rough intrinsic camera parameters (focal length, camera ex-
posure time, etc.) and some user-defined parameters relat-
ing to the 3D scene (rain density, rain velocity etc.). We also
assume uniform distribution of the raindrops in the world.
We use a 3D—2D projective camera model to derive vi-
sual properties of the rain-strokes (a raindrop looks like a
bright stroke on an image, due to its fast falling speed rela-
tive to the camera exposure time), as they should appear in
the image space (density, intensity, shape etc.). We create
a rain mask for each frame in the sequence and then add
it adaptively to the background image, based on the back-
ground color and the geometric properties of the generated
rain-strokes.

To obtain more visual reality, we simulate changes in
lighting conditions usually taking place when rain starts,
by decreasing the amount of color information in the back-

ground images, creating a darkening effect.

This paper is organized as follows: In Sec. 2 we ex-
plain why temporal independence of the rain frames can be
assumed. In Sec. 3 parameters regarding rainfall are dis-
cussed. Then in Sec. 4 we describe how to model a single
rain frame mask, and in Sec. 5 how to apply the mask to a
background image. We also describe how to separate rain
from a video of static background in Sec. 6. Experimental
results in Sec. 7 and discussion and future work in Sec. 8
summarize the work.

2. Temporal Modeling

Intuitively, dependencies among appearances of rain strokes
in consecutive frames is essential for sequential rain simu-
lation. However, although human perception of rain is more
dynamic than spatial, we found that temporal independence
of rain in consecutive frames can be assumed. This assump-
tion is justified by human perceptual experiments we made
on rain phenomena.

2.1. Tracking of Raindrops Motion

Finding the temporal dependencies between rain drops is
equivalent to tracking their motion from frame to frame.
However, the task seems impossible due to the very fast
motion of the drops relative to their size and to their high
density.

The most distinct drops (closest to the camera) are also
the fastest in the video due to the perspective projection,
so that their motion cannot be captured, because of the dis-
continuity of the camera shots. Between two consecutive
frames the drop passes a substantial part of the image, and
thus there is not much sense in looking at a small neighbor-
hood to discover the drops’ motion. The high density of the
remote drops, on the other hand, and their similarity to each
other, complicates their tracking as well. Hence, it seems
that the tracking task is very complicated or even impossi-
ble.

As an illustration example, in Fig. 1 we show three con-
secutive video frames from a rain video. It seems that no
explicit correlation between the rain strokes in each pair of
consequent frames can be observed, justifying the assump-
tion of strokes’ temporal independence.

2.2. Human Perception

The correctness of the temporal independence assump-
tion is also justified by human perception experiments on
rain. We took videos of real rain on stable backgrounds
of nature scenes, for different rain intensities. For each
of these videos, we mixed the frames up in a random
order and showed the result to independent spectators.
Both the original and the ”mixed” movies were considered

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 1: Consecutive frames of a rain video. No raindrops
tracking is possible.

Figure 2: Projective Model.

equally natural-looking by the observers (see examples at
http://www.cs.huji.ac.il/~werman/Papers/rain/rain.html)

Another experiment was to take a video of rainfall and
to flip it (raining upward). The spectators had difficul-
ties determining the direction of the raindrop motion, al-
though they could recognize the rainfall (see examples at
http://www.cs.huji.ac.il/~werman/Papers/rain/rain.html).

Therefore, our assumption is that tracking a raindrop mo-
tion is not important in order to create an impression of a
rainfall, but rather the repeated appearance of some random
spatial pattern. The modeling of such spatial pattern is ex-
plained in Sec. 4.

3. Real World Assumptions

We came up with the following set of parameters to de-
termine the visual properties of a rainfall: density, size,
speed of the raindrops and the direction of their motion. Of
course, dependencies exist between these parameters.

There is meteorological research that examine these pa-
rameters [12], [7]. It was found that raindrop size follows
an exponential two-parametric distribution [3]. The model
shows that each drop (except for the largest ones) achieves
its terminal velocity after the first 20 meters of its fall. The
value of the terminal velocity is a function of the drop’s size
and wind velocity.

