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Abstract— A novel image texture classification method based
on finite Gaussian mixture models of sub-band coefficients is
proposed in this paper. In the method, an image texture is first
decomposed into several sub-bands, then the marginal density
distribution of coefficients in each sub-band is approximated by
Gaussian mixtures. The Gaussian component parameters are es-
timated by an “EM+MML” algorithm which performs parameter
estimation and model selection automatically. The Earth Mover’s
Distance (EMD) is used to measure the distributional similarity
based on the Gaussian components. Thus, classification can be
done by matching the marginal density distributions. Extensive
experiments show that the proposed method achieved an overall
improved classification accuracy compared to nonparametric
representation of sub-band distributions.

I. INTRODUCTION

Texture is an important regional characteristics of images.
Image texture classification refers to the classification of image
textures according to the feature properties extracted from
them. Tuceryan and Jain [1] surveyed four major categories of
methods for texture analysis, namely, statistical, geometrical,
model based and signal processing approach. Over the last few
years, more and more texture classification methods based on
filtering theory have been reported, benefitting from the latest
development in signal processing, such as multi-resolution or
scale-space analysis. The basic assumption of these methods is
that the energy distribution in the frequency domain identifies
a texture. Hence, if the frequency spectrum of a texture is
decomposed into a sufficient number of sub-bands, the spectral
signatures of different textures will be different enough to give
an accurate classification.

In spatial-frequency based texture analysis, multichannel
filtering is often employed to produce filtered sub-band images
from which statistics of sub-band coefficients can be derived.
These statistics are usually used as features forming a compos-
ite feature vector. Although numerous decomposition schemes
have been proposed for the purpose of texture characterization,
numerical description is mainly achieved through the second
order (or higher order) statistics of the sub-band coefficients
[2] [3], often with implicit assumption of Gaussian distribu-
tions. However, many natural image textures are known to
give rise to non-Gaussian sub-band marginal densities [4]. The
second-order (or higher order) statistics are insufficient to ap-
proximate the marginal densities of the sub-band coefficients,
thus they are insufficient to describe various image textures

accurately. As a remedy, non-parametric representations have
been proposed [5] [6]. Histograms of the sub-band coefficients
are considered a better representation which can capture the
distributions of any form. However, the choice of quantization
intervals in generating histograms is crucial and it is often
decided empirically. Normalization of the histogram ranges
may not be desirable because some ranges may be coarsely
quantized and some ranges will be sparse, either loosing
the precision of representation or wasting the histogram bins
causing unnecessary computation overheads.

In this paper, we propose a new texture description using
the Finite Gaussian Mixture (FGM) model to approximate the
marginal densities of decomposed sub-band coefficients. The
FGM model parameters are estimated by the “EM+MML”
algorithm and they are used as features for texture discrim-
ination. Since the FGM model parameters can approximate
the marginal densities sufficiently well, the features extracted
by this method achieve higher capacity of image texture
representation. The classification is accomplished by using
Earth Mover’s Distance(EMD) to measure the distributional
similarity by sets of the Gaussian components representing
texture classes.

II. DECOMPOSING IMAGES INTO SUB-BANDS

In the past decade, the multichannel decomposition ap-
proach has been widely used for analyzing image textures.
Some popular methods for decomposing an image into sub-
bands are multichannel filtering using Gabor filter bank,
wavelet transform and steerable pyramid. The Gabor filter
bank produces filtered images corresponding to the scales and
orientations of the corresponding Gabor filters [7]. In wavelet
transform [8], an image is transformed into approximate and
detailed coefficients at multiple scales with respect to the
selected wavelet basis. A steerable pyramid combines the
advantages of both Gabor wavelet and wavelet transform,
producing a multiscale version of the original image in a
pyramid hierarchy using directional derivatives [9] [10]. Figure
2 illustrates a steerable pyramid decomposition of an image
texture (shown in Figure 1) with 4 orientational subbands at 3
scales. Figure 3 shows the histograms of the 14 filtered images
in Figure 2. The distributions seen in these histograms are
typical and an assumption of Gaussian for all of them would be
too restrictive. In our work, a Finite Gaussian Mixture(FGM)



model is proposed to approximate the marginal statistics due to
its simplicity and ease of computation, although other mixtures
can also be used.

III. APPROXIMATING MARGINAL DENSITIES USING FGM
MODEL

A. Finite Gaussian mixture model

Gaussian mixture model is a type of density model which
comprises a number of component Gaussian functions. These
component functions are combined with different weights to
result in a multi-modal density. Gaussian mixture models are
a semi-parametric alternative to non-parametric histograms
(which can also be used to approximate densities) and it has
greater flexibility and precision in modelling the underlying
distribution of sub-band coefficients. As illustrated in Figure
3, the sub-band coefficient histograms in a steerable pyramid
decomposition are not all Gaussians, even though many of
them are Gaussian-like. Thus, we can use a Finite Gaussian
Mixture model to approximate these densities more accurately.