We built a user-friendly interactive system where the
user can generate the desired rainfall by defining a small
set of parameters (to do this we simplified the model). The
user parameters are: a single raindrop size, a single raindrop
speed, rainfall density, wind direction and the background
depth. We add some small random perturbations to these
parameters to obtain more visual realism.

Despite these simplifications, the raindrop motion that
we obtain this way is complicated and chaotic enough to
achieve good visual realism.

4. Single Frame Modeling

As we have shown in Sec. 2, the repeated appearance of
some random “noise” of the same specific nature from
frame to frame is what makes us ’see” rain rather than track-
ing specific raindrop’s motion. Consequently, the problem
is reduced to modeling this rain ”noise” for each frame in-
dependently. The model consists of computing the noise
form, spatial + shape, and how to adjust this noise to the
background image.

4.1. Projective 3D—2D Model

Let us assume that we have a 3D (nature) scene and a pro-
jective 3D—2D camera as shown in Fig. 2 where f is the
focal length of the camera, 2 is the depth of the scene and
W x H is the size of the 2D image. The projective transfor-
mation from a 3D space into the 2D image space is defined
by

f00 X X J;z_X T
0f0 Y |=(v |=| & |=|vy
001 Z z 1 1

From this simple projective model and some assump-
tions we make on the 3D world we derive the density of the
rain strokes in the image space and their geometric proper-
ties.

It is important to note that in a projective model the
quantity of rain-strokes and their shape differ for different
depths. So, for a shallow depth less drops are captured by
the camera, but these drops are larger.

We assume that the maximal scene depth and the density
of the rain drops in the 3D world are user-defined param-
eters, we also assume drops follow a uniform distribution
in 3D, and we assume known camera parameters f, W and

H. From all these we derive the drops quantity and their
size for each discretely sampled z.

4.1.1. Quantity of rain strokes in an image.

To estimate the quantity of raindrops located at z <
distance < (z+ Az) from the camera, we calculate the
volume V' of the truncated pyramid marked as dashed in
Fig. 2:

V(z) = Pyramid(z + Az) — Pyramid(z)
(2 +Az) - H(z+Az) W(z+Az) z -H(z) - W(2)
3 3

by similarity of triangles, W (z) = 2% H(z) = ZH re-
sulting with

Since we assumed known f, W, H, the volume V' (z) can be
calculated for any 2, and given the drops average density we
calculate Quantity(z) = V- Density(Rain).

4.1.2. Rain strokes size.

We assume a uniform terminal speed for all the raindrops
in the world, Vg,.,p. This is a user-defined parameter which
determines the strength of the falling rain. We also assume
that the camera speed (exposure time) iS Tegmerq. Then
length(z) = L Tiumera - Virops. Regarding the width,
assuming the average raindrop diameter in the world is w,
we get width(z) = g - wyp.

In summary, we assumed the following known param-
eters: focal length and camera speed (intrinsic camera pa-
rameters), as well as raindrops’ density, their average size
and speed and the scene’s maximal depth (the world pa-
rameters). We assumed drops uniform distribution in the
world and calculated the number of raindrops of each size
that should appear in the image.

We add some small random perturbations to these pa-
rameters (to the amount of raindrops and to the size and
speed of each individual drop) to obtain more realistic re-
sults.

5. Adjusting of a Rain Mask to a Back-
ground Image

The same raindrop looks different when it passes over a
light or a dark background. For example, when we want
to know if it is raining outside, we seek for a dark wall or
trees and try to recognize white strokes over them. When all
the background is very bright (like the sky or white walls),
the recognition task becomes much more complicated. In
the same manner, the visibility of the rain depends on the
general brightness of the scene.

Therefore, changes of intensity in a new (with rain
added) image depend on the original background image
color, as well as on the lighting conditions. In addition,
another important factor should be taken into considera-
tion when modifying the image: due to the motion and
the “lens effect” of a raindrop the background behind it
is blurred. In principal, a physical model for the motion
blur can be built, based on the raindrops physical proper-
ties, background image properties and lighting conditions.
In our work we simplified this assumption and blurred the
background behind the drops based only on the raindrops
intensity. We implemented this idea by taking a weighted
mixture of blurred and original images, weighted according
to the raindrop intensity at a given location (as is explained
further in Sec. 5.1).