Let x be a sub-band coefficient in the steerable pyramid.
Associated with it is an unobserved hidden state variable
Si ∈ S1, · · · , Sk. The value of Si dictates which of the k
components in the mixture model that generate x. It is said
that x follows a M-component finite mixture distribution if its

Fig. 1. An example of image texture

Fig. 2. The decomposition of Figure1 by using steerable pyramid. The bottom
one is the residual high-pass sub-band.
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Fig. 3. Histograms of coefficients in each sub-band from the steerable
pyramid decomposition(normalized). (The sub-band images are shown in
Figure 2; The figures on the first row are the histograms of the low-pass
band and the high-pass band) .

probability density function can be written as

p(x|Θ) =

M∑

m=1

αmp(x|θm),∀x ∈ <
n (1)

where α1, · · · , αM are the mixing proportions, such that∑M

m=1 αm = 1 and each θm is the set of parameters defining
the m-th component, and Θ = (α1, · · · , αM , θ1, · · · , θM ) is
the complete set of parameters needed to specify the mixture.

In the case of mixture components Si being Gaussian
densities with parameters θm = (µm,Σm), eq. (1) can be
expressed as

p(x|Θ) =

M∑

m=1

αmN(x|µm,Σm) (2)

The complete set of parameters in the FGM model is
Θ = (α1, · · · , αM , µ1, · · · , µM ,Σ1, · · · ,ΣM ).

B. Parameter estimation by “EM+MML” algorithm

The commonly used approach for determining the parame-
ters Θ of a Gaussian mixture model from a given data set is
by the Maximum Likelihood (ML) estimation. In this paper,
the well-known Expectation-Maximum (EM) algorithm is used
to estimate the Gaussian mixture parameters [11]. However,
an important issue in mixture modelling is the selection of
the number of components. With too many components, the
mixture may over-fit the data, while a mixture with too few
components may not be accurate enough to approximate the
true underlying density. Many algorithms have been proposed
to solve this problem, such as Split and Merge EM [12],
Greedy EM [13] and the component-wise EM + MDL al-
gorithm proposed by Figueiredo and Jain [14]. In our work,
the Minimum Message Length (MML) is adopted as the
model selection criterion, achieving the same objective as



———————————————————————–
• Input: Data vector X;
• Params: Maximum and minimum number of components
Mmax,Mmin

• Procedures:
Set the initial Message Length Lmin = +∞;
for m = Mmax:-1:Mmin

Initialize Θ0 = Θk means;
Θ̂m = Θ̂EM ;
Compute Lm;
if Lm 6 Lmin, then

Lmin= Lm; Θ̂best = Θ̂m;
end if

end for
• Output: Mixture model parameters Θ̂best and the number

of mixture components Mbest determined by MML.
———————————————————————–

Fig. 4. EM+MML algorithm

MDL. Different from [14], we used a standard EM algorithm
instead of the component-wise EM. The algorithm is called the
“EM+MML” algorithm which integrate parameter estimation
and model selection in a single algorithm. The Message
Length L is expressed as

L(θ̂, y) =
N

2

M∑

m=1

log(
nα̂m

12
) +

M

2
log

n

12

+
M(N + 1)

2
− log p(y|θ̂) (3)

where N is the number of parameters specifying each
component, n is the number of observed data, M is the number
of components, and α̂, θ̂ are the estimated Gaussian mixture
parameters. The EM+MML algorithm is presented in Figure
4.

In the “EM+MML” algorithm, we run EM algorithm iter-
atively from Mmax to Mmin. In each iteration, the mixture
parameters are initialized by the k-means algorithm. The
number of components and mixture parameters are selected
according to the Minimum Message Length expressed in eq.
(3).

Considering the computation cost, in our experiment, we
set Mmax=6 and Mmin=1, i.e., the number of mixture com-
ponents is between 1 and 6. Experimental results show that
mixture model using a maximum of 6 components can ap-
proximate the marginal density well enough for our purpose.

IV. TEXTURE CLASSIFICATION USING FGM MODEL
PARAMETERS

A. Earth Mover’s Distance

The Earth Mover’s Distance is proposed to measure the
distribution similarity between a set of Gaussian components
representing an input texture and sets of such components
representing all texture classes in the database. The Earth
Mover’s Distance was first proposed by Rubner et. al. for
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Fig. 5. Matching two marginal histograms using different number of Gaussian
components.

content-based image retrieval in a large database [15]. It is
used to compute the minimum amount of work that must
be performed to transform one distribution into the other.
Intuitively, given two discrete, finite distributions,

X = {(x1, wx1), (x2, wx2), · · · , (xm, wxm)}

Y = {(y1, wy1), (y2, wy2), · · · , (yn, wyn)}.

where xi, yj are two distributions, and wxi, wyj are corre-
sponding weights of the distribution, finding a m× n matrix
F where fij is the amount of weight wi matched to wyj , that
will minimize the following function:

m∑

i=1

n∑

j=1

fijdij (4)

and subject to the following constraints:

fij ≥ 0, 1 6 i 6 m, 1 6 j 6 n (5)
n∑

j=1

fij = wxi, 1 6 i 6 m (6)

m∑

i=1

fij = wyj , 1 6 j 6 n (7)

m∑

i=1

n∑

j=1

fij = min(wx, wy) (8)

where wx =
∑m

i=1 wxi, wy =
∑n

j=1 wyj , the Earth Mover’s
Distance is defined by the normalized distance between X and
Y