Our adaptive additive model takes a “mask” of the gen-
erated rain noise, that is, a grey-scaled image of rain strokes
of different sizes drawn on a black background (we build
this mask according to the assumptions made about the rain
fall properties in the 3D world and its projection onto the 2D
image space) and adjust it to the background image (origi-
nally with no rain). The following assumptions were made
in our model:

- Adding a rain stroke to the image increases the intensity
of the background pixels.

- The intensity increases in inverse proportion to the
background intensity (which means that we need to add
more rain color to a dark background and less to a bright
one).

- The drops are transparent, meaning that the original
pixel color is mixed with the raindrop color.

- A rain-stroke blurs the background behind it.

All the above treats local background dependency, but
global dependency on the general brightness of the scene
should be taken into consideration as well. We assume that
rain should be clearer on a darker image.

These assumptions are implemented as described below.

5.1. Additive Adaptive Model

Let Mask be a randomly generated grey-scaled image
of the rain, according to the single-frame rain generation
model. Let BG be a background image to which we want
to add the rain. In the resulting image Rain/ at a pixel z is
calculated as follows:

Rainl(z) = BG(z)+Mask-RainColor-(1—BG(x))-
(1 — mean(BGQ))

where RainColor is a constant determining the general
rain color (depends on the desired rainfall intensity) and
mean(BG) is the average brightness of the background im-
age. The term (1 — BG(x)) implements the idea that more
rain color should be added to a darker background (local
adaptiveness), and the term (1 — mean(BG)) expresses the
idea of the inverse dependence of the rain color intensity of

the general image brightness (global adaptiveness). (Note:
the M ask is normalized in order to avoid intensity overflow
when adding the mask to the image).

We also blur the background behind the rain-strokes by
taking a weighted mixture of a blurred version of rain mask
applied image (Rainl) and the original background (BG),
according to the raindrop intensity at a given location:
Result] = BlurredRainl - Mask + BG - (1 — Mask).
We have tried a number of different blurring masks to obtain
the BlurredRainl, all of them produced similar results. In
most of our experiments we used 3.X 3 convolution mask.

If the image is an RGB image, the same is done indepen-
dently for each of the 3 channels.

5.2. Effect of Darkening

To obtain more visual realism, we simulate changes in light-
ing conditions which usually take place when a rainfall
starts. However, in order to imitate light scattering during
the rainfall, prior information on the 3D scene geometry and
light sources are required. Lacking such information, we
imitate the loss of color information caused by darkening
(color difference decreases as light fades out), which usu-
ally occurs when it starts raining.

We implemented this by decreasing the amount of color
information in the background image, by moving the inten-
sity value of each pixel « in each of the R, G, B channels
towards the mean value mean(R(z), G(x), B(z)).

See Fig. 3 for an illustration example.

6. Separation of Rain from Videos

Separating rain from a video sequence seems not less im-
portant than its generation. However, we found it is also
much easier, at least for the videos of static scenes. Usually,
it is enough to perform a median operation on a number of
frames to obtain an image clear of rain (Fig. 4), due to the
fact that a pixel x is rain-free in most of the frames. In more
complicated cases this could be done after stabilizing the
video.

Another nice experiment we have made was to compute
differences between pairs of consecutive frames in videos
of static background. Since the only dynamic thing in these
videos is rain, the differences actually provide us with the
rain masks, which can be planted in other videos. However,
this method is less flexible, since we can’t regulate the rain
parameters we’ve described in Sec. 3.

7. Experimental Results

In Fig. 4 and Fig. 5 we show an example of the gen-
erated rain (however, it is better to see the videos at
http://www.cs.huji.ac.il/~werman/Papers/rain/rain.html).

The example consists of two videos - the first one is a video

(a) No darkening

(b) Darkening

(c) More darkening

Figure 3: Effect of darkening: (a)-original, (b)-darkened and (c)-darkened even more

of a real rain and the second one is an artificial rain video
which is adjusted (using our algorithm) to the background
of the first one.

First, we separated out the rain strokes from the first
video, using the median method described in Sec. 6. We
then applied our algorithm to the resulting median image
in order to produce simulated rainfall similar to the original
rainfall.

The goal of such a comparison was to check our abil-
ity to produce rain videos looking as natural as the original
ones. For each such example we have defined a set of rain-
fall parameters (as described in Sec. 3) which seemed to be
close enough to the rainfall in the original rain video. By
applying our simulation to the rain-free background with
those parameters, we aimed to achieve the level of similar-
ity between the original and the artificial movies such that
the human perception system could not distinguish between
them.

Another example we have made demonstrates the abili-
ties of our algorithm to produce rainfall of various intensi-
ties (heavy, light and very weak), with and without darken-
ing effect. Different parameters of raindrops’ size, density
and speed were used to calibrate the algorithm (see the ex-
amples of the generated videos on the web).

More examples of rain generation, rain separation
and human perception in videos can be found at
http://www.cs.huji.ac.il/~werman/Papers/rain/rain.html.

8. Discussion and Future Work

In this paper we described a system to add artificial rain
into video sequences, using simple 3D-world assumptions
and a projective camera model. Rather than the complex
task of modelling the 3D world, we worked with the video
sequences directly. User-defined parameters were used to
determine the rainfall intensity and the assumed 3D scene
depth, contributing to the model flexibility.

A natural improvement of our model is to implement
more realistic assumptions about the rainfall. For exam-
ple, it was found recently [3] that raindrop size follows an
exponential two-parametric distribution, and the velocity of
the drops can be calculated as a function of their size and
the wind velocity.

More research about human perception is of interest. It
seems, for example, that remote drops have only weak in-
fluence on perception.

In addition to the rainfall itself there is much work that
can be done to simulate other effects of rain, such as reflec-
tions, puddles, breaking of the raindrops when they reach
solid objects etc. All those, though, require prior informa-
tion about the 3D scene structure and the light sources.

Acknowledgments

We would like to thank Efim Belman for helpful discussions
and technical help in this work and the anonymous referees
for their comments.

References

[1] Rain particle system demo.
http://www.gamedev.net/features/diaries/khdiary, 2002.

[2] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman.
Texture mixing and texture movie synthesis using statistical
learning. IEEE Transactions on Visualization and Computer
Graphics, 7(2):120-135, /2001.

[3] A.C. Best. The Size distribution of Raindrops, volume 76.
Quart.J.Royal Meteor.Soc., 1950.

[4] Doretto, Gianfranco and Chiuso, Alessandro and Wu, Ying
Nian and Soatto, Stefano. Dynamic textures. International
Journal of Computer Vision, 51(2):91-109, 2003.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Median

Figure 4: Three consecutive frames from the original rain video and the median image

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

Figure 5: Four consecutive frames from the generated rain video. Rainfall parameters: maximal scene depth=4, raindrops
density=20, raindrops speed=5, tilt=0.

[5] Paul Fearing. Computer modelling of fallen snow. In Com-
puter Graphics (SIGRAPH 2000 Conference Proceedings),
pages 3746, 2000.

[6] Tabuchi Yoshihiko Kusanoto Kensuke, Tadamura Katsumi.
A method for rendering realistic rain-fall animation with mo-
tion of view. volume 105-005, 2001.

[7] Pierre McComber. Sensitivity of selected freezing rain mod-
els to meteorological data. In Proceedings of the 57th Annual
Eastern snow Conference, Syracuse, New York, USA, 2000.

[8] W.T. Reeves. Particle systems — a technique for modeling a
class of fuzzy objects. 2(2):91-108, April 1983.

[9] Y. Wu S. Soatto, G. Doretto. Dynamic textures. volume (in
press), 2001.

[10] Mikiya Shniya and Alain Fournier. Stochastic motion-
motion under the influence of wind. In EUROPGRAPHICS,
pages 119-128, Europian Association for Computer Graph-
ics, 1992.

[11] Karl Sims. Particle animation and rendering using data paral-
lel computation. In Computer Graphics (SIGRAPH 90 Con-
ference Proceedings), pages 405-413, 1990.

[12] J.F Straube and E.F.P.Burnett. Simplified prediction of driv-
ing rain deposition. In Proceedings of International Physics
Conference, pages 375-382, Eindhoven, 2000.