EMD(X,Y) =

∑m

i=1

∑n

j=1 fijdij∑m

i=1

∑n

j=1 fij

=

∑m

i=1

∑n

j=1 fijdij

min(wx, wy)
(9)

In our work, the weight wxi, wyj is the Gaussian component
weight of each sub-band, so wx = 1, wy = 1. The distance dij

is defined as the Kullback-Leibler (KL) divergence between



two components. The KL divergence between two densities f
and g is expressed as [16]:

D(fi‖gj) =

∫

Ω

fi(x) log[fi(x)/gj(x)]dx (10)

For two Gaussian distributions fi ∼ N(µi,Σi), gj ∼
N(µj ,Σj), the KL divergence becomes,

D(fi‖gj) =
1

2
log

|Σj |

|Σi|
+
1

2
tr[Σi(Σ

−1

j − Σ−1

i )]

+
1

2
tr[Σ−1

j (µi − µj)(µi − µj)
T ] (11)

where tr[·] denote the trace of the matrices.
So, the EMD is expressed as

EMDsub =

m∑

i=1

n∑

j=1

fijD(fi‖gj) (12)

whereD(fi‖gj) is defined by (11).
For a texture which is decomposed as K sub-bands, the total

EMD is the sum of that of each sub-band,

EMD =
K∑

k=1

EMDsub (13)

The classification is accomplished by computing the EMD
between the input texture and each texture class, and the input
texture is classified into the class with which the EMD is
smallest.

V. EXPERIMENTAL RESULTS

A. Database of texture images

The textures in these experiments are from the Brodatz
texture album [17]. All 112 original textures were scanned
and saved as 512×512 images. 100 image textures of size
128×128 are sampled from each 512×512 image, and the
image textures are divided into balanced training and test sets.
Each training set consists of 50 images sampled from the
top half of the original 512×512 images, another 50 images
sampled from the bottom half of the texture image for testing.
Since the Brodatz textures contain both uniform and non-
uniform textures, we selected 78 classes of uniform textures
(see Fig.7). Other non-uniform textures in the Brodatz album
are not used because the sampled textures will be very different
even though they come from the same original Brodatz texture.
Although including the non-uniform textures in the experiment
will make the problem more challenging, the degradation of
performance is caused by the difference in the sampled texture
rather than due to the limitation of the proposed method.

B. Experimental results

In order to evaluate the performance of our classification
method, we also experimented with histogram method pro-
posed by Puzicha et. al. [6]. The reason for choosing this
method for comparison is that the histogram method can
achieved good classification result among the existing texture

TABLE I
CLASSIFICATION RESULT ON DATABASE1

Number of classes 10 20 40 60 78

FGM 98.50 97.80 97.40 97.70 95.03
Histogram(bin 32) 99.40 98.70 94.60 94.30 90.10
Histogram(bin 64) 100.00 98.20 96.05 94.13 87.51
Histogram(bin 128) 99.70 98.50 97.30 92.80 91.69
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Fig. 6. Classification accuracy with respect to the number of texture classes.

classification methods. For a fair comparison, the preprocess-
ing of images for both methods are the same, i.e., we use
steerable pyramid to decompose the texture into several sub-
bands first. In the histogram method, the density distributions
are represented using histograms of different number of bins,
and use the histogram entries as features for classification.
While in our proposed method, we use FGM model to fit the
density distributions and use EMD to measure the distribution
similarity.

In the experiment, we choose 20, 40, 60, 78 texture classes
respectively. The experimental results are shown in Table I.
Figure 6 is a plot of the classification rates. It is shown
that when the class number is small, both the FGM and the
histogram method achieve good classification rates, however,
when the number of classes increases, the FGM method is
better than the histogram method.

However, a disadvantage of the FGM algorithm lies in
its computation. Since the FGM method involves the esti-
mation of mixture parameters and Earth Mover’s Distance
computation, compared with the histogram method, it is more
computation intensive.

VI. CONCLUSION

In this paper, a method to approximate the marginal dis-
tribution using Finite Gaussian Mixture model is proposed.
Experimental results shows our proposed method can achieve
better classification accuracy than the histogram method when
there is a larger number of classes. The methods avoid



Fig. 7. 78 texture image database used in the classification experiment 1

the problems faced with the use of histograms. The use of
EMD for distributional similarity also avoids the problem in
comparing the Gaussian components for classification, such
as inaccuracy of the parameter estimation by EM, ordering of
the components and incompatible number of components due
to MML. In our experiments, we use the steerable pyramid
filter to decompose the texture. However, it is not necessary
to use steerable pyramid to achieve this objective, Gabor
filters, wavelet filters or other decomposition methods are also
suitable for this purpose.
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